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Self-constrained inversion of potential fields
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S U M M A R Y
We present a potential-field-constrained inversion procedure based on a priori information
derived exclusively from the analysis of the gravity and magnetic data (self-constrained in-
version). The procedure is designed to be applied to underdetermined problems and involves
scenarios where the source distribution can be assumed to be of simple character. To set up
effective constraints, we first estimate through the analysis of the gravity or magnetic field
some or all of the following source parameters: the source depth-to-the-top, the structural
index, the horizontal position of the source body edges and their dip. The second step is in-
corporating the information related to these constraints in the objective function as depth and
spatial weighting functions. We show, through 2-D and 3-D synthetic and real data examples,
that potential field-based constraints, for example, structural index, source boundaries and
others, are usually enough to obtain substantial improvement in the density and magnetization
models.

Key words: Inverse theory; Gravity anomalies and Earth structure; Geopotential theory;
Magnetic anomalies: modelling and interpretation; Magnetic field.

1 I N T RO D U C T I O N

One of the main difficulties in potential field inversion is obtaining
satisfactory depth-to-source resolution from measured data. This
happens because inverse potential field problems are ill-posed, and
therefore inherently difficult to solve. Specifically, they may not have
a unique solution, and the solution may be extremely sensitive to
errors. As described below, these difficulties are due to certain kinds
of ambiguities such as the inherent, algebraic and error ambiguity
(Fedi et al. 2005). All of these kinds of ambiguity may lead to a loss
of depth information and add to the problem of obtaining reliable
information about the source distribution.

Under the continuous formulation, the unknowns of the inverse
problems are functions and not a few parameters. Therefore, the
solution contains an infinite number of variables and the inverse
problem is highly underdetermined and ill-posed. For magnetic
problems, the inverse problem can be mathematically described
as a Fredholm integral equation of the first kind:
∫

�

K (r, r0) f (r) dr3 = T (r0). (1)

Here, r ∈ � is a point inside the source volume � and r0 denotes
an observation point outside �. The function K is Green’s function
for the gravitational or magnetic sources.

As is well known, the inverse potential field problem in the form
of (1) has inherently ambiguous solutions, due to Green’s third
identity: if one allows the domain � to be infinite, then any field

T outside � can be produced by both a source distribution inside
� and an infinitely thin layer of sources at the surface of �. This
represents the physical basis of the non-uniqueness of the poten-
tial field inverse problem. To overcome the ambiguity problem in
the continuous formulation (1) one must incorporate a priori in-
formation regarding the causative physical property distribution in
suitable regularization algorithms (e.g. Fedi et al. 2005). Thus, the
role of regularization is to avoid non-uniqueness and instability (e.g.
Hansen 1998).

In order to solve the potential field problem with real data, we
must discretize the continuous problem and represent the solution f
by a finite amount of information. This introduces some a priori
information by the definition of the source volume � and its dis-
cretization in a 3-D grid of rectangular blocks of known size, in
which the unknown source magnetization is piecewise constant.
This leads to a system of linear equations:

Am = b, (2)

where the right-hand side b consists of the measured data that we
can consider as noisy samples of the continuous field T. The solution
vector m consists of the values of the piecewise continuous solution
in each cell. Finally, the coefficient matrix A has elements given by

Ai j =
∫

� j

K (r, r0,i ) dr3, (3)
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where � j denotes the jth cell and r0,i is the ith data point. The matrix
A has dimensions M × P where M is the number of measurements
and P is the number of cells.

Any discretization of a linear inverse problem (1) has a regular-
izing effect on the solution. In fact, the effect of the discretization
can be considered as a restriction of the infinite-dimensional prob-
lem onto a finite-dimensional one (Engl et al. 1996). However, in
most applications, the coefficient matrix A will have a very large
condition number, meaning that the discrete solution m is very sen-
sitive to perturbations. Hence, in any application with noisy data,
the discretization does not provide enough stabilization to allow
the computation of a useful solution. Data noise, as well as model
errors and rounding errors, are amplified by the large condition
number, and call for additional stabilization in order to filter these
contributions to the solution.

