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S U M M A R Y
Continuous GPS (CGPS) coordinate time-series are known to experience repeating deforma-
tion signals with seasonal and other periods. It is unlikely that these signals represent perfect
sinusoids with temporally constant amplitude. We develop an analysis method that accom-
modates temporal variations in the amplitudes of sinusoidal signals. We apply the method
to simulated coordinate time-series to numerically explore the potential consequences of ne-
glecting decadal variation in amplitude of annual motions on the residual-error spectra of
CGPS measurements, as well as potential bias in estimates for secular site velocity. We find
that secular velocity bias can be appreciable for shorter time-series, and that residual-error
time-series of longer duration may contain significant power in a broad band centred on semi-
annual frequency if temporal variation in the amplitude of annual motions is not accounted for
in the model used to reduce the observations to residuals. It may be difficult to differentiate
the bandpass filtered signature of mismodelled loading signals from power-law noise, using
residual-error spectra for shorter time-series. We provide an example application to a ∼9-yr
coordinate time-series for a CGPS station located in southern California at Carbon Creek
Control Structure (CCCS), which is known to experience large amplitude seasonal motions
associated with the Santa Ana aquifer system.

Key words: Inverse theory; Numerical approximations and analysis; Satellite geodesy; Tran-
sient deformation.

1 I N T RO D U C T I O N

Precise coordinate time-series from permanent networks of

continuously-recording GPS (CGPS) stations, such as the Earth-

Scope Plate Boundary Observatory Facility, can be used to study

numerous geophysical processes, including the motions of tectonic

plates, strain accumulation around active faults, coseismic or aseis-

mic fault slip, viscous relaxation of stresses in the deeper parts of

the crust or upper mantle, magmatic and hydrologic processes, the

flow fields of ice sheets and other sources of motion. Many of these

processes cause Earth’s surface to move with complex spatial and

temporal patterns, not well described by constant rates of change of

coordinates. An important limitation to our ability to use geodetic

measurements to understand these processes is that, in many cases,

we do not know a priori the source of the observed deformation.

Thus, it can be difficult to specify an appropriate set of kinematic

model parameters or to model observed motions directly in terms of

density or stress distributions on or beneath Earth’s surface. How-

ever, direct studies of observed crustal motions in the absence of a

physical model for crustal motion can sometimes reveal distinctive

clues critical to identification of the source processes and ultimately

to the specification of a physical model.

Many sources of deformation of the solid Earth’s surface (in-

cluding surface area covered by ice) are associated with periodic

loading. Loading effects have been studied for more than a century

(e.g. Darwin 1882) but have been studied most intensely over the past

decade, coincident with the emergence of CGPS networks specifi-

cally designed for geodynamics (e.g. van Dam et al. 1994; van Dam

& Wahr 1998; Blewitt et al. 2001; van Dam et al. 2001; Blewitt

& Lavallée 2002; Dong et al. 2002; Elósegui et al. 2003; Penna

& Stewart 2003; Davis et al. 2004 Stewart et al. 2005; Nicolas

et al. 2006; Watson et al. 2006; Clarke et al. 2007; Penna et al.
2007; van Dam et al. 2007; and others). Positioning errors associ-

ated with unaccounted for or mismodelled multipath, atmospheric

delays, GPS ephemerides, tidal deformations and other potential

sources of repeating error could also contribute to periodicity in

CGPS time-series.

Periodic signals can severely hamper estimation of secular site

velocity if unaccounted for. Blewitt & Lavallée (2002) showed that

annual signals of constant amplitude in GPS coordinate time-series

will result in non-negligible biases in estimates for secular crustal

motion if periodic terms are not included in the kinematic model.

They also showed how neglecting to account for constant ampli-

tude periodic motions could lead to correlations in residual-error

time-series, with spectral characteristics similar to those of power-

law noise models. Periodic surface motions derive from a number of

load sources, such as atmospheric pressure changes, ocean and solid

Earth tides, ice mass fluctuations and variations in water table levels
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and are significant at semi-monthly, monthly and semi-annual peri-

ods (e.g. van Dam et al. 2001). Although they may wax and wane

with some regularity, it is unlikely that any of these variations have

temporally constant amplitudes, given that they are associated with

the highly dynamic fluid parts of Earth and could also arise from

temporally-variable positioning errors. If unaccounted for, these de-

partures from purely periodic site motion could also lead to biased

estimates for secular velocity. Moreover, such ‘quasi-periodic’ site

motion could potentially dominate the time-variable component of

instantaneous coordinate velocity, causing instantaneous velocity to

fluctuate between positive and negative values, obscuring any un-

derlying signals of a non-secular non-periodic nature. Thus, a com-

plete understanding of site motions caused by quasi-periodic loads

may be critical to our ability to use CGPS time-series to investi-

gate a wide class of potential non-periodic time-dependent crustal

deformation processes. Finally, if the responses to quasi-periodic

loads are unaccounted for, inferences regarding the observation–

error spectrum based on residual-error time-series could be

inaccurate.

In this paper, we develop a flexible semi-parametric model suit-

able for investigating quasi-periodic signals in CGPS coordinate

time-series. We chose a method that is flexible in that it allows for

small (bounded) temporal variations in the amplitudes of the sig-

nals. A limited number of previous investigations have accounted

for the possibility of time-variable amplitudes in seasonal signals,

with the goal of mitigating their effect on estimates for crustal de-

formation (e.g. Murray & Segall 2005). Our investigation differs in

that it concentrates on an assessment of (1) our ability to estimate

periodic amplitude variations; (2) their effects on secular velocity

and (3) their effects on estimates for residual-error statistics.

Although we concentrate on annual signals in this paper, the anal-

ysis method that we develop should be applicable to any sinusoidal

signal of period relevant to CGPS time-series, whether real or appar-

ent. The method should be useful for mitigating biases associated

with complex quasi-periodic signals when estimating secular veloc-

ities or other non-periodic signals using coordinate time-series. The

theory, upon which our analysis is based, is fairly general and could

be modified for investigations of nominally periodic signals with

waveforms other than sinusoids. Moreover, although our discussion

focuses on the analysis of CGPS coordinate time-series, the method

may have application to other types of data streams containing pe-

riodic signals subject to small magnitude variations in waveform

amplitude.

Section 2 introduces the analysis procedure. We set up the prob-

lem, provide a solution algorithm and briefly discuss the issues of

model selection and error analysis. Section 3 provides three exam-

ples using simulated data, with emphasis on the accuracy of secular

velocity estimates and error analyses for the case of time-variable

quasi-periodic signals. Section 4 shows an application of the method

to an observed CGPS coordinate time-series from southern Cali-

fornia. Finally, we discuss the limitations of the analysis approach

and the general problem of modelling quasi-periodic site motion in

Section 5.

