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S U M M A R Y
The Earth’s crust is macroscopically treated as a linear elastic body, but it includes a number
of defects. The occurrence of inelastic deformation such as brittle fracture at the defects
brings about elastic deformation in the surrounding regions. The crustal deformation observed
through geodetic measurements is the sum of the inelastic deformation as source and the
elastic deformation as effect. On such a basic idea, we created a theory of physics-based strain
analysis with general source representation by moment tensor, and developed an inversion
method to separately estimate 3-D elastic and inelastic strain fields from GPS data. In this
method, first, the optimum distribution of moment density tensor is determined from observed
GPS data by using Akaike’s information criterion. Then, the elastic and inelastic strain fields are
obtained from the optimum moment tensor distribution by theoretical computation and direct
conversion with elastic compliance tensor, respectively. We applied the inversion method to
GPS horizontal velocity data, and succeeded in separately estimating 3-D elastic and inelastic
strain rate fields in the Niigata–Kobe transformation zone, central Japan. As for the surface
patterns of total strain, the present results of 3-D physics-based inversion analysis accord with
the previous results of 2-D geometric inversion analysis. From the 3-D patterns of the inverted
elastic and inelastic strain fields, we revealed that the remarkable horizontal contraction in the
Niigata–Kobe transformation zone is elastic and restricted near the surface, but the remarkable
shear deformation is inelastic and extends over the upper crust.

Key words: Inverse theory; Space geodetic surveys; Elasticity and anelasticity; Intraplate
processes; High strain deformation zones.

1 I N T RO D U C T I O N

Surface deformation of the Earth’s crust is now directly observable
through GPS measurements. However, to understand the mech-
anism of crustal deformation, we need to know 3-D elastic and
inelastic strain-rate fields separately. In general, the deformation
of continuum is completely described by the nine independent el-
ements of deformation gradient tensor. Since GPS measurements
are restricted to the Earth’s surface, unfortunately, three vertical
gradients of displacement vectors are unobservable. Therefore, in
conventional geometric strain analysis, we can only estimate 2-D
horizontal strain components. In addition, the rational separation
of crustal strain into elastic and inelastic parts has been left as an
unsolved problem (e.g. Reilly 2003).

The Earth’s crust is basically a linear elastic body, but it includes
a number of defects, and so the mechanism of crustal deforma-
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tion is complex. From a microscopic point of view, the mode of
rock deformation can be classified into elastic deformation, brittle
fracture and plastic flow. Elastic deformation is reversible, whereas
brittle fracture and plastic flow are irreversible, which proceed so
as to release the potential energy of the total system. The essential
difference between brittle fracture and plastic flow is only in the
manner of development; that is, the former is unstable and the lat-
ter is stable. Practically, we cannot distinguish them without direct
observation of dynamic processes (Kostrov 1974; Twiss & Unruh
1998). Therefore, from a macroscopic point of view, we may clas-
sify the mode of crustal deformation into elastic deformation and
inelastic deformation. Here, it should be noted that the occurrence
of inelastic deformation at defects inevitably brings about elastic
deformation in the surrounding regions.

So far crustal deformation has been treated as a 2-D problem
in two different ways; mostly in the geometric analysis of geode-
tic data (e.g. Tsuboi 1932; Frank 1966; Shen et al. 1996; El-Fiky
& Kato 1999) and occasionally in the physical analysis of earth-
quake and/or active fault data (e.g. Wesnousky et al. 1982; Jackson
& McKenzie 1988; Holt & Haines 1993) based on the concept of
Kostrov’s seismic moment tensor (Kostrov 1974). The essential dif-
ference between the geometric analysis and the physical analysis is
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in the meaning of estimated crustal deformation: the former gives
the sum of the elastic and inelastic deformation, whereas the latter
gives the purely inelastic deformation.

From the geometric analysis of interseismic horizontal velocity
data, obtained by the nationwide continuous GPS array operated
by the Geographical Survey Institute of Japan, Kato et al. (1998),
Sagiya et al. (2000) and Mazzotti et al. (2001) have independently
estimated horizontal strain-rate fields in Japanese Islands, and re-
vealed the existence of inland high strain-rate zones, which cannot
be explained by elastic deformation due to mechanical interaction at
plate interfaces. Mazzotti et al. (2001), Townend & Zoback (2006)
and El-Fiky & Kato (2006) have computed the difference of the ob-
served deformation field from the elastic deformation field due to
plate-to-plate interaction, and considered it to be the inelastic part of
deformation field. However, their approach is logically inconsistent,
because inelastic deformation in the crust inevitably causes elastic
deformation in the surrounding region.

On the other hand, from the physical analysis of earthquakes
and Quaternary active faults based on Kostrov’s relation between
seismic moment tensors and deformation rates, Wesnousky et al.
(1982) and Shen-Tu et al. (1995) have estimated crustal deformation
rates in Japanese Islands. In these studies, however, the elastic part of
crustal deformation is completely ignored, because the deformation
estimated from the physical analysis is purely inelastic.

In Section 2 of this paper, regarding the Earth’s crust as a lin-
ear elastic body including a number of defects, and representing
the source of crustal deformation by moment tensor, we create a
theory of physics-based strain analysis, which can resolve the long
outstanding problem for separate estimation of 3-D elastic and in-
elastic strains. In Section 3, on the basis of this theory, we develop an
inversion method to estimate 3-D elastic/inelastic strain fields from
GPS data. In Section 4, we demonstrate the validity and availability
of the inversion method through its application to GPS horizon-
tal velocity data in the Niigata–Kobe transformation zone, central
Japan.

2 T H E O RY O F P H Y S I C S - B A S E D S T R A I N
A NA LY S I S W I T H M O M E N T T E N S O R

In geodesy, so far, GPS array data have been analysed in a purely ge-
ometric way without considering the physical mechanism of crustal
deformation, and so it has been impossible to estimate 3-D strain
fields and divide them into elastic and inelastic parts. In geophysics,
however, we have now a common understanding that the Earth’s
crust is a linear elastic body including a number of defects. The
occurrence of inelastic deformation such as brittle fracture and/or
plastic flow at the defects brings about elastic deformation in the sur-
rounding regions. The crustal deformation observed through geode-
tic measurements is the sum of the inelastic deformation as source
and the elastic deformation as effect. Taking such a physical mech-
anism of crustal deformation into consideration, we can create the
theory of physics-based strain analysis to resolve a long-outstanding
problem in geodesy: the separate estimation of 3-D elastic and in-
elastic strain.

2.1 Definition of moment tensor

We consider a solid body occupying the region V in a Cartesian
coordinate system (x1, x2, x3), bounded by a surface ∂V . In the
following discussion, we ignore the effects of self-gravitation and
pre-stress, and use Einstein’s summation convention for simplicity.