Furthermore, whenever we face a linear system of the form (2),
we encounter an algebraic ambiguity when the system is underde-
termined, that is, when M < P (less data than unknowns). In this
situation, the matrix has a non-trivial null space, and any component
of the solution in this null space cannot be determined. One possi-
bility is to compute the minimum-norm solution, that is, the model
m whose 2-norm is minimum; it is unique because the null-space
component is zero. However, in practice, these minimum-norm so-
lutions may not be useful. In fact, because of the inverse law versus
distance characterizing potential fields, one minimizes the 2-norm
of m by using shallow sources with low source density (or magne-
tization), and thus the minimum-norm solutions are very shallow.
Square or overdetermined systems usually lack algebraic ambigu-
ity and the (least squares) solution is, in principle, algebraically
unique. In practice, rounding errors often prevent us from comput-
ing a unique solution and noise can make the unique (least squares)
solution useless. All these difficulties call for additional a priori
information to overcome the consequent ambiguity.

A simple approach to reduce ambiguity is to deal with overdeter-
mined problems by using a parametric discretization, in which the
solution consists of basic geometric body shapes with homogeneous
density/magnetization distributions (e.g. Corbato 1965; Cordell
& Henderson 1968; Al-Chalabi 1971; McGrath & Hood 1973;
Whitehill 1973; Pedersen 1977). When the possible solutions to
the problem are simple-shaped and contained in a region of limited
extent, ambiguity is considerably reduced.

When dealing with a non-parametric approach and with
underdetermined problems, several other kinds of a priori
information—besides the mentioned division of source volume
into elementary homogeneous cells of known size but unknown
density/magnetization—may be used in the objective function for-
mulation. When compactness is required, one can use a compactness
criterion to let the causative body to be minimum (Last & Kubik
1983), employ a focusing criterion (Portniaguine & Zhdanov 2002),
use the Cauchy norm on model parameters to enforce sparseness
and depth-weighting of the solution (Pilkington 2009). Some au-
thors (Boulanger & Chouteau 2001) combined more constraints,
such as minimum distance, flatness and compactness. Other ap-
proaches involve a stochastic inversion of gravity/magnetic anoma-
lies that makes use of: a parameter covariance matrix estimated
from physical property data (Chasseriau & Chouteau 2003), prob-
ability density functions to perform a lithologic inversion (Guillen
et al. 2008), borehole and surface data to limit the resulting solu-
tion space (Shamsipour et al. 2012). A 2-D method for inverting
potential field data with model constraints designed by the inter-
preter was presented by Silva & Barbosa (2004). The authors also

presented an adaptive learning procedure for incorporating prior
knowledge (Silva & Barbosa 2006). Wijns & Kowalczyk (2007)
proposed a semi-automatic procedure that allows the interpreter to
set a geologically reasonable solution. With the aim of incorpo-
rating depth information and regularizing the solution, Barnes &
Barraud (2012) developed an inversion algorithm that solves for the
geometric interface between geological bodies.

Other relevant ways to introduce a priori information involve
constraints somewhat limiting the variation range of some param-
eters, such as positivity for density and magnetization or con-
straints for upper and lower density bounds (Li & Oldenburg 1996;
Portniaguine & Zhdanov 2002). Other types of constraints may
be used to force the solution to match with some predefined
source characteristics, given by empirical laws or external infor-
mation from drill logs, geological studies and other geophysical
investigations. Refer to Silva et al. (2001) and Silva & Barbosa
(2004) for an exhaustive description of types of constraints in
inversion.

The lack of depth resolution in underdetermined discrete prob-
lems led Li & Oldenburg (1996, 1998) to introduce a depth-
weighting function in the Tikhonov formulation that counteracts
the natural decay of the kernel functions (whose parameters depend
on the discretization). Their model objective function can also in-
corporate a priori information through spatial weighting functions
that enhance or attenuate the structural complexity in different re-
gions/directions. Ash et al. (2006), Farquharson et al. (2008) and
Williams et al. (2009) followed this approach to constrain grav-
ity and/or magnetic inversion by incorporating information derived
from drill log data in the model objective function. Lelièvre &
Oldenburg (2009) showed that incorporating orientation informa-
tion into underdetermined potential field inversions can improve the
results and yield a better depth resolution.

Such procedures lead to a reduction of the general ambiguity. But
they usually rely on relatively strong assumptions based on informa-
tion from other than potential fields about the source characteristics,
which may be too subjective.

As regards the depth-weighting, Cella & Fedi (2012) studied
simple sources, such as spheres, cylinders, dykes and contacts, and
showed that the depth-weighting exponent should be associated not
to the field decay of a single cell (as in Li & Oldenburg 1996, 1998),
but to the structural index, a parameter related to the source type.
The important point is that this parameter may be either assumed
or determined by a direct estimate on the field itself. This choice
gives substantial objectivity to the depth-weighting function and to
the consequent solutions.