2 T H E O RY

2.1 Statement of the problem

Consider a kinematic model for the time-evolution of a geodetic

coordinate x(t) given by

x(t) = x0 + vt + s(t), (1)

where x0 is a constant initial offset, v is a constant velocity and s(t)
is a model for quasi-periodic motion of the form

s(t) = a sin

(
2π

T
t

)
+ b cos

(
2π

T
t

)
+ c(t) sin

(
2π

T
t + θ

)
. (2)

a and b are unknown constants representing time-averaged wave

amplitudes and c(t) is an unknown amplitude deviation function

with time-averaged value of zero. T is the period of the signal. For

simplicity, we assume that the time-variable part of the signal is in

phase with the time-averaged part, such that θ = tan−1 (b/a). It is

possible to relax this restriction by simultaneously estimating am-

plitude deviations for both sine and cosine terms (with a common

period), though at the expense of increased computation time and

model variance. However, quasi-periodic site motion driven by en-

vironmental loads may, in many instances, be adequately accounted

for by assuming constant phase. An example of this is provided be-

low using real data from CGPS site Carbon Creek Control Structure

(CCCS) in southern California.

Given a set of measurements d i of the coordinate x at a series of

M different times t i :

di = x0 + vti + s(ti ) + ei , i = 1, . . . , M, (3)

we seek to determine the constants a and b and the deviation func-

tion c(t), as well as the unknown constants x0 and v. We assume that

the data are sufficiently abundant and distributed through time that

x0, v, a and b are estimable without regularization in the absence

of amplitude deviation c. We also assume that the data are ordered

according to increasing time and that the t i for which we have mea-

surements define the closed interval [0, T M ]. For the purposes of

developing the problem, we assume that the errors represented by

ei are zero-mean random variables with variance–covariance σ 2I,

where I is the identity matrix. It is straightforward to consider a more

general error variance–covariance matrix σ 2V if required by a spe-

cific data set, as we describe in more detail below. We also discuss

the use of residual-errors to make inferences about the statistics of

the true observational errors below.

Estimation of the constants x0, v, a and b is straightforward and

constitutes a core component of routine GPS time-series analysis.

A more challenging problem is the determination of the continuous

time-varying deviation function c(t). We here address this latter

problem.

To begin, it is convenient to define the linear functionals φ i such

that

φi (c) =
∫ TM

0

δ(t − ti ) sin

(
2π

T
t + θ

)
c(t) dt, (4)

where δ(t) is the Dirac delta function. We temporarily ignore the

dependence of the φ i on the initial phase θ and thus the unknowns

a and b as if the phase were known a priori. This dependence is

straightforward to address as we demonstrate below.

Our problem is severely underdetermined, given that we seek

to estimate a continuous function from a finite number of data.

One approach to addressing this ‘ill-posedness’ is to impose re-

strictions on the class of admissible amplitude deviations. Toward

this end, we define a Hilbert space of amplitude deviations A such

that

A =
{

c : [0, TM ] → IR,

∫ TM

0

c(t)dt = 0,

∫ TM

0

ċ(t)2 dt < ∞
}
,

(5)
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where IR is the set of real numbers and ċ is the time-derivative of c.

We choose the (squared) norm on A to be

‖c‖2
A =

∫ TM

0

[ċ(t)]2 dt. (6)

The inner product associated with this norm is

〈 f, g〉A =
∫ TM

0

ḟ (t)ġ(t) dt, (7)

for all f, g ∈ A. Under this norm, the amplitude functionals φ i are

bounded on A, meaning that

|φi ( f ) − φi (g)| ≤ K‖ f − g‖A, (8)

for some positive real number K known as the ‘operator norm’.

Of the infinite number of constants x0, v, a, b ∈ IR and deviations

c(t) ∈ A, we concentrate on that subset minimizing the functionals

�ρ given by

�ρ(m, c) = 1

σ 2

M∑
i=1

[di − gi m − φi (c)]2 + ρ‖c‖2
A, (9)

where gi ∈ IR4 is the row vector with elements 1, t i , sin (2π t i/T )

and cos (2π t i/T ) and m ∈ IR4 is the column vector with elements x0,

v, a, b, respectively. ρ is a regularization parameter, controlling the

relative importance of matching the data points d i and minimizing

the variability of the deviation function as measured by the Hilbert

space norm ‖ · ‖A.

Our choice of Hilbert space A and performance functional �ρ

allow us to construct a finite dimensional basis set for our solutions,

using the Reisz Representation Theorem (Naylor & Sell 1982). Ac-

cording to this theorem, there exist unique functions 	i ∈ A, such

that

φi (c) = 〈	i , c〉A, (10)

for each bounded linear functional φ i on A.

Functions 	i (t) satisfying (10) are said to be the ‘representers’

of the corresponding functionals φ i . To identify expressions for

the representers 	i , it is useful to first consider the representers

associated with point evaluation on A, that is, with the functionals

pi (c) given by

pi (c) ≡ c(ti ) (11)

=
∫ TM

0

δ(t − ti )c(t) dt (12)

= 〈Pi , c〉A. (13)

The representers of point evaluation associated with the Hilbert

space A are

Pi (t) = k1(ti )k1(t) + k2(|ti − t |), t, ti ∈ [0, TM ], (14)

where k 1(t) = t/T M − 1/2 and k 2(t) = 1/2[k2
1(t) − 1/12] for t ∈ [0,

T M ]. We derived our Pi (t) from expressions provided by Craven &

Wahba (1979), which are valid for the unit interval [0,1], by simple

scaling of the time-variable. An important property of the Pi (t) is

that they repeat periodically outside of the interval [0, T M ] with pe-

riod T M [The periodic property of the point evaluation representers

is completely independent of the (quasi-)periodic nature of the sig-

nals under investigation. The fact that we are investigating periodic

signals is entirely coincidental]. The functions P(ti , t) ≡ Pi (t) are

analogous to Green’s functions for differential operators in that the

representers for more general bounded linear functionals, such as

φ i , may be derived from these representers of point evaluation. For

our case,

	i (t) =
∫ TM

0

δ(u − ti ) sin(2πu/T + θ )P(u, t) du (15)

= sin (2π ti/T + θ )Pi (t), (16)

as is readily verified:

φi (c) = 〈	i , c〉A (17)

= sin(2π ti/T + θ )〈Pi , c〉A (18)

= sin(2π ti/T + θ )pi (c) (19)

= sin(2π ti/T + θ )c(ti ) (20)

=
∫ TM

0

δ(t − ti ) sin

(
2π

T
t + θ

)
c(t) dt. (21)

Fig. 1 shows 10 examples of the amplitude deviation representers

	i evenly spaced in the interval 0–10 yr. Each 	i integrates to zero

over the interval 0–10 yr.