Then, the equilibrium equation of the solid body can be written as

∂ jσi j + fi = 0. (1)

Here, σi j is actual physical stress, fi is body force, and ∂ j denotes
the partial derivative with respect to the coordinate xj. Assuming
the solid body to be linearly elastic, we can define model stress τi j

as

τi j = ci jklεkl , (2)

where εkl is Cauchy’s infinitesimal strain tensor, and ci jkl denotes
the stiffness tensor of the concerned elastic body. Then, eq. (1) can
be rewritten in terms of the model stress τi j as

∂ jτi j + fi + ei = 0 (3)

with

ei = ∂ jσi j − ∂ jτi j . (4)

Here, ei is a virtual force with the same dimension as the body
force fi. Following Backus & Mulcahy (1976a), we define moment
density tensor mi j as the difference of the model stress τi j from the
actual physical stress σi j :

mi j = τi j − σi j , (5)

which is related with the virtual force ei as

∂ j mi j = −ei . (6)

Now we divide the strain εkl into the elastic part εe
kl and the

inelastic part εa
kl :

εkl = εe
kl + εa

kl . (7)

Then, the physical stress σi j can be expressed as

σi j = ci jklε
e
kl . (8)

Substituting eqs (2) and (8) into eq. (5), we obtain

mi j = ci jkl (εkl − εe
kl ) = ci jklε

a
kl . (9)

The above equation means that the product of the inelastic strain
εa

kl multiplied by the stiffness tensor ci jkl of the elastic body gives a
moment density tensor mi j , the spatial derivatives of which play a
role of the virtual force that deforms surrounding elastic media in
the equilibrium eq. (3) rewritten in terms of the model stress τi j .

By the definition in eq. (5), we can represent any indigenous
source in a linear elastic body with a moment tensor, which is
the second-order symmetric tensor with diagonal elements of force
dipoles and off-diagonal elements of force couples. Although the
moment tensor is a mathematical concept introduced into linear
elasticity theory to represent internal sources, it is directly related
with physical substance, inelastic strain, by eq. (9). For instance,
we can generally decompose a moment tensor into the three in-
dependent force systems corresponding to three basic deformation
patterns; that is, isotropic expansion, crack opening and shear fault-
ing. Such decomposition is natural and always possible by solving
eigenvalue problems for a given moment tensor.

2.2 Representation of crustal deformation
with moment tensor

Let the equilibrium state of the Earth’s crust at a time t be written by
eq. (3). We suppose that the inelastic strain δεa

i j (ξ) was generated
by brittle fracture and/or plastic flow at the defects distributed in the
Earth’s crust for a time interval t ∼ t + δt . Then, from eq. (9), the
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corresponding moment density tensor distribution δmi j (ξ) is given
by

δmi j (ξ) = ci jklδε
a
kl (ξ). (10)

Denoting static Green’s tensor by Gip(x; ξ), we can compute the
displacement field ui (x) caused by the moment density tensor dis-
tribution as

ui (x) =
∫

V
Gip,q (x; ξ)δm pq (ξ)dV (i = 1, 2, 3). (11)

Here, Gip,q (x; ξ) represents the partial derivative of Gip(x; ξ) with
respect to the source coordinate ξq . The explicit expressions of
Gip,q (x; ξ) are given, for example, in Yabuki & Matsu’ura (1992)
for an elastic half-space model and Hashima et al. (2008) for an
elastic-viscoelastic layered model.

Differentiating both sides of eq. (11) with respect to the spatial
coordinates x j , we obtain the analytical expression of deformation
gradient tensor D with its ij element of ∂ j ui . The symmetric part of
the deformation gradient tensor, (DT+ D)/2, gives the infinitesimal
strain tensor E with its ij element of

εi j = (∂ j ui + ∂i u j )/2, (12)

but it is only the elastic part of strain tensor, because the spatial
derivatives of displacements cannot be defined at source points in
an analytical sense. To put it shortly, using analytical strain response
functions Hi jpq (x; ξ) to a unit moment tensor, we can compute the
elastic strain field δεe

i j (x) caused by the moment density tensor
distribution δm pq (ξ) as

δεe
i j (x) =

∫
V

Hi jpq (x; ξ)δm pq (ξ)dV (i, j = 1, 2, 3). (13)

By the way, moment density tensor is related with inelastic strain
by eq. (9), and so the inelastic strain field δεa

i j (x) is directly obtained
by converting the moment density tensor distribution δm pq (x) with
the compliance tensor si jpq of the elastic body as

δεa
i j (x) = si jpqδm pq (x) (i, j = 1, 2, 3). (14)

As discussed in chapter 4 of Fung (1965) in detail, given the total
strain, which is defined by the sum of the elastic strain and the
inelastic strain as

δεi j (x) = δεe
i j (x) + δεa

i j (x), (15)

everywhere, we can correctly reproduce the displacement field in
eq. (11). It should be noted that directly observable strain εo

i j (x)
through geodetic measurements corresponds to the theoretical strain
obtained by numerically differentiating the displacement field in eq.
(11) with respect to spatial coordinates, which gives a smoothed total
strain field. Therefore, as demonstrated by Haines (1982) and Haines
& Holt (1993), we can reproduce the horizontal velocity fields from
the observed strain-rate fields under some assumptions.

2.3 Intrinsic deformation extracted from GPS data

GPS is a system that determines the current coordinates x of obser-
vation points in a geodetic reference frame (Hofmann-Wellenhof &
Moritz 2005). The displacement data u obtained by GPS measure-
ments, which are the difference between the current and previous
coordinates of observation points, contain not only intrinsic defor-
mation but also rigid motion such as block translation and rotation.
On the other hand, since the moment tensor is an internal force
system with no net force and no net torque, the crustal deformation

caused by it is purely intrinsic one. Therefore, the theoretical dis-
placements computed from eq. (11) should not be compared with
GPS data directly but with the intrinsic deformation extracted from
GPS data.

The deformation of continuum can be perfectly described
by specifying the nine independent elements of deformation
gradient tensor D = [Di j ] defined by the spatial derivatives
of the displacement vector u = [ui ]. The symmetric part
of the deformation gradient tensor, (DT+D)/2, gives the in-
finitesimal strain tensor E = [εi j ] and the antisymmetric part,
(DT−D)/2, gives the infinitesimal rotation tensor � = [ωi j ].
Here, it should be noted that the intrinsic deformation of
continuum, which we want to know, is given by the strain
tensor.

From GPS array data, unfortunately, we cannot obtain the vertical
gradients of displacement vectors, because GPS measurements are
restricted to the Earth’s surface. Therefore, taking the x3-axis verti-
cally upwards, we can only determine horizontal strain (ε11, ε12, ε22)
and horizontal rotation (ω12). In the 2-D problem, from the defini-
tion of deformation gradient tensor, we can write the horizontal
displacement field in the vicinity of a point x as{

u1(x + dx) = u1(x) + ε11(x)dx1 + ε12(x)dx2 − ω12(x)dx2

u2(x + dx) = u2(x) + ε12(x)dx1 + ε22(x)dx2 + ω12(x)dx1

.

(16)

Given the displacement data at some observation points x + dx
around the point x, we can solve the above equations for u1, u2, ε11,
ε12, ε22 and ω12 by using a least-squares method. This is the basic
idea of the geometric inversion method by Shen et al. (1996), which
is the most orthodox way to estimate 2-D horizontal strain fields
from GPS data under the assumption of locally uniform strain.