Besides inversion, other methods such as multiscale boundary
analysis (Fedi & Florio 2001; Fedi 2002) and Depth from Extreme
Points (DEXP) method (Fedi 2007) can yield effective information
about the field sources in terms of lateral extent, depth and source
type, as shown in Cella et al. (2009) and Paoletti et al. (2007, 2013).

Following the above approach, we may try to take advantage of
different kinds of information (structural index, source horizontal
boundaries and depth) which are typically extracted by potential
field practitioners, but that are usually managed separately, in or-
der to build a reasonable model. More specifically, we want to
implement this kind of information—self-extracted from poten-
tial field—directly in the inversion algorithm, with the aim of ob-
taining reliable inversion solutions for underdetermined problems.
In this sense, we will distinguish between external (deriving from
drill logs and, geological and geophysical information e.g. Pao-
letti et al. 2012; Rapolla et al. 2012; Secomandi et al. 2013) and
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potential-field-based constraints, such as the structural index and the
position and dip of the source edges. Obviously, both kinds of con-
straints, if available, are important to get a reliable inverse model,
but we are here interested specifically in verifying whether the in-
troduction of the sole potential-field-based constraints is useful to
produce valid source models.

We note that whereas in the case of very simple density or
magnetization distributions, a 2-D modelling may already yield
good results, in the case of more complex property distribu-
tions, a constrained inversion may point out the presence of den-
sity/magnetization variations within the body source and show pos-
sible irregularities in the bounds’ patterns and positions.

2 S E L F - C O N S T R A I N T S

Here, we briefly describe the different types of constraints which
are typically retrieved from potential field data analysis: (1) the
structural index N, which may be estimated through well-known
methods such as Euler Deconvolution (e.g. Barbosa et al. 1999;
Nabighian & Hansen 2001) or through multiscale methods such as
the Multiridge Euler Deconvolution (e.g. Florio & Fedi 2006; Fedi
et al. 2009; Florio & Fedi 2013) and Scaling Function Method (e.g.
Florio et al. 2009); (2) the depth-to-the-top or to the centre of the
source, as estimated by methods such as the CWT (e.g. Sailhac
et al. 2000), Multiridge Geometric Method (Fedi et al. 2009), the
DEXP Method (Fedi 2007) and/or the above cited Multiridge Euler
Deconvolution and Scaling Function Method; (3) the position of
the source edges, which may be estimated through the computation
of the horizontal gradient (Cordell & Grauch 1985) and/or by the
Enhanced Horizontal Derivative method (Fedi & Florio 2001) or
normalized derivatives (e.g. Miller & Singh 1994; Verduzco et al.
2004; Wijns et al. 2005; Cooper & Cowan 2006); (4) the dip of
the edges of the source, inferred by methods such as the cited
Multiridge Geometric Method and the method proposed by McGrath
(1991).

Euler Deconvolution is used to retrieve information about source
positions and depths. This method can also be used as a multiscale
technique by analyzing the data along potential field ridges, which
are lines defined by the position of the extreme points of the field
at different scales. Euler equations are notably simplified along
any of these ridges (Fedi et al. 2009). Since a given anomaly may
generate one or more ridges, Euler Deconvolution may be used to
jointly invert the data along all them, so performing a Multiridge
Euler Deconvolution (Florio & Fedi 2013). Along with this method,
the Geometric Method is built by joining extreme points of the
analysed field at different altitudes and uses a geometric criterion to
find the structural index and vertical and horizontal source positions
(Moreau et al. 1999; Fedi et al. 2009).

The Scaling Function Method is a multiscale method based on
the study of the scaling function of potential fields. It also allows
retrieving source parameters such as depth and structural index
through an analysis along ridges. The DEXP Method leads to esti-
mates of source depths and density/magnetization from the extreme
points of a 3-D field scaled following specific power laws of the
altitude; depths to the sources are obtained from the position of
the extreme points of the scaled field, and the excess mass or dipole
moment are obtained from the scaled field values. Such methods are
based on the homogeneous field theory, involving simple sources.
For complex sources, the estimated values of the source parameters
must be treated as approximate; a more general theory for complex

sources and inhomogeneous fields has been developed, as shown in
Fedi et al. (2012).