Given these representers, all estimators of the deviation c(t) min-

imizing (9) subject to c ∈ A may be expressed as

c(t) =
M∑

i=1

ξi	i (t), (22)

where the M ξi ∈ R are unknown coefficients. To show that this

is the case, consider an amplitude variation of the form c(t) =
c⊥(t) + ∑M

i=1 ξi	i (t), such that c⊥(t) is orthogonal to each of the

representers 	i (t). This means that 〈	i , c⊥〉A = φi (c⊥) = 0. We

see immediately that non-zero c⊥ cannot contribute in any way to

fitting the data. Furthermore, from the Projection Theorem (Naylor

& Sell 1982)

‖c‖2
A = ‖c⊥‖2

A +
∥∥∥∥

M∑
i=1

ξi	i

∥∥∥∥
2

A
≥

∥∥∥∥
M∑

i=1

ξi	i

∥∥∥∥
2

A
. (23)
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Amplitude Deviation Representers

Figure 1. Amplitude deviation representers (solid curves) for select epochs

evenly spaced in the interval 0–10 yr. Each coordinate estimate of the time-

series is associated with a representer, which depends on the epoch of mea-

surement. Deviation function estimates are constructed from linear combi-

nations of these representers. The area under each curve is zero.
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Orthonormal Basis Functions

Figure 2. Orthonormal basis functions (solid curves) derived from the rep-

resenters of amplitude deviation shown in Fig. 1. Only the first five basis

functions are shown for clarity.

That is, c⊥ only serves to increase the norm of the amplitude vari-

ation. For any given ρ and
∑M

i=1 ξi	i , we can always make �ρ(c)

smaller by reducing ‖c⊥‖A. Therefore, any amplitude variation min-

imizing �ρ(c) must be such that ĉ⊥ = 0.

For computation and analysis, it is advantageous to orthonormal-

ize the amplitude representers, such that

c(t) =
N∑

i=1

ciηi (t), (24)

where N ≤ M and the functions η i (t) form an orthonormal basis

on A. Following Matthews & Segall (1993), we determine the or-

thonormal basis functions from the eigenvectors of the Gram matrix

Γ, which has elements γi j = 〈	i , 	 j 〉A. Explicitly,

ηi (t) = λ
−1/2
i

M∑
j=1

v j i	 j (t), (25)

where v j i represents the jth component of the ith eigenvector vi, and

vi and the corresponding eigenvalues λi satisfy Γvi = λi vi. Fig. 2

shows the first five orthobasis functions over the interval 0–10 yr,

derived from the complete set of amplitude deviation representers

for daily measurements in this interval. The orthobasis functions are

ordered such that the least complex basis functions attain the largest

amplitudes and are associated with the largest eigenvalues.

2.2 Solution algorithm

Let n ∈ IRN be the column vector with elements c1, . . ., c N . Sub-

stitution of (24) into the performance functional (9) leads to the

minimization problem

�ρ(m̂, n̂) = min
m,n

�ρ(m, n). (26)

The solution to this problem requires that we address two fundamen-

tal issues. First, the functionals φ i depend on the unknown initial

phase θ , as noted above. Thus, �ρ(m, n) is not a linear function

of the unknown parameters and linear inverse theory is strictly not

applicable. Second, determination of a preferred solution requires

the specification of a preferred ρ = ρ∗.

We address the first of these issues by pre-solving the well-posed

problem,

�∞(m̃) = min
m

1

σ 2
‖d − Gm‖2, (27)

where d ∈ IRM is the column vector with elements d 1, . . ., d M , the

rows of the M × 4 matrix G are given by the vectors gi defined

above and ‖ · ‖ represents the Euclidian norm. The solution vector

m̃ contains the parameter estimates x̃0, ṽ, ã, b̃. For the case of more

general error variance–covariance matrix σ 2V, replace d and G
with L−1 d and L−1 G, respectively, where L is the lower diagonal

Cholesky square root of the variance–covariance matrix, that is,

V = LLT . Below, we refer to the problem (27) and the solution m̃
as the traditional problem and solution, respectively.

We then estimate the full solution represented by m̂ and n̂ as

follows. First, we set θ = θ̃ = tan−1(b̃/c̃). Second, we substitute θ

and eq. (24) into the performance functional (9). Finally, we solve

the resulting minimization problem for m̂ and n̂ for a given ρ. With

these substitutions, we may rewrite eq. (9) as

�ρ(z) = ‖d − Az‖2 + ρσ 2‖n‖2, (28)

where A = [G Γ] and z is the column vector formed by concatena-

tion of the column vectors m and n. Γ is the M × N matrix with ijth
entry given by γ i j = φ i (η j ). For each value of ρ, there is a unique

solution ẑ(ρ) minimizing the performance functional (28):

�ρ(ẑ) = min
z

�ρ(z). (29)

The result of this minimization is

ẑ(ρ) = (
AT A + ρσ 2B

)−1
AT d, (30)

where B is the (N + 4)-square diagonal matrix with first four entries

equal to zero and the remaining N entries equal to 1. For the case of

a more general error variance–covariance matrix σ 2V, replace d and

A with L−1d and L−1A, respectively. Below, we refer to the problem

(28) and the solution ẑ alternately as the new, semi-parametric, or

full problem and solution, respectively.

ẑ = ẑ(ρ) depends critically on the regularization parameter ρ. For

larger values of ρ, fluctuations in c(t) will be small in magnitude and

smoothly varying through time, whereas for smaller values of ρ fluc-

tuations will be larger in amplitude and more irregular through time.

From eq. (28) it is clear that σ 2 plays the same role as ρ. For fixed

ρ, estimators deriving from less precise data will exhibit less varia-

tion. Estimators based on more precise data may be more variable.

In practice, however, one simply estimates a scaled regularization

parameter ρ ′ ≡ ρσ 2 for the case σ 2 �= 1.

Because we re-estimate a and b in the full solution, one may

wonder if it is necessary to iterate until the a priori value of θ used

to calculate the representers is equal to the a posteriori estimate

θ̂ = tan b̂/â. In our experience, however, the phase estimates θ̃ and

θ̂ are equal within their uncertainties as of the first full solution.

Therefore, we have found no need for iteration. Nevertheless, we

make no claim regarding the generality of this result and advocate

that it be verified with each application.