Now we rotate the coordinate system (x1, x2, x3) around the ver-
tical axis x3 so that the x1-axis points to the direction of dx. Then,
in the new coordinate system (x ′

1, x ′
2, x3), eq. (16) can be rewritten

as{
u′

1(x′ + dx′) − u′
1(x′) = ε′

11(x′)dx ′
1

u′
2(x′ + dx′) − u′

2(x′) = ε′
12(x′)dx ′

1 + ω′
12(x′)dx ′

1

. (17)

From the above equations we can see that the x ′
1 component of

the relative displacement vector gives simple extension in the new
coordinate system. On the other hand, the x ′

2 component gives the
inseparable composite of pure shear and rotation.

The rigid body translation and rotation contained in the observed
GPS data cannot be explained by the theoretical model of moment
density tensor. We can remove the rigid body translation by taking
the difference between the displacement vectors at adjacent obser-
vation points, but not the rigid body rotation. If the data contain
systematic errors (theoretically unexplainable coherent noise), the
result of data analysis will be seriously biased. One of the ways
to avoid this problem is to use only the baseline-length changes
in eq. (17) as data. In fact, given the baseline-length change data,
we can determine three horizontal strain components uniquely (e.g.
Tsuboi 1932).

On the basis of such consideration, we extract the information
about intrinsic deformation from GPS array data in the following
way. First, we compose a triangle mesh from a set of observation
points. Then, to eliminate the effects of rigid body translation and
rotation, we transform observed displacement data uo

i = (uo
i , v

o
i )

and uo
j = (uo

j , v
o
j ) at two adjacent points Pi and Pj into baseline-

length change data di j as

di j = cos θi j

(
uo

j − uo
i

)+ sin θi j

(
vo

j − vo
i

)
, (18)
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where θi j denotes the angle of the baseline Pi −Pj measured counter-
clockwise from the x1-axis. Rewriting eq. (18) for displacement
components, we obtain

di j = [− cos θi j − sin θi j cos θi j sin θi j ]

⎡
⎢⎢⎢⎢⎣

uo
i

vo
i

uo
j

vo
j

⎤
⎥⎥⎥⎥⎦ . (19)

Performing the same transformation for all the pairs of adjacent
observation points, we can obtain a linear equation that define a
data vector d of baseline-length changes from a data vector uo of
observed displacements as

d = Ruo, (20)

where R is a transformation matrix, the elements of which are
defined in eq. (19).

Since the baseline-length change data d transformed from GPS
displacement data uo by eq. (20) have the information about intrinsic
crustal deformation only, we can now directly compare them with
the theoretical displacements u computed from eq. (11) after the
transformation with the same matrix R in eq. (20) as

Δu = Ru. (21)

Here, Δu represents a theoretical baseline-length change vector.
Thus, putting eqs (11), (20) and (21) together, we can relate the
moment density tensor distribution δmi j (ξ) to the observed
baseline-length change data d quantitatively, and so define the in-
verse problem of estimating the moment density tensor distribution
from observed GPS data. Solving the inverse problem, we can obtain
the optimum moment density tensor distribution δm̂i j (ξ). Given the
optimum moment density tensor distribution, we can directly obtain
the inelastic strain field δεa

i j (x) by using eq. (14) and theoretically
compute the elastic strain field δεe

i j (x) by using eq. (13).

3 M AT H E M AT I C A L F O R M U L AT I O N
O F T H E I N V E R S E P RO B L E M

On the theory of physics-based strain analysis, we mathematically
formulate the inversion method to separately estimate 3-D elastic
and inelastic strain fields from GPS array data. In this method, first,
the optimum distribution of moment density tensor in the Earth’s
crust is determined by using Akaike’s information criterion (AIC)
(Akaike 1974). Then, the elastic and inelastic strain fields are ob-
tained from the optimum moment density tensor distribution by
theoretical computation and direct conversion with elastic compli-
ance tensor, respectively.

3.1 Observation equations

We take a Cartesian coordinate system (x, y, z) so that the x–y plane
coincides with the Earth’s surface and the z-axis points vertically
upwards, and define a box-type model region V . To discretize the
problem, we represent the spatial distribution of each element of
moment density tensor δm pq (x, y, z) in the model region by the
superposition of a finite number (R) of known 3-D basis functions
Φr (x, y, z) defined in V as

δm pq (x, y, z) =
R∑

r=1

a pq
r Φr (x, y, z). (22)

Substituting the above expression into eq. (11), we can represent the
horizontal displacement components ui (i = x, y) at a point x j =
(x j , y j , 0) on the Earth’s surface due to the moment density tensor
distribution as a linear combination of the expansion coefficients
a pq

r :

ui (x j ) =
3∑

p=1

3∑
q=p

R∑
r=1

G pq
ir (x j )a

pq
r (23)

with

G pq
ir (x j ) =

∫
V

Ḡip,q (x j , y j , 0; x ′, y′, z′)Φr (x ′, y′, z′)dx ′dy′dz′.

(24)

Here, because of the symmetry of moment tensor, we used Ḡip,q ,
defined by the following equation, instead of Gip,q :{

Ḡip,q = Gip,q for q = p

Ḡip,q = (Gip,q + Giq,p) for q > p
. (25)

Thus, denoting the surface displacement vector by u, the model
parameter vector by a, and the coefficient matrix that connects
them by G, we can rewrite eq. (23) in vector form as

u = Ga. (26)

The dimensions of u, a and G are 2N × 1 (N is the number of
observation points), 6R × 1 (R is the number of basis functions)
and 2N × 6R, respectively.

From eqs (20), (21) and (26), we finally obtain a set of linear
observation equations to be solved for the model parameter a:

d = Ha + e, e ∼ N (0, σ 2F) (27)

with

H = RG. (28)

Here, d is an n-dimensional data vector (n is the number of base-
lines), a is an m-dimensional model parameter vector (m is the
product of the number of basis functions R multiplied by 6), H is
an n×m dimensional coefficient matrix, and e is an n-dimensional
data error vector. The Gaussian data errors e in eq. (27) generally
consist of observation errors in GPS measurements and modelling
errors due to imperfection in theoretical representation of crustal
deformation, and so we may suppose that the covariance matrix F
takes the form of

F = RERT + c2D (29)

with

Ei j =
(

1 + b2
∣∣uo

i /ūo
∣∣2) δi j , (30)

Di j = ∣∣li/l̄
∣∣2 δi j . (31)

Here, |uo
i /ūo| in eq. (30) is the relative magnitude of the ith dis-

placement component uo
i to a standard value ūo, |li/l̄| in eq. (31) is

the relative value of the ith baseline length li to a standard baseline
length l̄, and b2 and c2 are some weighting constants.