The position of the maxima of the Enhanced Horizontal Deriva-
tive signal—obtained by the computation of the horizontal deriva-
tive of a weighted sum of vertical derivatives of increasing order—
can effectively detect the location of the edges of sources of different
extent and depth (e.g. Bruno et al. 2002). Regarding the dip, the
method proposed by McGrath (1991) allows a qualitative estima-
tion of the dip of the source edges by evaluating the location of
the maxima position of the first horizontal derivative computed at
different altitudes. As the horizontal position of the maximum at
each altitude does not change only over vertical boundaries, the
presence of dipping edges can be easily detected. The methods em-
ploying horizontal derivatives require the presence of boundaries
that can be approximated as single, near-vertical, sharp boundaries.
When the boundaries are not represented by a vertical contact or
when several boundaries are close together, the location of the gra-
dient maximum can be offset from the boundary (Grauch & Cordell
1987). The amount of this offset is influenced by the depth of the
top edge of the boundary below the observation and by the dip of
the boundary.

The mentioned multiscale methods enjoy a good stability due to
the inherent properties of the upward continuation process. More-
over, despite of the loss of resolution implied by upward continua-
tion, these methods have a high-resolution power. This is because
they work on data transformed through a smoothing-enhancing op-
erator (e.g. Fedi et al. 2009), combining in an optimal way the
upward continuation and a nth-order differentiation operators. This
composite filter, when properly tuned, has a response similar to a
bandpass filter, removing both high wavenumber noise and regional
fields. Therefore, a search for the best continuation altitudes and
differentiation orders by looking at the ridges’ shape on a vertical
section of the transformed field precedes the application of mul-
tiscale methods. The correct altitude range may be easily chosen
by excluding the lowest altitudes, at which a low S/N ratio may
occur due to the differentiation process, and numerous ridges ex-
tending only to a small number of scales are observed. The optimum
differentiation order may be chosen by considering that ridges of a
homogeneous field generated by an isolated source are straight lines
(Fedi et al. 2009). Thus, the differentiation order can be increased
until the interference is sufficiently low that the ridges tend to be
linear.

Following Cella & Fedi (2012), the structural index N determines
the exponent β of a depth-weighting function introduced in the
regularization matrix Wm by Li & Oldenburg (1996), which is able
to give depth resolution to the model by counteracting the natural
decay of the kernel:

w(z) = 1

(z + z0)β
, (4)

where z is the depth of layers of the 3-D model and the value of z0

depends upon the observation height and cell size. The exponent of
the depth-weighting function β is, in fact, associated to the fall-off
rate of field, and thus to the structural index N (Cella & Fedi 2012).
Using N as the exponent of the depth-weighting function allows a
good estimation of the source depth and gives substantial objectivity
to the form of the depth-weighting function and to the consequent
solutions. For simplicity, we will express all the structural index
values as in the magnetic case, with NMAG varying from 0 to 3, even
when estimated starting from other field types.
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In the Tikhonov formulation, the objective function can be written
as

φ = ‖Wd (Am − b)‖2 + λ2 ‖Wm(m − m0)‖2 , (5)

where ‖Wd (Am − b)‖2 is the weighted misfit functional (b are the
observed data and Wd is the inverse covariance matrix) and λ2 is the
trade-off or regularization parameter. The term ‖Wm(m − m0)‖2 is
referred to as model objective function φm(m) and is the weighted
minimum-norm solution with respect to a reference model m0,
which consists of the best estimate of the arithmetic mean physi-
cal property value in each cell of the model. The model objective
function allows adding several types of constraints in the weight-
ing matrix Wm, such as density/magnetization spatial gradients,
and can be explicated as (Li & Oldenburg 1996, 1998; Lelièvre &
Oldenburg 2009):

φm(m) = αs

∫
V

wsw
2(z) (m − m0)2dv

+ αx

∫
V

wxw
2(z)

{
∂(m − m0)

∂x

}2

dv

+ αy

∫
V

wyw
2(z)

{
∂(m − m0)

∂y

}2

dv

+ αz

∫
V

wzw
2(z)

{
∂(m − m0)

∂z

}2

dv, (6)

where ws, wx, wy and wz are the weights indicating the relative
importance of smallness and smoothness thorough the model; αs,
αx, αy and αz are global smallness and smoothness weights and
w(z) is the depth-weighting function defined in eq. (4).