2.3 Choosing the solution

There are many algorithms in the literature for determining the ‘best’

value of ρ based on principles of statistics. We here consider two

popular prescriptions. One method, which is commonly applied in

the geophysics literature, is known as cross validation. The method

is based on the notion that the best model will be the one that best
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predicts independent subsets of the data. One recipe for assessing

the predictive power of the model is to purposely withhold each

data point one by one during a series of parameter estimate de-

terminations. The best model is then considered to be the model

that minimizes the overall sum of squared prediction errors. Direct

application of this method would be costly in that it would require

estimation of one model for each data point for each candidate value

of ρ. Fortunately, there is a significantly less costly solution that in-

volves evaluation of one model using the full data set for each value

of ρ (e.g. Wahba 1990). The best choice ρ∗ according to ‘leave-one-

out’ cross validation is the one that minimizes the cross-validated

sum of squared errors CVSS given by

CVSS(ρ) =
M∑

i=1

[
di − d̂ i (ρ)

1 − hii (ρ)

]2

, (31)

where d̂ i (ρ) is the ith component of the vector d̂(ρ) = Aẑ(ρ), con-

taining the predicted values of the data points, given the model pa-

rameters ẑ(ρ) associated with a given value of ρ and hii (ρ) are the

diagonal elements of the matrix H(ρ) =A(AT A + ρB)−1 AT . Some

advantages of the CVSS statistic are that it is fairly straightforward

to calculate and has an intuitively appealing interpretation. Another

satisfying property of CVSS is that, for large M , it produces results

that are equivalent to those determined by minimizing the Akaike

Information Criterion (AIC; Akaike 1974) with philosophical foun-

dations in information theory (e.g. Boltzmann 1877; Fisher 1922;

Shannon 1948; Kullback & Leibler 1951). For our problem, the AIC

score is

AIC = M log

(‖d − Az‖2

M

)
+ 2 trH(ρ), (32)

where the notation tr(·) indicates the matrix trace operation. Mod-

els minimizing AIC are said to suffer the least Kullback–Leibler

information loss relative to the true model.

One important drawback of the AIC/CVSS prescription is that

it performs poorly when the model is not known exactly or when

the errors in the data are correlated (e.g. Altman 1990; Hart 1991).

Thus, the AIC/CVSS criterion works well for simulations where

both model and errors are known but can be unstable when applied

to real data. Instability is obvious in that the ‘optimal’ model over-

predicts the data. This is apparent in (1) the value of ρ∗, which is

so small that the effective number of model parameters approaches

M ; (2) the power spectral density of residual-errors, which attains a

positive slope, and (3) the resulting fit to the data, which shows that

the data points are interpolated with little smoothing (averaging) of

errors.

The Bayesian Information Criterion (BIC; Schwarz 1978) over-

comes this limitation of the AIC and CVSS statistics by more strin-

gently penalizing models with smaller degrees of freedom. Mini-

mization of the BIC statistic selects the model with maximum a
posteriori probability. For our problem, BIC may be expressed as

BIC = M log

(‖d − Az‖2

M

)
+ log(M) trH(ρ). (33)

As the number of data approaches infinity, the probability of select-

ing the true model using BIC approaches certainty.

In Section 3, we apply both the AIC/CVSS and BIC criteria to

simulated data sets to demonstrate their utility and assess their dif-

ferences. In Section 4, we apply only the BIC criterion to a real

GPS time-series. Fig. 3 shows an example of the dependence of

AIC, CVSS and BIC on ρ, for estimators based on simulated data

representing a 10-yr time-series. The specifics of the simulation are

0 5 10 15 20
0

50

100

150

Rho

S
c
o
re

 

AIC

CVSS

BIC

AIC

min

BIC

min

Figure 3. AIC, CVSS and BIC regularization statistics defined in the text.

Minimization of any of these statistics determines an ‘optimal’ estimate for

the smoothing parameter ρ. The BIC score consistently penalizes models

with fewer degrees of freedom more heavily, resulting in larger values for

ρ∗ and smoother estimators of amplitude deviation. BIC appears to be more

stable when applied to real data.

described in detail in the next section. The statistics in Fig. 3 have

been adjusted by subtracting their minimum values such that the ad-

justed minimum is zero for both to facilitate comparison. The close

agreement between the values of ρ associated with these minima for

AIC and CVSS informally demonstrates their general interchange-

ability. BIC results in a slightly larger value of ρ∗ which produces

smoother models.

2.4 Assessing error variance

Throughout this paper, we use the term ‘residual-errors’ in refer-

ence to the predicted errors ẽ = d − Gm̃ and ê = d − Aẑ to

emphasize their dependence on the model used to reduce the data.

Residual-errors are commonly used to investigate the nature of the

true observation-errors e, as if the model for site motion were known

exactly. Residual-errors will be correlated if the model for kinemat-

ics is incomplete, or if the observation-errors are correlated. For

each of the estimations that we consider below, we assess the power

spectral density of the residual-errors to illustrate their temporal

correlations.

It is also useful to consider the a posteriori estimates for the

observational-error variance based on the assumption of an exact

model. The traditional estimate of the a posteriori variance σ̃ 2 is

σ̃ 2 = 1

σ 2

‖d − Gm‖2

M − 4
. (34)

An estimate for the a posteriori variance σ̂ 2 associated with the

cross-validated time-variable analysis is provided by Wahba (1990):

σ̂ 2 = 1

σ 2

‖d − Aẑ(ρ∗)‖2

tr [I − H(ρ∗)]
. (35)

3 N U M E R I C A L E X A M P L E S

In this section, we apply the theory developed in Section 2 to three

synthetic data sets. The goals of this section are to (1) demon-

strate the utility of the theory presented above to probe the effects

of quasi-periodic loads; (2) assess the consequences of neglecting

annual-amplitude variation on the power spectral density of resid-

ual time-series (i.e. the residual-error spectra) and (3) assess secular
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Figure 4. Simulated data set representing the sum of several contributing

factors including a constant velocity term, annual motion with constant am-

plitude, annual motion with time-variable amplitude and errors sampled from

a zero mean Gaussian distribution of unit variance. The time variation of the

annual amplitude is modelled as sinusoid with period of 10 yr and amplitude

equal to that of the constant part of the annual signal.

velocity biases when using short time-series in the presence of long

wavelength variations in the amplitude of annual signals. A more

elegant analytical assessment of these questions along the lines of

the study of Blewitt & Lavallée (2002) is complicated for our prob-

lem due to the larger number of model parameters. Instead, our

investigation relies on numerical experiments.