3.2 Generalized inverse matrix and the optimum solution

We use Lanczos’ singular value decomposition (SVD) technique
of a rectangular matrix (Lanczos 1961) to solve the observation
equation and AIC based on the entropy maximization principle
(Akaike 1977) to select the optimum solution. First, we normalize
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the observation eq. (27) so that the covariance matrix F becomes a
unit matrix I. The normalization is done in the following procedure.
(1) Decompose the covariance matrix F into the product of an n×n
diagonal matrix � composed of the n positive eigenvalues of F, an
n×n matrix W composed of the corresponding eigenvectors and its
transpose WT as

F = W�WT. (32)

(2) Define an n×n matrix T as

T = �−1/2WT, (33)

where �−1/2 is a diagonal matrix with its non-zero elements of the
inverse of the square roots of the eigenvalues. (3) Transform the data
vector d, error vector e and coefficient matrix H in the observation
eq. (27) by T as

d′ = Td, e′ = Te and H′ = TH. (34)

Thus, we obtain the normalized observation equation with the as-
sociated covariance matrix F′ = TFTT = I of the data errors d′:

d′ = H′a + e′, e′ ∼ N (0, σ 2I). (35)

Next, following Lanczos (1961), we decompose the coefficient
matrix H′ of the normalized observation equation as

H′ = Up�pVT
p p ≤ min(n, m), (36)

where �p is a p×p diagonal matrix composed of the p positive
eigenvalues of H′, Up is an n×p semi-orthonormal matrix com-
posed of the corresponding eigenvectors in data space, and VT

p is
the transpose of an m×p semi-orthonormal matrix composed of
the corresponding eigenvectors in model parameter space. Then,
Lanczos’ generalized inverse matrix H′† is defined as

H′† = Vp�
−1
p UT

p. (37)

The solution of eq. (35) by the Lanczos’ generalized inverse matrix,

â = H′†d′ = Vp�
−1
p UT

pd′, (38)

gives a unique solution that minimizes the square norm of the resid-
ual vector,

‖d′ − H′a‖2
2 = (d − Ha)TF−1(d − Ha), (39)

and the square norm of the solution vector, ‖a‖2
2, simultaneously.

Now we consider the stochastic model and maximum likelihood
solution for the same problem. From the observation eq. (27), we
obtain the corresponding probability density function as

p(d|a; σ 2) = (2πσ 2)−n/2 ‖F‖−1/2 exp

[
− 1

2σ 2
s(a)

]
(40)

with

s(a) = (d − Ha)TF−1(d − Ha). (41)

Then, the log likelihood of the stochastic model is given by

log l(a; σ 2|d) = −n

2
log 2πσ 2 − 1

2
log ‖F‖ − 1

2σ 2
s(a). (42)

From the necessary conditions for maximizing the log likelihood,

∂ log l(a; σ 2|d)/∂a = 0 and ∂ log l(a; σ 2|d)/∂σ 2 = 0, (43)

we obtain the maximum likelihood estimates of a and σ 2 as

â = (HTF−1H)−1HTF−1d, (44)

σ̂ 2 = s(â)/n. (45)

Here, it should be noted that the maximum likelihood solution in eq.
(44) is mathematically equivalent to the generalized least-squares
solution in eq. (38). Using the relation TFTT = I, we can prove it
as follows:

(HTF−1H)−1HTF−1d = [(TH)T(TH)]−1(TH)T(Td)

= [H′TH′]−1H′Td′ = [Vp�
2
pVT

p

]−1
Vp�pUT

pd′

= Vp�
−1
p UT

pd′ = H′†d′. (46)

The covariance matrix of estimation errors for the generalized
least-squares solution in (38), and so that for the maximum likeli-
hood solution in eq. (44), is evaluated as

C(â) = (H′†)(σ̂ 2I)(H′†)T = σ̂ 2
(
Vp�

−1
p UT

p

) (
Vp�

−1
p UT

p

)T
= σ̂ 2Vp�

−2
p VT

p. (47)

Then, the variance of estimation errors for the jth model parameter
is given by

var(â j ) ≡ [C(â)] j j = σ̂ 2
p∑

k=1

(Vjk/λk)2 ( j = 1, . . . , m). (48)

This equation means that the estimation errors of the generalized
least-squares solution diverge if the smallest positive eigenvalue
λp of the coefficient matrix H′ approaches to zero. To avoid such
difficulty, Jackson (1972) and Wiggins (1972) have proposed a prac-
tical method called ‘sharp cut-off approach’. In this approach we
construct a linear inverse operator H′†

q from the diagonal matrix,
�q , composed of q(≤ p) largest positive eigenvalues and the semi-
orthonormal matrices, Uq and Vq , composed of the corresponding
eigenvectors as

H′†
q = Vq�

−1
q UT

q , (49)

so that the variance of estimation errors for each model parameter
becomes smaller than a given maximum allowable variance.

The solution obtained by the sharp cut-off of the sequence of
positive eigenvalues,

âq = H′†
q d′ = Vq�

−1
q UT

q d′, (50)

is no longer the generalized least-squares solution or the maximum
likelihood solution in the original m-dimensional model parameter
space. However, it can be regarded as the maximum likelihood so-
lution in the q-dimensional subspace of the new model parameter
space transformed from the original model parameter space with
the semi-orthonormal matrix Vp = [v1, . . . , vp]. Therefore, to se-
lect the optimum solution from among the maximum likelihood
solutions âq with different degrees of freedom q, we can use AIC
defined by

AIC(q) = −2 log l
(

âq ; σ̂ 2
q

∣∣ d)+ 2q, (51)

where

log l
(

âq ; σ̂ 2
q

∣∣ d) = −n

2
log 2πσ̂ 2

q − 1

2
log‖F‖ − n

2
(52)

with

σ̂ 2
q = s(âq )/n, (53)

s(âq ) = (d′ − H′âq )T(d′ − H′âq ) = (d − Hâq )TF−1(d − Hâq ).
(54)

Thus, we finally obtain the criterion to select the optimum model:

AIC(q) = n log
∥∥d′ − H′âq

∥∥2

2
+ 2q + C. (55)
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518 A. Noda and M. Matsu’ura

Figure 1. The model region, coordinate system and tectonic setting in and around Japan. The solid rectangle indicates the model region in this analysis. The
origin of Cartesian coordinates (x, y, z) is taken at the centre (36.7◦N, 137.9◦E) of the model region. The z-axis is taken to be vertically upwards.

4 A P P L I C AT I O N T O G P S V E L O C I T Y
DATA I N C E N T R A L JA PA N

We apply the inversion method developed in Section 3 to GPS hori-
zontal velocity data in the northern part of central Japan to estimate
the 3-D distribution of elastic and inelastic strain rates there. As the
model region of inversion analysis, we take a 340 km × 280 km
rectangular region with the depth range of 0–40 km, including the
Niigata–Kobe transformation zone. The model region and coordi-
nate system are shown in Fig. 1 together with tectonic setting in and
around Japan. In modelling, we ignored fault-slip excess or deficit
at plate interfaces, because its direct effect on crustal deformation in
the northern part of central Japan is negligible (Sagiya et al. 2000;
Hashimoto et al. 2004).