The discrete representation of eq. (6) is

φm (m) = (m − m0)T
(
WT

s Ws + WT
x Wx + WT

y Wy + WT
z Wz

)
× (m − m0)

= (m − m0)T
(
WT

mWm

)
(m − m0)

= ‖Wm (m − m0)‖2 . (7)

Each component matrix can be written as the product of three
individual matrices and one coefficient, that is (Li & Oldenburg
1996)

Wi = αi Si Di Z i = s, x, y, z, (8)

where Si are the diagonal matrices whose elements, given by
√

wi,
represent the spatially dependent 3-D weighting functions. They
are defined over each cell for Ss and over each interface between
adjacent cells in the respective directions for Sx, Sy and Sz. Di are
the finite-difference operators for each component (with Ds being
the identity matrix and Dx, Dy and Dz the matrices representing the
finite difference operator along the three spatial directions), Z is a
diagonal matrix that represents the discretized form of the depth-
weighting function w(z).

Available geological information may be translated into the
model objective function incorporating reference model, bounds
and smallness and smoothness weights. The smallness weights (ws

in eq. 6 and Ss in eq. 8) specify the reliability of the reference model
m0 in each cell. The directional smoothness weights (wx, wy and
wz in eq. 6 and Sx, Sy and Sz in eq. 8) provide a powerful means
of enforcing the solution to vary only within a region of the mod-
elling volume. This will allow obtaining solutions well constrained
with respect to the depth-to-the-top and horizontal variations of the
source-density distribution.

Further information about the magnetization/density upper
bound, according to geological studies of the area, and/or to other
geophysical investigations and drill logs, may be added.

3 S Y N T H E T I C E X A M P L E S

To illustrate and prove the utility of our inversion strategy, we present
some gravity and magnetic 2-D and 3-D synthetic examples. We
show how the solution changes by varying the constraints and ex-
plore the dependency of the solution on the depth-weighting expo-
nent β. We employed the same inversion framework as Li & Old-
enburg (1996), involving the depth-weighting w(z) and the spatial
weighting functions wx, wy and wz. We did not use the reference
model m0 to implement constraints. A positivity constraint was
set for all the inversions. Positivity constraints help in stabilizing
the solutions and avoiding non-realistic positive/negative density
oscillations.

3.1 Vertical fault test

The first test regards the analysis, along a profile, of the gravity field
generated by a 2-D vertical step located at x0 = 6000 m, having
its top at 300 m depth and a 2700 m thickness (Fig. 1), and with
a 1 g cm−3 density contrast. The source volume is discretized by
200 × 50 cubic cells with 100 m side. Data spacing is 100 m.

As a first step of our inversion strategy, we evaluated the 2-
D source parameters from the analysis of its gravity field. The
Multiridge Euler Deconvolution (Fedi et al. 2009) (Fig. 2a) allowed
the estimation of the source structural index N and edge locations
along the x and z directions (Figs 2b, c and d). The results of the
analysis, referring to a third-order differentiation of the field at
low continuation altitudes, showed average values of NMAG = 0.15,
x0 = 5943 m and z0 = 340 m. The highlighted depth to the top
was confirmed by the DEXP Method (Fedi 2007) (Fig. 2f). Finally,
applying McGrath’s method (1991) clearly showed that the fault is
vertical (Fig. 2e). We note that a first estimation of the x0 location and
of the edge dip could already be made by the horizontal derivative
computed in Fig. 1(a), which showed a x0 value of 6000 m and the
presence of a vertical contact. The analyses shown in Figs 2(d) and
(e) confirmed the actual x0 position and the verticality of the fault,
with only a negligible shift with respect to the actual x0.

The found N = 0.15, which will be used to correctly set up the
exponent β of the depth-weighting function in the inversions tests
(Cella & Fedi 2012), is very low and characteristic of a contact.
The corresponding depth will be relative to the top of the structure.
However, at very high altitudes, the structure could be seen as a
sill, whose N is equal to 1, and in this case, the depth found by
inversion will be close to the centre of the structure. Therefore, in
our inversions tests (Fig. 3), we used both β = N = 0.15 to better
image the top of the structure (see reconstructions in Figs 3b, c and
d), and β = N = 1 to have an image of the density distribution
more balanced around the structure midpoint (see reconstructions
in Figs 3e, f and g). The inversions were stopped when the normal-
ized misfit ‖bpredicted − bobserved‖2/‖bobserved‖2 decreased under the
threshold of 1e−11.