The simulated data are composed of several parts, including (1)

a secular trend determined from a constant velocity; (2) constant

amplitude purely periodic motion representing the time-averaged

part of the quasi-periodic signal and (3) another sinusoidal variation

representing the time-variable part of the quasi-periodic signal. This

latter, time-variable signal, has an amplitude that varies with decadal

period. Each of these components of the signal is illustrated in

Fig. 4.

Table 1. Simulated and estimated model constants and variances.

Model True Traditional method estimates New method estimatesa

param value 1.5 yr 2.5 yr 10 yr 1.5 yr 2.5 yr 10 yr

x0 0.00 −0.19 (0.09) −0.25 (0.07) 0.02 (0.03) −0.03 (0.13) −0.07 (0.09) 0.04 (0.04)

−0.04 (0.11) −0.11 (0.08) 0.02 (0.04)

v 1.00 1.24 (0.10) 1.19 (0.05) 1.00 (0.01) 0.96 (0.14) 1.05 (0.06) 0.99 (0.01)

0.99 (0.12) 1.08 (0.05) 0.99 (0.01)

a 1.00 1.02 (0.06) 0.96 (0.05) 1.00 (0.02) 1.08 (0.07) 0.99 (0.05) 0.99 (0.02)

1.07 (0.06) 0.98 (0.05) 0.99 (0.02)

b 1.00 0.99 (0.06) 1.09 (0.05) 0.98 (0.02) 1.02 (0.06) 1.11 (0.05) 0.98 (0.02)

1.01 (0.06) 1.11 (0.05) 0.98 (0.02)

θ 0.79 0.77 (0.06) 0.85 (0.05) 0.78 (0.02) 0.75 (0.06) 0.84 (0.05) 0.78 (0.02)

0.76 (0.06) 0.84 (0.05) 0.78 (0.02)

σ 2 1.00 1.17 1.08 1.49 1.10 0.99 1.00

1.12 0.99 1.02

SSRb 639 977 5444 599 891 3661

605 899 3697

Pc 4 4 4 7 9 23

6 6 13

Note: The numbers in parentheses are the standard deviations.
a There are two values listed for each parameter associated with the AIC/CVSS and BIC solutions, respectively. b SSR is the sum of

squared residual-errors. c P is the effective number of model parameters.

Fig. 4 shows the longest of the synthetic data sets that we consider.

The simulated data are intended to represent CGPS coordinate time-

series over a 10 yr span of time. The data were generated using

eqs (1) and (2) plus errors sampled from a zero mean Gaussian

distribution with unit variance (in units of mm2). Different values

for the a priori variance σ 2 would have an effect on the values of

ρ∗, which we estimate below, and the a posteriori estimate of the

variance but not on the parameter estimates themselves.

We assume one measurement per day, which is typical of CGPS

time-series. The parameters of the kinematic model are listed in

Table 1. For simplicity, all parameter values used in the simulation

were either zero (y-intercept in units of mm), or one (secular veloc-

ity in units of mm yr−1, amplitudes of individual periodic terms in

units of mm). The total magnitude of the time-averaged part of the

periodic signal is thus
√

1 + 1 ≈ 1.4 mm. We chose to model the

time-variable deviation function as a sine function with 10 yr period

and amplitude equal to the amplitude of the time-averaged compo-

nent. We make no claim that this choice of amplitude deviation is

more realistic than any other potential deviation. The initial phase

is θ = tan−1 (1) � 0.785.

We also consider two shorter time-series of duration 2.5 and

1.5 yr. We use the same model as for the longer 10-yr time-series

described above, but independent error sequences were used for all

three series. These shorter time-series serve to illustrate the effects

of decadal amplitude variation on the estimates for secular velocity

and show how the semi-parametric estimator performs on shorter

series for the ideal case of uncorrelated measurement errors. We use

the longer 10-yr time-series to explore the effects of neglecting the

decadal variation on the inferred power spectrum. We also explore

the ability of the estimator to recover decadal variations in the ampli-

tude of periodic signals, again under the ideal case of uncorrelated

measurement errors.

We begin our discussion with the 10-yr time-series shown in

Fig. 4. The period of ten years was chosen for two reasons. First, 10

yr represents one complete cycle for our assumed decadal amplitude

deviation function. Second, and more importantly, a large number

of continuous GPS stations installed in the mid-1990s have recently

achieved their tenth year of operation, with relatively few stations

having been in operation for much longer than ten years.
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Figure 5. Model fits to the synthetic data set of Fig. 4 for both the traditional

model and the new semi-parametric models developed in Section 2. Semi-

parametric models are shown for both the AIC/CVSS and BIC regularization

criteria. The synthetic data have been detrended.

Fig. 5 shows best fit models to the 10-yr time-series based on

the traditional constant amplitude approach represented by the min-

imization problem (27) and our time-variable semi-paramteric ap-

proach represented by problem (29). Semi-parametric models are

shown for both the AIC/CVSS and BIC choices of ρ∗. Table 1 lists

the parameter estimates and their uncertainties. It is clear from this

example that the best fit model resulting from the new approach is

significantly more variable than that of the traditional approach for

both AIC/CVSS and BIC. The amplitude of the seasonal variation in

the semi-parametric model is as much as a factor of two larger than

the traditional model during the early period between ∼2 and 2.5 yr

and is near-zero later in the time-series. These variations coincide

with the decadal variation in the amplitude deviation function de-

scribed in the previous paragraph and shown in Fig. 4. Whereas the

traditional solution includes estimates for four independently de-

termined parameters, the semi-parametric models contain estimates

for approximately 23 and 13 independently determined model pa-

rameters for AIC/CVSS and BIC, respectively. It is interesting to

note that had we used our knowledge of the mathematical form of

the simulated amplitude deviation, we could have estimated param-

eters describing the quasi-periodic motion using a total of 8 model

parameters (x0, v, a, b and four additional coefficients describing the

amplitude variation). In general, however, the form of the amplitude

deviation function is unknown.

Various aspects of the misfit of the model may be considered.