4.1 Expressions of basis functions

We take the origin of Cartesian coordinates (x, y, z) at the centre of
the rectangular region (36.7◦N, 137.9◦E). Then, the box-type model

region V is defined as⎧⎪⎨
⎪⎩

−X ≤ x ≤ X

−Y ≤ y ≤ Y

−Z ≤ z ≤ 0

(56)

with

X = 170, Y = 140 and Z = 40 km. (57)

Normalizing the coordinates x, y and z by X , Y and Z, respectively,
as

ξ = x/X , η = y/Y and ζ = z/Z , (58)

we transform the model region defined in eq. (56) into⎧⎪⎨
⎪⎩

−1 ≤ ξ ≤ 1

−1 ≤ η ≤ 1

−1 ≤ ζ ≤ 0

. (59)
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GPS data inversion for 3-D inelastic strain 519

Figure 2. The GPS horizontal velocity data used for inversion analysis. The open arrows indicate observed horizontal velocity vectors at 60 GPS stations,
which represent relative velocities to the fixed point denoted by a closed square. The grey solid lines are the baselines of the optimum triangle mesh composed
of the GPS stations with Delaunay triangulation.

Figure 3. The values of AIC plotted as a function of the degree of freedom q of the model. The open circle indicates the optimum number of q (= 29), at
which AIC takes a local minimum.
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520 A. Noda and M. Matsu’ura

Figure 4. The moment rate density tensor distribution inverted from GPS horizontal velocity data. (a) Isotopic part. The red and blue of the colour-bar scale
indicate expansion and compression, respectively. (b) Deviatoric part. The colour-bar scale represents the magnitude of maximum shear. The red and blue bars
indicate the directions of maximum tension and compression, respectively. In each diagram, the right-hand panel shows the horizontal section at the depth of 5
km and the left-hand panels show the vertical sections along the lines A ∼ F.

C© 2010 The Authors, GJI, 182, 513–530

Journal compilation C© 2010 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/182/2/513/567585 by guest on 23 April 2024



GPS data inversion for 3-D inelastic strain 521

We represent the 3-D basis functions Φr (ξ, η, ζ ) defined in the
normalized model region as the product of three basis functions:

Φr (k,l,m)(ξ, η, ζ ) = Tk(ξ )Tl (η)Lm(ζ ) (60)

with⎧⎪⎨
⎪⎩

Tk(ξ ) : −1 ≤ ξ ≤ 1, k = 0, . . . , K

Tl (η) : −1 ≤ η ≤ 1, l = 0, . . . , L

Lm(ζ ) : −1 ≤ ζ ≤ 0, m = 0, . . . , M

. (61)

As the basis functions Tk(ξ ) and Tl (η), we take the normalized
Chebyshev polynomials, defined by

Tn(χ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
1

π

Cn(χ )
4
√

1 − χ 2
(n = 0)

√
2

π

Cn(χ )
4
√

1 − χ 2
(n 
= 0)

. (62)

The Chebyshev polynomials Cn(χ ) have the following orthogonal-
ity:

∫ 1

−1

Cn(χ )Cm(χ )√
1 − χ 2

dχ =

⎧⎪⎨
⎪⎩

0 (m 
= n)

π/2 (m = n 
= 0)

π (m = n = 0)

, (63)

and so the basis functions Tn(χ ) are orthonormal:∫ 1

−1
Tn(χ )Tm(χ )dχ = δnm . (64)

Although the basis function Tn(χ ) diverges at the edges of the
model region (χ = ±1), it keeps good properties of the Chebyshev
polynomials except the edges. As the basis functions Lm(ζ ), on the

other hand, we take the first-order splines defined by

L0(ζ ) = (1 + ζ/Δs) [H (ζ + Δs) − H (ζ )] for −Δs ≤ ζ ≤ 0

(65)

Lm(ζ ) = ((m + 1) + ζ/Δs) [H (ζ + (m + 1)Δs) − H (ζ + mΔs)]

− ((m − 1) + ζ/Δs) [H (ζ + m�s) − H (ζ + (m − 1)Δs)]

for − (m + 1)Δs ≤ ζ ≤ −(m − 1)Δs (m = 1, . . . , 7)
(66)

with

Δs = 5/40 = 0.125. (67)

Here, Lm (m = 1, . . . , 7) are full first-order splines, L0 is a half
first-order spline with its peak at the surface, and H (ζ ) denotes the
Heaviside step function.

Substituting the above expressions of basis functions into eq. (22),
we obtain the moment density tensor distribution in the actual model
space as

δm pq (x, y, z) =
K∑

k=0

L∑
l=0

M∑
m=0

a pq
klm Tk

( x

X

)
Tl

( y

Y

)
Lm

( z

Z

)
. (68)

Then, the expressions of surface displacements in eq. (23) can be
rewritten as

ui (x j ) =
3∑

p=1

3∑
q=p

K∑
k=0

L∑
l=0

M∑
m=0

G pq
iklm(x j )a

pq
klm (69)

with

G pq
iklm(x j ) =

∫
V

Ḡip,q (x j , y j , 0; x ′, y′, z′)

× Tk

(
x ′

X

)
Tl

(
y′

Y

)
Lm

(
z′

Z

)
dx ′dy′dz′. (70)

Figure 5. The resolution of the inverted moment rate density tensor distribution. The colour gradation contours represent the resolution of the isotropic part
in Fig. 4(a). The right-hand panel shows the horizontal section at the depth of 5 km, and the left-hand panels show the vertical sections along the lines A ∼ F.
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522 A. Noda and M. Matsu’ura

4.2 Data and data errors

To monitor the crustal movements of Japanese Islands, a nationwide
dense GPS network (GEONET) has been operated by Geographical
Survey Institute of Japan since 1996. From GPS daily coordinate
data, Sagiya (2004) has obtained horizontal displacement rates (ve-
locities) at GEONET stations for the interseismic calm period of
1996–2000 with the same least-squares collocation method as in
Sagiya et al. (2000). In this inversion analysis, we used the horizon-
tal velocity data at 60 GPS stations in Fig. 2, which are considered
to be unaffected by fault-slip excess or deficit at plate interfaces.
Here, the open arrows represent the horizontal velocities relative
to the fixed point denoted by a closed square, and the grey solid
lines are the baselines of the optimum triangle mesh composed of
the GPS stations with the method of Delaunay triangulation (e.g.
De Berg et al. 1997). The Delaunay triangulation method is nec-
essary for constructing the optimum triangle mesh that minimizes
estimation errors in strain analysis. Using the matrix R defined in
Section 2.3, we transformed the 60 horizontal velocity data into 157
baseline-length change rate data.

From Fig. 2 we can see that the spatial variation of velocity vectors
in the x-direction is much greater than that in the y-direction, and so

we took the highest orders K and L of basis functions (normalized
Chebyshev polynomials) in the x- and y-directions to be 15 and 6,
respectively. On the other hand, we took the number M of basis
functions (first-order splines) in the z-directions to be 7 to cover the
depth range of 0–40 km. Then, the total number of unknown model
parameters is 6 × (15 + 1) × (6 + 1) × (7 + 1) = 5376. Since the
number of observed data is only 157, the observation eq. (27) is
highly ill-conditioned.