The reconstruction obtained without any of the cited constraints,
that is, the minimum-norm solution, has no depth resolution, even
though it gives some information about the lateral position of the
fault (Fig. 3a). The solution model obtained by using as a constraint
only the depth-weighting function with the exponent β = 0.15
(Fig. 3b) shows a maximum density distribution located at the
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Figure 1. (a) Gravity anomaly generated by a vertical fault model with 1 g cm−3 density, 300 m depth-to-the-top and 2700 m thickness (dashed line) and
modulus of the horizontal gradient of the gravity anomaly (solid line). (b) Synthetic fault model.

correct depth-to-the-top, due to the correct estimation of N per-
formed by the Multiridge Euler Deconvolution (Figs 2b and c).
We note, however, that the recovered reconstruction is blurred and
provides no clear information about the source top and horizontal
boundaries. So, according to our procedure, we repeated the inver-
sion by adding a further constraint about the horizontal position of
the source edge and about the edge dip (Fig. 3c). The results of the
analyses shown in Figs 1(a) and 2(d) and (e) let us set up the con-
strained inversion so that an abrupt horizontal density change was
favoured to occur at x0 = 6000 m, and at any depth. At this stage, we
did not yet input information about the source depth, other than that
based on N. A last constraint about the depth-to-the-top was finally
added in the reconstruction shown in Fig. 3(d). The constraint was
set up at a depth of 300 m, equal to the thickness of three cubic cells.
The inclusion of this last constraint lead to a more focused solution,
with both the top and horizontal edge clearly detected. The density
distribution is still not uniform, but close to the real value (1 g cm−3).

Similar conclusions may be drawn when using β = N = 1, which
allows obtaining a density distribution more balanced around the
structure midpoint (see reconstructions in Figs 3e, f and g). The
edge and dip-constrained solutions obtained using β = 0.15 and
β = 1 are actually rather similar, with a better reconstruction in the
deeper part of the source when using β = 1, as should be expected.

This led us to an important conclusion: when adding constraints
other than the only depth-weighting (such as edge position, depth-
to-the-top and dip), the choice of the value of depth-weighting is
not more decisive in correctly shaping the source distribution.

In order to show this point, we repeated the inversion, resorting to
values of the depth-weighting function that are commonly used for
three-dimensional problems and not allowed in a two-dimensional
case, such as the value 2 advocated for by Li & Oldenburg (1998)
for the gravity inversion, and the value 3 normally used for the
magnetic cases (Li & Oldenburg 1996). In Fig. 4, we show the re-
constructions obtained employing these two values of β and then
adding the same constraints as used in Fig. 3. We note that whereas
the reconstructed maximum densities obtained by setting the depth-
weighting functions as retrieved by our data analysis (Figs 3b–g)
are all very close to the real maximum value of 1 g cm−3 and only
slightly overestimated in a few cases, the maximum densities ob-
tained by using β = 2 and β = 3 are constantly overestimated, espe-
cially when inversions are constrained only by the depth-weighting
function. This is because the higher the β values, the deeper are
the resulting source distributions. This leads to an increase of the
density values versus β. The inclusion of constraints other than
the only depth-weighting (Figs 4b, c, e and f) reduces this den-
sity overestimation, confirming that the choice of weighting used
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Figure 2. Analysis of the vertical fault data shown in Fig. 1(a). (a)–(d) Results of the Multiridge Euler Deconvolution applied to the third-order differentiation
of the field at low altitudes giving information about the source N, x0 and z0. (e) Plot of maxima of the horizontal gradient of the upward continued field
showing that the fault is vertical. (f) DEXP analysis yielding information about the source z0 and confirming that the fault is vertical (Fedi & Pilkington 2012).
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Figure 3. Density models obtained from the inversion of the vertical fault data in Fig. 1(a) by resorting to different self-constraints. (a) Reconstruction obtained
without any self-constraint. This solution has no depth resolution, even though it gives information about the lateral location of the fault. (b) Density solution
constrained by using a depth-weighting function with β = N = 0.15 retrieved from the data analysis (see Fig. 2b). The source top is reconstructed at its correct
depth, but the recovered density distribution is blurred. (c) Solution with the additional constraint coming from the edge horizontal location and from the dip
evaluation (see Figs 2d and e, respectively): the reconstruction is well constrained with respect to source edge and dip. (d) Solution with a further constraint on
the location of the source depth-to-the-top (see Figs 2d and f): the solution is now more focused, with both the top and horizontal edge clearly detected. (e)–(g)
Same as plots (b)–(d) but with β = N = 1, which allows obtaining a density distribution more balanced around the structure midpoint. In all the panels, the
lines outline the actual source position.

becomes less crucial in correctly characterizing the source property
distribution.