The pointwise match of the model to the data is significantly bet-

ter using the new semi-parametric method relative to the traditional

method; the weighted sum of squared residuals (SSR) for the tradi-

tional method is 5444, whereas the SSR for the new time-variable

method is appreciably smaller at 3661 and 3697 for AIC/CVSS and

BIC solutions, respectively. Errors in the estimates for secular ve-

locity v and trend of site motion x 0 + vt are comparable for this

solution, reflecting the fact that sinusoidal signals tend to average to

zero with longer time-series (e.g. Blewitt & Lavallée 2002), even for

the case of non-constant amplitudes. However, this averaging effect

does not apply to statistical measures of misfit, for example the a pos-
teriori estimate for the variance of the data errors. The traditional

estimator σ̃ 2 overestimates the true error variance by 50 per cent

10 10
0

10
1

10
2

10
3

10
4

10
2

10
0

10
2

10
4

Cycles Per Year

P
o
w

e
r

 

 

Traditional model

New Model AIC

New Model BIC

Figure 6. Power spectral density function estimates for the misfit to the

synthetic data of Fig. 4 for both the traditional model and the new semi-

parametric models based on AIC/CVSS and BIC. All three of the spectral

density estimates are nearly indistinguishable for frequencies higher than

about 4 cycles yr−1. There is a large amount of power in the frequency band

0.2 to 2 cycles yr−1 in the residuals associated with the traditional model that

is not present in the residuals associated with the semi-parametric models.

This result suggests that assessments of the error spectra of GPS time-series

based on residual fits to time-series may be biased if sites experience periodic

motions with time-variable amplitudes unless such signals are accounted for.

(1.5 mm2), whereas the new estimator σ̂ 2 provides an accurate es-

timate of 1.0 mm2 for both AIC/CVSS and BIC models (Table 1).

Fig. 6 shows the power spectral density estimates for the residuals

associated with the traditional and semi-parametric models. Power

spectra are similar for all three models, with the exception of a

broad band of frequencies centred on the semi-annual frequency for

which the traditional errors have appreciably more power. Residual

(positioning error) time-series are commonly used to infer the noise

characteristics of GPS measurements. Such estimates depend on the

model that was used to reduce the observed time-series to residual

time-series. As Fig. 6 shows, omission of the time-dependent part of

periodic signals leaves appreciable power in the lower frequencies.

An important feature of the semi-parametric estimator is that it

decomposes rather complex signals, such as that shown in Fig. 4,

into their constituent parts. Of particular interest is the possibility of

learning something about the variability in the amplitude of environ-

mental (or other) loads, as characterized by the deviation function c.

The estimate for the deviation function resulting from the analysis of

our 10 yr simulation is shown in Fig. 7. As this figure illustrates, the

estimators do a remarkable job of tracking the variation in the am-

plitude of the quasi-periodic signal, with typical point uncertainty

between 0.1 and 0.2 mm.

Fig. 8 shows examples of the dependence of the regularization

statistics on ρ, for estimators based on the simulated data over 2.5

(Fig. 8a) and 1.5 yr (Fig. 8b) intervals. The specifics of the simulation

are described in detail above. As in Fig. (3), the statistics in Fig. 8

have been adjusted by subtracting their minimum values such that

the adjusted minimum is zero for both to facilitate comparison. The

close agreement between the values of ρ corresponding to these

minima for AIC and CVSS informally demonstrates the general

interchangeability of these statistics even for relatively short time-

series. Optimal values of ρ associated with the BIC minima are

larger than the values obtained by AIC/CVSS for both the 2.5 and

1.5 year intervals.

Figs 9(a) and (b) show the 2.5- and 1.5-yr time-series associ-

ated with the statistics presented in Figs 8(a) and (b), respectively.

The parameter estimates associated with the inversions using these
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Figure 7. Deviation function inferred from the synthetic data set of Fig. 4

estimated using the semi-parametric analysis method described in the text.

The true deviation function and the misfit of the deviation function esti-

mates (labelled Deviation Error) are shown for comparison. The dashed

lines represent one standard deviation error bounds. The estimator of ampli-

tude deviation does a reasonable, though not perfect, job of recovering the

true function to within error.

Figure 8. Regularization parameter estimates for synthetic (a) 2.5- and (b)

1.5-yr duration time-series. The close agreement between the AIC and CVSS

statistics is apparent even when the time-series under investigation have short

duration.

time-series are listed in Table 1. As for the case of the full 10-yr

time-series, we also plot the constituent parts of the synthetic sig-

nal, including a secular trend, a constant amplitude sinusoidal term

with annual period, a time-variable sinusoid and the corresponding

Figure 9. Synthetic time-series for (a) 2.5 and (b) 1.5 yr intervals using

the same kinematic model as for the the series in Fig. 4 but with differing

random error sequences.

amplitude deviation function. Figs 10(a) and (b) show the results of

the traditional and semi-parametric inversions for these subsets of

data. As was observed using the 10 yr series, the semi-parametric

models exhibit significantly more structure than the models obtained

by traditional means. The effective number of independently de-

termined parameters P for the time-variable models are listed in

Table 1.

The pointwise match of the model to the data is significantly bet-

ter, using the new method relative to the traditional method. The

SSR are listed in Table 1. In the case of the 1.5 yr series, the ve-

locity error is within a few standard deviations, but for the 2.5-yr

time-series the velocity error associated with the traditional esti-

mate is greater than 3 standard deviations (>99.7 per cent confi-

dence). Thus, the random variable v̂ associated with the traditional

method has a mean that almost surely differs from the true ve-

locity, that is, v̂ is a biased estimator. Errors in the estimates for

secular velocity are significantly reduced using the semi-parametric

model. Errors in positioning and trend are also reduced significantly.

These results demonstrate that decadal variations in annual ampli-

tude, if unaccounted for, could bias velocity estimates based on short

time-series, even if the time-averaged part of the repeating signal’s

amplitude is accounted for. The amplitude deviation function that
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Figure 10. Model fits to the synthetic data sets of Figs 9(a) and (b), respec-

tively, for both the traditional model and the semi-parametric models based

on AIC/CVSS and BIC regularization criteria. The difference in amplitude

of annual motions between the models is subtle and could be difficult to

identify by visual inspection of the observed time-series prior to modelling.

we used for simulation was arbitrary, but we surmise that a broad

class of plausible amplitude deviations could bias velocity estimates.

Further study is required to assess the general importance of such

effects.

Fig. 11 shows the resulting deviation function estimates for the

2.5- and 1.5-yr time-series together with the actual deviation func-

tions used in the simulations and the associated model misfits. Over-

all the deviation function estimators provide close matches to the

true functions even for these rather short time-series; the errors in

the estimates are most of the time smaller than one standard devia-

tion. The errors are larger near the beginning of the interval where

the simulated deviation function has the steepest slope. The largest

errors occur for the smoother BIC model. Fig. 12 shows the power

spectral density estimates for the residuals associated with both the

traditional model and the semi-parametric model for the 2.5 and

1.5 yr cases. Power spectra are similar for both inversion methods

with the exception of the lowest frequencies. Due to the short dura-

tion of the time-series, however, the limited bandwidth of the error

arising from unmodelled time-variable annual amplitude is not as

strikingly apparent as for the case of the 10-yr time-series shown in

Fig. 6. For the shorter time-series it might therefore be difficult to

differentiate power-law residual-error spectra from bandpass filtered

spectra.