To completely describe the problem, we need to compute the
coefficient matrix H in eq. (27) or G in eq. (26) and specify the
covariance matrix F of data errors. In this local-scale analysis, we
may ignore the effects of viscoelastic deformation in the astheno-
sphere underlying the 40-km-thick elastic model region; because
the surface deformation originated in the asthenosphere has a much
longer wavelength and much smaller amplitude than that originated
in the crust. So we computed the coefficient matrix G from eq. (70)
by using the analytical expressions of surface displacements for a
moment tensor source in elastic half-space (Yabuki & Matsu’ura
1992). As for the covariance matrix F, we took the values of the
standard velocity ūo and the weighting constant b2 in eq. (30) to be
10 mm yr−1 and 1×10−1, respectively, and the values of the standard
baseline length l̄ in eq. (31) and the weighting constant c2 in eq.

Figure 6. The total dilatation rates computed from the optimum moment rate density tensor distribution. The panels (a) and (b) show the horizontal sections
at the depths of 1 km and 10 km, respectively. The panels (c) and (d) show the vertical sections along the lines c and d, respectively. The red and blue of the
colour-bar scale indicate dilatation and contraction, respectively.
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GPS data inversion for 3-D inelastic strain 523

(29) to be 20 km and 2×10−1, respectively. The standard deviation
(measurement error) of each horizontal velocity component, which
has been obtained from the daily coordinates of GPS stations for
1996–2000 with the least-squares collocation method, is about 2 mm
yr−1 on average (table S1 of Hashimoto et al. 2009). So, the above
setting of ūo, b2, l̄ and c2 means that the modelling errors (mm yr−1)
for surface displacement rates and baseline-length change rates are
assumed to be proportional to their magnitudes in mm yr−1 with the
constant of 0.04 and their baseline-lengths in km with the constant
of 0.03, respectively.

4.3 Inverted strain fields

Following the procedure described in Section 3.2, we inverted the
baseline-length change rate data. In Fig. 3 we plotted the values of
AIC as a function of q (the degree of freedom of the model). The
AIC rapidly decreases up to q = 29, and then gradually increases up
to q = 40 with a small offset at q = 33. The gradual AIC decrease
beyond q = 40 is insignificant, because AIC loses its validity when
the degree of freedom q becomes much larger than 2

√
n (twice

the square root of the number of data). On the other hand, the

irregular variation of AIC, including the small offset at q = 33,
probably comes from some systematic errors due to imperfection in
modelling. Actually, the test analysis of synthetic data with random
errors shows the rather smooth variation of AIC with a clear global
minimum. From these considerations, we adopted q = 29 as the
optimum degree of freedom of the model. Given the optimum degree
of freedom, we can compute the optimum moment rate density
tensor distribution ṁ pq (x, y, z) = δm pq (x, y, z)/δt from eqs (50)
and (68).

The inverted moment rate density tensor distribution is shown
in Fig. 4. For convenience in visual representation, we separate the
inverted moment rate density tensor into the isotropic and deviatoric
parts, which correspond to the dilatation and maximum shear strain
rates, respectively. Fig. 4(a) shows the horizontal distribution of
the isotropic part of moment rate density tensor at the depth of
5 km (right-hand side) and the vertical distributions along the six
lines A ∼ F (left-hand side). From this figure we can see that a
remarkable compressional source region spreads in the central part.
Fig. 4(b) shows the horizontal distribution of the deviatoric part of
moment rate density tensor at the depth of 5 km (right-hand side)
and the vertical distributions along the six lines A ∼ F (left-hand

Figure 7. The total maximum shear strain rates computed from the optimum moment rate density tensor distribution. The panels (a) and (b) show the horizontal
sections at the depths of 1 km and 10 km, respectively. The panels (c) and (d) show the vertical sections along the lines c and d, respectively. The colour-bar
scale represents the magnitude of maximum shear strain rate. The red and blue bars indicate the directions of maximum tension and compression, respectively.
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524 A. Noda and M. Matsu’ura

side). The distribution of the deviatoric part is rather complex. We
can recognize three remarkable shear source regions: a thrust-type
shear source region in the northwestern part, a strike-slip-type shear
source region in the central part and a thrust-type shear source region
in the southeastern part.

To examine the reliability of the inversion results, we calculated
the resolution of the optimum moment rate density tensor distri-
bution as follows. The resolution matrix of the optimum model
parameters âq is defined as

R(âq ) = H′†
q H′ = Vq VT

q . (71)

The optimum value of moment density tensor δm̂ at a point x = x j

is calculated from the optimum model parameters âq by eq. (68) as

δm̂(x j ) = A(x j )âq , (72)

where A(x j ) is a coefficient matrix with its elements of

Aklm(x j , y j , z j ) = Tk

( x j

X

)
Tl

( y j

Y

)
Lm

( z j

Z

)
. (73)

Then, using the coefficient matrix A, we can evaluate the resolution
of the optimum moment density tensor distribution at the point

x = x j as

R(δm̂) = AR(âq )AT. (74)

In the case of perfect resolution, namely R(âq ) = I, the above
equation can be written as R(δm̂) = AAT. So, we use the normalized
resolution,

r j =
√∣∣∣[AR(âq )AT

]
j j

/[AAT] j j

∣∣∣, (75)

as an appropriate indicator to represent the resolution of the op-
timum moment density tensor distribution. In Fig. 5 we show the
spatial patterns of the normalized resolution for the isotropic part
of moment rate density tensor in Fig. 4(a). From this figure we can
see that the present inversion results are reliable in the upper crust
(−15 km ≤ z ≤ 0 km) but not in the lower crust because of the poor
resolution.

Given the optimum moment density tensor distribution δm pq (ξ),
we can theoretically compute the internal displacement field ui (x)
by performing the convolution integral in eq. (11) over the model
region V . The explicit expressions of the spatial derivatives of static
Green’s tensor Gip,q (x; ξ) for a semi-infinite elastic body are given
in the Appendix. Then, we numerically differentiate the computed

Figure 8. The inelastic dilatation rates converted from the isotropic part of the optimum moment rate density tensor. The panels (a) and (b) show the horizontal
sections at the depths of 1 km and 10 km, respectively. The panels (c) and (d) show the vertical sections along the lines c and d, respectively. The red and blue
of the colour-bar scale indicate dilatation and contraction, respectively.
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GPS data inversion for 3-D inelastic strain 525

internal displacement field with respect to spatial coordinates to
obtain internal strain fields. Here, it should be noted that the strain
obtained by numerically differentiating the displacement field gives
total strain (the sum of elastic strain and inelastic strain), because
it includes the direct effects of moment density tensor (inelastic
strain). As pointed out in Section 2.2, the strain obtained by theo-
retical computation with analytical strain response functions gives
elastic strain, because the analytical strain response functions are
not defined at source points. We show the total strain rate fields in
Fig. 6 for dilatation and in Fig. 7 for maximum shear strain with
the same colour-bar scale. From these figures we can recognize the
existence of a remarkable contraction region localized in the up-
permost crust and two remarkable shear regions spreading over the
upper crust.