3.2 Dipping fault test

The second test regards the analysis, along a profile, of the gravity
field generated by a 2-D dipping fault with an inclination of 45◦,
whose upper edge is located at x0 = 6000 m. The step has its top at
300 m depth, a thickness of 2700 m (Fig. 5b) and a density contrast
of 1 g cm−3. The source volume discretization and data spacing are
the same as for the vertical fault test.

In order to test the effectiveness of our approach, even in the pres-
ence of small to moderate data perturbations, we ran the inversions
adding to the data a Gaussian noise with zero mean and standard
deviation of 0.25 mGal (Fig. 5a).

We followed the same strategy carried out for the previous test,
first evaluating the 2-D source parameters from the analysis of its
noisy gravity field.

The Scaling Function analysis (Florio et al. 2009), carried out
through the computation of the sixth-order vertical derivative of
the horizontal gradient of the gravity field (Fig. 6a), yielded in-
formation about the sources’ depth-to-the-top and structural index
N (Fig. 6b), showing values of NMAG = 0.1 and z0 = 350 m. The
highlighted depth-to-the-top was confirmed by the DEXP Method
(Fedi 2007; Fig. 6d). The DEXP section also shows an asymmetry
of the scaled field with respect to a vertical line, consistent with the
source dip and interpretable as a qualitative estimate of the source
dip. Applying McGrath’s method (1991) clearly showed that the
fault is dipping towards the East (Fig. 6c). The Multiridge Geomet-
ric Method (Fedi et al. 2009) was applied to the third- and first-order
vertical derivatives to obtain two estimates of the source position,
relative to different points along the sloping boundary (Figs 6e
and f). These estimates were used to calculate the dip of the sloping
boundary. The dip turned out to be about 46◦, which is in agreement
with the true dip of 45◦.

Similarly to what was done for the vertical fault, the parameters
estimated from the analysis of the gravity field of the dipping fault

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/195/2/854/653353 by guest on 25 April 2024



Self-constrained inversion of potential fields 861

Figure 4. Density models obtained from the inversion of the vertical fault data in Fig. 1(a) by using the same self-constraints as in Fig. 3 and by resorting to
values of the depth-weighting function commonly used for three-dimensional problems, such as the value 2 (used for gravity problems) and the value 3 (used
for magnetic cases, Li & Oldenburg 1996, 1998). Different from Fig. 3, the maximum densities are here constantly overestimated, especially when inversions
are constrained only by the depth-weighting function. The inclusion of constraints other than the only depth-weighting (plots b, c, e, and f) reduces this density
overestimation, confirming that the choice of weighting used becomes less crucial in correctly characterizing the source properties when constrains are used.

were used to constrain the inversion tests (Fig. 7), which were
stopped when the normalized misfit decreased under the threshold
of 1e−05. We used again both the indices N = 0.1 and N = 1 to better
image the top of the structure (Figs 7b, c and d), and the midpoint
of the fault, respectively (Figs 7e, f and g). The constraint about the
depth-to-the-top retrieved by the application of the Scaling Function
analysis (Figs 6a and b) was set up again at a depth of 300 m, equal to
the thickness of three cubic cells. The constraint about the horizontal
position of the source edge was added by imposing a strong lateral
density variation at any depth and at the horizontal positions defined
by the dipping surface found by the Multiridge Geometric method
(Figs 6e and f).

We note that the presence of noise in the data did not affect the
quality of the solutions (Fig. 7), which are comparable to those ob-
tained for the vertical fault, with a better uniformity of the density
distribution for the reconstructions of the dipping fault constrained
with respect to the edges and dip of the source. The solutions ob-
tained by using β = 0.1 and β = 1 and adding the edge and dip
constraints are very similar and this leads us to conclude again that
the introduction of other constraints makes the information rela-
tive to depth-weighting not crucial for correctly reconstructing the
source features.