Figure 11. Deviation function estimators for the synthetic data set of Fig. 9,

estimated using the semi-parametric analysis method described in the text

based on AIC/CVSS and BIC regularization criteria. The true deviation func-

tion and the misfit of the deviation function estimates (labelled Deviation

Error) are show for comparison. The dashed lines represent one standard de-

viation error bounds. The estimators of amplitude deviation do a reasonable

job of recovering the true function to within error even for short time-series

for both AIC/CVSS and BIC.

4 A P P L I C AT I O N T O R E A L DATA

In this section, we apply the new analysis method to a real CGPS

time-series. For demonstration, we have selected a long-running

CGPS station CCCS located in southern California. The station

was constructed as part of the Southern California Integrated GPS

Network. The monument consists of a set of five deep-anchored

rods set in an alluvial fan. The station is located along the north-

eastern edge of the Santa Ana aquifer system and experiences

very large (4–5 mm) amplitude quasi-annual variation in site mo-

tion (Fig. 13) (Argus et al. 2005). We here consider time-series

for the north component of position for site CCCS provided by

Scripps Orbit and Permanent Array Center (SOPAC). We cor-

rected time-series for three jumps associated with earthquakes or

other disturbances identified in SOPAC’s ‘Refined Model’ for site

kinematics. These were 3.0 ± 0.3 mm at epoch ∼1999.8, 0.3 ±
0.3 mm at epoch ∼2006.0 and 14.1 ± 0.3 mm at epoch ∼2006.8. We

have selected this site and time-series solution for two reasons. First,

this site exhibits clear quasi-periodic motion. Second, Langbein
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Figure 12. Power spectral density function estimates for the misfit to the

synthetic data of Fig. 9 for both the traditional model and the semi-parametric

models. All three of the spectral density estimates are nearly indistinguish-

able for frequencies higher than about 4 cycles yr−1. There is very little

difference between the spectra among the models due to the short duration

of the time-series.

(2008) analysed the residual time-series for this site as part of his

analysis of SOPAC time-series, finding that the residual-error spec-

trum for CCCS was best described as a combination of bandpass

filtered and power-law noise.

For this analysis of real data, we included terms for repeating sinu-

soids at two periods, representing annual and semi-annual variation.

Thus, for both the traditional and new semi-parametric methods, we

estimate six constant parameters (x0, v, aa , ba , as , bs), where aa

and ba represent the constant amplitudes of the annual variation

and as and bs represent the amplitudes of the constant part of the

semi-annual terms. For the new semi-parametric method, we also

estimate two deviation functions ca and cs , respectively, in addition

to the constant parameters. We used one regularization parameter

determined by BIC to damp both deviation functions. The fit to the

data achieved using a single regularization parameter is sufficient

to illustrate our main points.

Fig. 13 shows time-series for the north component of CCCS site

position together with the fitted models resulting from the traditional

and the new semi-parametric analysis approaches. The traditional

model clearly does a poor job of tracking the observed variation in

site motion. The SSR for the traditional model is 11 623 and the a
posteriori variance estimate for this model is σ̃ 2 = 1.9 mm. The

semi-parametric model, on the other hand, is much more capable of

tracking the variations; the SSR is 792 and the a posteriori estimate

for the standard deviation associated with the new model is σ̂ 2 = 0.5

mm, nearly a factor of 4 smaller than for the fit of the traditional

model. The effective number of model parameters for the semi-

parametric model is ∼202. The significantly improved fit to the data

provided by the semi-parametric model qualitatively suggests that

our restriction to constant phase θ was an acceptable approximation,

at least for this site.

The difference between secular velocity estimates for the tradi-

tional and new models is −0.08 mm yr−1 (traditional minus new).

The uncertainty in both is 0.03 mm yr−1. This rate difference, al-

though rather small, is significant, given that both estimates used the

same data and are thus highly correlated. Argus et al. (2005) esti-

mated a correction for the velocity of site CCCS due to non-tectonic

deformation associated with hydrology of the Santa Ana aquifer.

Their correction is 0.8 mm yr−1 oriented 113◦ counter-clockwise

from north. The north component of this anthropogenic motion is

−0.3 mm yr−1. Our estimated difference is in the same direction

(southwards) though ∼4 times smaller than Argus et al.’s correction,

resolved onto the north coordinate direction. Southward motion is

consistent with long-term subsidence of the basin, which pulls sta-

tions on the periphery of the basin in towards the area of maximum
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Figure 13. Time-series for the north component of position for CGPS site CCCS located in southern California. Also shown are the best fit models resulting

from the traditional and semi-parametric (BIC) analysis methods. Both models include terms for both annual and semi-annual site motion.
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Figure 14. Power spectral density function estimates for the residuals to the

model fits to the north component time-series for site CCCS. There is an

appreciable difference between the traditional and semi-parametric model

residual power spectra at low frequencies.

subsidence. Secular subsidence is expected as fine grained silt and

clay layers are irreversibly compacted. There are two main reasons

for the difference between Argus et al.’s correction and the velocity

estimate difference that we compute between traditional and new

models. First, the Argus et al. correction was based on the cumula-

tive non-tectonic deformation at site CCCS, whereas the deviation

functions of our analysis are modulated to annual and semi-annual

periods. Therefore, our estimates may not entirely characterize the

cumulative deformation of the basin which could have long-period

and/or secular components. Second, Argus et al.’s analysis was based

on a 3 yr subset of the 8-yr time span considered in our analysis. We

expect any potential differences between the SOPAC GPS solution

considered here and the Jet Propulsion Laboratory solution consid-

ered by Argus to be insignificant relative to these other two effects.

The power spectral density of residual-errors associated with the

traditional and semi-parametric models for CCCS are shown in

Fig. 14. The mistfit of the new model contains significantly less

low frequency power than for the traditional constant parameter

model. The most striking difference occurs in the frequency band

of ∼0.2 to ∼2 cycles yr−1, though there is also an appreciable dif-

ference in power in the higher frequency range of ∼2 to ∼20 cycles

yr−1. The misfit spectra at the highest frequencies (>20 cycles yr−1)

are comparable between the two solutions, reflecting the underlying

(mostly) uncorrelated error.