On the other hand, using eq. (14), we can directly obtain inelastic
strain rate fields from the inverted moment rate density tensor distri-
bution. We show the inelastic strain rate fields in Fig. 8 for dilatation
and in Fig. 9 for maximum shear strain with the same colour-bar
scale as in Figs 6 and 7. The amplitude of inelastic dilatation rates
in Fig. 8 is much smaller than that of total dilatation rates in Fig. 6,
and so the patterns of inelastic dilatation rates are almost invisible

on this colour-bar scale. The inelastic maximum shear strain rate
fields in Fig. 9 show a similar pattern and amplitude to the total
maximum shear strain rate fields in Fig. 7. Subtracting the inelastic
strain rates in Figs 8 and 9 from the total strain rates in Figs 6 and
7, respectively, we can obtain the elastic strain rate fields, which are
shown in Fig. 10 for dilatation and in Fig. 11 for maximum shear
strain with the same colour-bar scale as in Figs 6 and 7. The elastic
dilatation rate fields in Fig. 10 show a similar pattern and amplitude
to the total dilatation rate fields in Fig. 6. The amplitude of elastic
maximum shear strain rates in Fig. 11 is much smaller than that of
the total maximum shear strain rates in Fig. 7, and so the patterns
of elastic maximum shear strain rates are almost invisible on this
colour-bar scale.

From almost the same GPS velocity data, Sagiya et al. (2000)
have estimated the horizontal strain rates of Japanese Islands, in-
cluding the Niigata–Kobe transformation zone, with the 2-D geo-
metric inversion method by Shen et al. (1996). The strain obtained
from the geometric analysis of GPS data are total strain at the
Earth’s surface, and so we can directly compare the surface patterns
of dilatation and maximum shear strain rates in Figs 6(a) and 7(a)
with their results. As far as the surface pattern of total strain is

Figure 9. The inelastic maximum shear strain rates converted from the deviatoric part of the optimum moment rate density tensor. The panels (a) and (b) show
the horizontal sections at the depths of 1 km and 10 km, respectively. The panels (c) and (d) show the vertical sections along the lines c and d, respectively. The
colour-bar scale represents the magnitude of maximum shear strain rate. The red and blue bars indicate the directions of maximum tension and compression,
respectively.
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526 A. Noda and M. Matsu’ura

Figure 10. The elastic dilatation rates obtained by subtracting the inelastic part from the total dilatation rates. The panels (a) and (b) show the horizontal
sections at the depths of 1 km and 10 km, respectively. The panels (c) and (d) show the vertical sections along the lines c and d, respectively. The red and blue
of the colour-bar scale indicate dilatation and contraction, respectively.

concerned, our results of 3-D physics based inversion analysis ac-
cord with their results of 2-D geometric inversion analysis. However,
from the comparison of Figs 6, 8 and 10, we can see that the re-
markable contraction observed in the Niigata–Kobe transformation
zone is almost elastic and restricted near the Earth’s surface. From
the comparison of Figs 7, 9 and 11, on the other hand, we can see
that the remarkable shear deformation observed is almost inelastic
and extends over the upper crust.

5 D I S C U S S I O N

In Section 2, representing the sources that deform the Earth’s crust
by spatiotemporally distributed moment tensors, we created a theory
of physics-based strain analysis. In Section 3, on the theory of
physics-based strain analysis, we mathematically formulated the
inversion method to separately estimate 3-D elastic and inelastic
strain fields from GPS array data. This method can be regarded as
a general extension of ordinary geodetic data inversion methods to
estimate fault slip or slip-deficit distribution on a known internal
surface such as active faults and plate interfaces.

Given the location and geometry of a plate interface Σ(η) and the
direction of fault slip ν(η), for example, we can represent fault slip

vectors δw(η) at the plate interface as

δw(η) = δw(η)ν(η), (76)

where δw is the magnitude of fault slip. By using the Dirac delta
function δ(ξ − η), the inelastic strain accompanied by the fault slip
δw at the plate interface Σ is represented as

δεa
kl (ξ) = δw(η)νk(η)nl (η)δ(ξ − η), (77)

where n(η) denotes the unit normal vector of Σ. So, from eq. (10),
the corresponding moment density tensor is given by

δmi j (ξ) ≡ ci jklδε
a
kl (ξ) = δmΣ

i j (η)δ(ξ − η), (78)

with

δmΣ
i j (η) = ci jklδw(η)νk(η)nl (η). (79)

That is to say, the fault slip at a plate interface is represented by the
distribution of moment density tensor localized at the plate interface
(Backus & Mulcahy 1976b). Substituting eq. (78) into eq. (11),
we obtain the expressions of surface displacements ui (x) due to the
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GPS data inversion for 3-D inelastic strain 527

Figure 11. The elastic maximum shear strain rates obtained by subtracting the inelastic part from the total maximum shear strain rates. The panels (a) and
(b) show the horizontal sections at the depths of 1 km and 10 km, respectively. The panels (c) and (d) show the vertical sections along the lines c and d,
respectively. The colour-bar scale represents the magnitude of maximum shear strain rate. The red and blue bars indicate the directions of maximum tension
and compression, respectively.

fault slip at the plate interface as

ui (x) =
∫
Σ

Gip,q (x; η)δmΣ
pq (η)dΣ

=
∫
Σ

Gip,q (x; η)cpqklνk(η)nl (η)δw(η)dΣ. (80)

Given surface displacement data, we can solve the above equations
for δw(η). This is the ordinary geodetic data inversion to estimate
fault slip distribution. As for the ordinary geodetic data inversion,
Matsu’ura et al. (2007) have developed a general method based on
Bayesian modelling with direct and indirect prior information.

In plate boundary zones, the crustal deformation is caused partly
by fault slip and/or slip-deficit at plate interfaces Σ and partly by
brittle fracture and/or plastic flow at the defects distributed in the
surrounding crustal region V ; that is,

ui (x) =
∫
Σ

Gip,q (x; η)δmΣ
pq (η)dΣ +

∫
V

Gip,q (x; ξ)δm pq (ξ)dV .

(81)

Therefore, to analyse geodetic data in plate boundary zones, we
need to combine the ordinary inversion method for δmΣ

pq (η) and
the present inversion method for δm pq (ξ) in a unified way.

In Section 4, we revealed 3-D elastic and inelastic strain rate
fields in the Niigata–Kobe transformation zone by applying the in-
version method to GPS horizontal velocity data. Given the elastic
and inelastic strain fields individually, we can evaluate the mechani-
cal properties of the crust in the following way. First, we decompose
the total strain tensor εi j (x), which is the sum of elastic strain εe

i j (x)
and inelastic strain εa

i j (x), into its isotropic part εkk(x) and deviatoric
part ε′

i j (x):

εkk(x) = εe
kk(x) + εa

kk(x), (82)

ε′
i j (x) = ε′e

i j (x) + ε′a
i j (x) (83)

with

ε′
i j = εi j − 1

3
εkkδi j , ε′e

i j = εe
i j − 1

3
εe

kkδi j , ε′a
i j = εa

i j − 1

3
εa

kkδi j .