Fig. 15 shows the estimates for the quasi-periodic part of the

model. Unlike the simulation study presented in the previous sec-

tion, wherein we considered deviations with 10 yr period, the inter-

annual variability for both annual and semi-annual deviation func-

tion estimates are quite high. Although there are periods of time

where both deviation functions have small magnitude relative to

the constant amplitude part of the annual variation, the deviations

occasionally attain large values. The pattern is complex, suggest-

ing that the underlying processes responsible for the deviations are

themselves complex. The largest anomaly in the annual variation

occurs during the late-Fall and Winter of 2004–2005. The largest

anomaly in semi-annual variation occurs during the late 2007 period,

coincident with the largest departures in the observed time-series

from their time-averaged values. It is notable that the southern Cal-

ifornia region experienced 947 mm of rain during the 2004–2005

season, the second highest annual total since 1878, and water lev-

els in wells near the bases of local mountain ranges rose by 10s of

metres (King et al. 2007). However, this wet year was followed by

one of the driest years on record for 2005–2006 and more normal

amounts of rainfall during the 2006–2007 water year. Moreover, the

Santa Ana aquifer is managed by the Orange County Water District,

who recharge the basin using water from the Santa Ana river (Argus

et al. 2005). Thus, high correlation between levels of rainfall and

estimated amplitude deviations are not necessarily expected for site

CCCS. A more meaningful physical interpretation of the deviation

functions will require a detailed investigation of site motion in three

dimensions for a network of stations and is beyond the scope of this

paper.

5 D I S C U S S I O N A N D C O N C L U S I O N S

Explanation of observed periodic and quasi-periodic motions in

terms of loading sources is challenging. The problem has been ex-

plored in some detail in several recent studies. For example, van Dam

et al. (2007) compared annual signals in CGPS height time-series

with annual displacements predicted using gravity data from Grav-

ity Recovery and Climate Experiment (GRACE). van Dam et al.
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Figure 15. Deviation function estimates for annual and semi-annual variation obtained from the analysis of site CCCS time-series based on the BIC regularization

criterion. The dashed lines represent one standard deviation error bounds. Also shown for comparison are the predicted annual and semi-annual motions associated

with the constant time-averaged parts of the periodic amplitudes.
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found poor agreement in both amplitude and phase between ob-

served and calculated displacements. Dong et al. (2002) compared

observed GPS coordinate time-series with model predictions for a

number of load sources, finding that less than half of the power

of the observed annual vertical site motion could be attributed to

known loading sources. These studies may indicate that periodic

and quasi-periodic motion observed using CGPS is not entirely a

result of crustal loading, or that loads inferred by GPS are com-

plicated by aliasing effects. For example, Penna & Stewart (2003),

Stewart et al. (2005) and Penna et al. (2007) have demonstrated

that short-period displacements can alias into spurious fortnightly,

semi-annual and annual signals in daily GPS time-series. An im-

portant objective in developing the method presented above is that

it accommodates fairly complex repeating signals, without having

to identify and parametrize the source of the signal(s).

Our solution method depends on three main assumptions. First,

we assume that the deviation functions vary smoothly through time.

Second, we made the approximation that the phase θ is constant,

but this restriction could be relaxed by simultaneously estimating

amplitude deviations for both sine and cosine terms (with a common

period), though at the expense of increased computation time and

model variance. Third, we identify one ‘best’ model by minimizing

the BIC statistic, which appears to perform well using both simulated

and real data.

The conclusions of this study are that, if periodic motion has

time-variable amplitude, then it may result in biased estimates for

secular velocity and/or observation-error spectra even if the time-

averaged amplitudes of the periodic motions are estimated. Biases

in secular rate estimates appear to decrease with time, based on

the limited number of solutions presented here, but generalization

of this result is not warranted as the persistence of such biases is

certain to depend on the nature of the deviation function. However,

biases in estimates for error statistics based on residual time-series

are not systematically reduced as time-series increase in duration.

Error estimates are affected even when using long time-series.

Blewitt & Lavallée (2002) showed how annual signals appear in

power spectral density as peaks above the background spectrum at

annual frequencies and their harmonics. The power of these peaks

decays roughly as an inverse power-law function of frequency with

spectral index near 1, similar to flicker noise. Langbein (2008) eval-

uated temporal correlations in residual CGPS time-series for long-

running stations in southern California. He used residual time-series

obtained from SOPAC, from which we also obtained the CCCS time-

series discussed in Section 4. The durations of the time-series used

by Langbein ranged from 2.5 to 10 yr. He found that, even after

correcting for annual and semi-annual motions of constant ampli-

tude, power spectral densities of the residual-error for many sites

could be interpreted as bandpass filtered noise, centred on seasonal

frequencies plus (inverse) power-law noise. Williams et al. (2004)

analysed residual time-series, corrected for annual and semi-annual

signals of constant amplitude, for a super set of the sites analysed

by Langbein but for a shorter duration of time on average (<5 yr).

Williams et al. estimated spectral indices of 0.9 ± 0.4, showing that,

as in the Langbein study, the power-law character of residual errors

persists even if constant amplitude seasonal motions are accounted

for. Williams et al. did not estimate bandpass filtered noise.

Langbein also found that, although there is some tendency for

residual time-series associated with deep-braced monuments to ex-

hibit lower levels of correlation (and thus smaller standard error

in rate), there is also an apparent dependence on site location; the

highest levels of correlation (highest standard rate errors) in resid-

ual error time-series were found for sites located in regions of active

pumping. Finally, Langbein found a marginally significant correla-

tion between annual average rainfall and the level of correlations

of residual time-series. Pumping and seasonal groundwater effects

on crustal deformation in southern California and Nevada are large

and well known and have been studied in some detail using GPS and

InSAR (Amelung et al. 1999; Bawden et al. 2001; Lu & Danskin

2001; Watson et al. 2002; Lanari et al. 2004; Argus et al. 2005;

Gourmelen et al. 2007; King et al. 2007). Spurious signals arising

from aliasing associated with GPS processing methods have also

been demonstrated theoretically, as well as through simulations and

studies of real data (Penna & Stewart 2003; Stewart et al. 2005;

Penna et al. 2007). It is unlikely that all of these periodic signals

can be accurately represented by sinusoids of constant amplitude.

Based on the body of previous work and the analysis results pre-

sented above, we suspect that some fraction of the observed tem-

poral correlations among residual-errors for CGPS time-series for

stations in southern California and elsewhere may reflect the un-

modelled time-variable part of quasi-periodic site motions driven by

meteorological, hydrological or a variety of other potential physical

processes distinct from observational error. If so, inferences about

the nature of GPS observation-errors based on the power spectral

densities of residual time-series may need to be re-evaluated using

more general models for site kinematics.
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