(84)

We also decompose the stress tensor σi j (x) into its isotropic part
σkk(x) and deviatoric part:

σ ′
i j (x) = σi j (x) − 1

3
σkk(x)δi j . (85)
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528 A. Noda and M. Matsu’ura

Then, denoting the rigidity and bulk modulus of a reference elastic
body by μ̄ and κ̄ , respectively, we can obtain the relation between
the deviatoric stress and the deviatoric strain as

σ ′
i j (x) = 2μ̄ε′e

i j (x) = 2μ∗(x)ε′
i j (x) (86)

with

μ∗(x) = ε′e
i j (x)

ε′e
i j (x) + ε′a

i j (x)
μ̄. (87)

Here, μ∗(x) represents the effective rigidity based on the concept of
damage rheology.

In a similar way, we can obtain the relation between the isotropic
part of stress and the isotropic part of strain as

σkk(x) = 3κ̄εe
kk(x) = 3κ∗(x)εkk(x) (88)

with

κ∗(x) = εe
kk(x)

εe
kk(x) + εa

kk(x)
κ̄ . (89)

However, since the generation of inelastic isotropic strain εa
kk is

limited to the case of thermal expansion and/or phase change, the
effective bulk modulus κ∗(x) must be almost equal to the reference
bulk modulus κ̄ in the normal regions of the upper crust.

From the inversion results in Section 4.3, we evaluated the ef-
fective rigidity and effective bulk modulus in the Niigata–Kobe
transformation zone. Figs 12(a) and (b) show the surface patterns
of effective rigidity and effective bulk modulus, respectively. From
Fig. 12(b) we can see that the effective bulk modulus changes little
from the reference bulk modulus κ̄ . This result is consistent with
that the observed horizontal contraction near the surface is elastic.
From Fig. 12(a), on the other hand, we can see that the effective

rigidity is much smaller than the reference rigidity μ̄ in the same
region. This result indicates that the dominant deformation mode
in the upper crust is inelastic shear without volume change. Now,
a question arises as to the mechanism of the abnormal elastic hor-
izontal contraction near the surface. We may interpret the elastic
horizontal contraction as the secondary deformation of a surface
sedimentary layer caused by the inelastic shear deformation in the
deeper part of the crust. If the surface sedimentary layer has poroe-
lastic properties, it would macroscopically behave like an elastic
body with abnormally small bulk modulus.

6 C O N C LU S I O N S

The Earth’s crust, which is macroscopically treated as a linear elas-
tic body, includes a number of defects. The occurrence of inelastic
deformation such as brittle fracture and/or plastic flow at the defects
brings about elastic deformation in the surrounding regions. Rep-
resenting the brittle fracture and/or plastic flow by moment density
tensor distribution, we created a theory of physics-based strain anal-
ysis, and developed an inversion method to separately estimate 3-D
elastic and inelastic strain fields from GPS data. In this method, first,
we determine the optimum distribution of moment density tensor
from observed GPS data by using AIC. Converting the optimum
moment density tensor distribution with elastic compliance tensor,
we can directly obtain 3-D inelastic strain fields. On the other hand,
given the optimum moment density tensor distribution, we can the-
oretically compute 3-D elastic strain fields. The strain obtained by
conventional geometric analysis is only the 2-D horizontal compo-
nents of unseparated total strain. We applied the inversion method
to GPS horizontal velocity data (1996–2000) in the Niigata–Kobe

Figure 12. The horizontal patterns of effective rigidity and effective bulk modulus at the surface: (a) the ratio of effective rigidity to reference rigidity and (b)
the ratio of effective bulk modulus to reference bulk modulus.
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transformation zone, central Japan, and succeeded in estimating
3-D elastic and inelastic strain rate fields separately. As for the sur-
face patterns of total strain rates, the results of 3-D physics based
inversion analysis accord with the results of 2-D geometric inver-
sion analysis by Sagiya et al. (2000). From the 3-D patterns of the
inverted elastic and inelastic strain fields, we revealed that the re-
markable horizontal contraction in the Niigata–Kobe transformation
zone is elastic and restricted near the surface, but the remarkable
shear deformation is inelastic and extends over the upper crust.
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A P P E N D I X : D I S P L A C E M E N T F I E L D S
D U E T O A M O M E N T T E N S O R I N
E L A S T I C H A L F - S PA C E

We consider an elastic body with Lame’s constants λ and μ, occu-
pying the negative x3 region of a Cartesian coordinates (x1, x2, x3).
Denoting the coordinates of a calculation point by x = (x1, x2, x3)
with x3 ≤ 0 and the coordinates of a source point by ξ = (ξ1, ξ2, ξ3)
with ξ3 < 0, we can generally represent the internal displacement
field due to moment density tensor distribution m pq (ξ) as

ui (x) =
3∑

p=1

3∑
q=1

∫
V

Gip,q (x; ξ)m pq (ξ)dV (i = 1, 2, 3), (A1)

where Gip,q (x; ξ) are the partial derivatives of static Green’s ten-
sor Gip with respect to the source coordinate ξq . The analytic
expressions for the internal displacement field due to a single force
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(static Green’s tensor Gip) are given in Press (1965). Differenti-
ating these expressions with respect to the source coordinate, we
obtain the expressions for the spatial derivatives Gip,q (x; ξ) of static
Green’s tensor (Okada, 1992).

The spatial derivatives of static Green’s tensor are calculated as
the sum of four terms:

Gip,q (x; ξ) = G A
ip,q (x; ξ) − G A

ip,q (x−; ξ)

+ G B
ip,q (x−; ξ) + GC

ip,q (x−; ξ), (A2)

where x− = (x1, x2, −x3) indicates the change in sign of the x3-
coordinate of the calculation point x = (x1, x2, x3). The explicit
expressions for the above four terms are given by

G A
ip,q = 1

8πμ

1

γ + 1

1

R2
[3Ri Rp Rq − Riδpq − Rpδiq

+ (2γ + 1)Rqδi p], (A3)

G B
ip,q = 1

4πμ

1

R2

{
(3Ri Rp Rq − Riδpq − Rpδiq + Rqδi p)

+ γ

[
(Rq + δq3)δi p

(1 + R3)2
− δiqδp3 − δpqδi3(1 − δp3)

(1 + R3)

+ [Riδp3 − Rpδi3(1 − δp3)]
δq3 + Rq (2 + R3)

(1 + R3)2

+ (1 − δi3)(1 − δp3)

(
Riδpq + Rpδiq

(1 + R3)2

− Ri Rp
2δq3 + Rq (3 + R3)

(1 + R3)3

)]}
, (A4)

GC
ip,q = 1

4πμ

1

γ + 1

1

R3
(1 − 2δi3)

{
(2γ + 1)[(δpq − 3Rp Rq )δi3

− (δiq − 3Ri Rq )δp3] + [(δi p − 3Ri Rp)δq3

+ 3Z (Riδpq + Rpδiq + Rqδi p − 5Ri Rp Rq )]
}
.

(A5)

Here, R is the distance between the source point ξ and the calculation
point x, defined by

R =
√

X 2
1 + X 2

2 + X 2
3 (A6)

with

Xi = xi − ξi (i = 1, 2, 3), (A7)

and Ri is the ith component of the unit vector pointing from ξ to x,
defined by

Ri = Xi/R (i = 1, 2, 3). (A8)

Z (a source-depth dependent variable) and γ (a material constant)
are defined by

Z = ξ3/R (A9)

and

γ = μ/(λ + μ). (A10)
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