3.3 Two bodies source

The third test involves the magnetic field (Fig. 8a) generated by two
3-D prismatic sources, which are located rather close to each other,

with a location for the shallow source at x: 2200–2700 m, y: 1400–
2000 m, z: 150–450 m and for the deep source x: 2100–2800 m, y:
2500–3300 m, z: 450–850 m (Fig. 8c). The source volume is dis-
cretized by 50 × 50 × 25 cells, with a 100 m × 100 m × 50 m side.
Data spacing is 100 m and we set an inclination of 60◦ and declina-
tion of 0◦ for both the inducing field and the source magnetization
vector.

The location of the source edges was inferred by the computation
of the Enhanced Horizontal Derivative signal (Fedi & Florio 2001;
Fig. 8b). The EHD signal was composed by using the field, the first
and the second vertical derivatives and unit weights. The maxima
of the EHD signal picked out the actual position of the edges of
the two sources, except for a slight shift due to reciprocal interfer-
ence of the signals, in correspondence with one edge of the deeper
source along the y-axis. The Scaling Function analysis (Florio et
al. 2009), carried out for both sources (Figs 9a and b) through the
computation of the third-order vertical derivative of the total field,
yielded information about the sources’ depth and structural index
N. For the shallow source, we retrieved z0: 250 m and NMAG = 2.2,
while for the deep source we found z0: 690 m and NMAG = 2.7.
With the values of N not being an integer, these depths are ex-
pected to determine an intermediate point between the top and the
centre.

The inversions (Fig. 10) were thus carried out by employing
a positivity constraint, the horizontal constraints located by the
boundary analysis and an average structural index Nav. = 2.5. We
stopped the inversions when the normalized misfit decreased under
the threshold of 1e−11.
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Figure 5. (a) Gravity anomaly generated by a dipping fault (45◦) model with 1 g cm−3 density, 300 m depth-to-the-top and 2700 m thickness (dashed line) and
modulus of the horizontal gradient of the gravity anomaly (solid line). Data are contaminated by a Gaussian noise with zero mean and standard deviation of
0.25 mGal. (b) Synthetic fault model.

Whereas the reconstruction obtained without any of the retrieved
constraints, that is, the minimum-norm solution, lacks of any depth
resolution (Fig. 10a), the solution constrained only by the depth-
weighting function, with the exponent β = Nav. = 2.5 (Fig. 10b),
shows a magnetization distribution located at the correct depth for
the shallower source. However, the reconstructed position and mag-
netization of the deeper source is underestimated and both sources
look blurred. The introduction of a further constraint about the hor-
izontal position of the source edges as inferred by the EHD analysis
significantly improved the reconstruction in terms of magnetization
distribution for both sources (Fig. 10c). A further improvement to
the reconstruction of the deeper source may be achieved by using as
exponent of the depth-weighting function the exact structural index
found by the data analysis for this source, that is, N = 2.7 (see
Fig. 10d).

4 R E A L DATA E X A M P L E

As an application of our inversion procedure to a real case, we care-
fully digitized the gravity data reported in Stavrev & Reid (2010)

collected along a profile over the Venelin–Aksakov fault, which
is located in the western bound of the Dolna Kamchia west–east
trending depression, Eastern Bulgaria (Figs 11a and b). Geological
and gravity data suggest the existence of a steep contact structure
trending north–south between low-density Tertiary/Upper Creta-
ceous layers and the denser lower Cretaceous and deeper sediment
layers. Core samples show a density contrast between the two com-
plexes of 0.23 g cm−3. The depth to the lower Cretaceous surface
was found to be about 100 m in western part of the analysed profile
(drillholes W-3 and W-4, Fig. 11a) and greater than 1250–2000 m
in south-eastern areas (drillholes W-66 and W-27). The interpreta-
tive results from the analysis by Stavrev & Reid (2010), selected by
the authors on the basis of the geological information, showed: i)
a depth of 195 m for the upper edge point of the fault structure at
a location x0 = 5875 m; ii) a depth to the lower edge point of the
contact of 2690 m.

Following our inversion strategy, we first evaluated the fault pa-
rameters to be used as constraints from the analysis of its gravity
field. The Multiridge Geometric Method (Fedi et al. 2009) was ap-
plied to the first-order vertical derivative of the gravity field at low
altitudes and then to the gravity field at high altitudes to obtain
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Figure 6. Analysis of the dipping fault data shown in Fig. 5(a). (a) and (b) Results of the Scalfun Analysis giving information about the source N and z0. The
intercept in (b) represents the value of N + the differentiation order (sixth in this case). (c) Plot of maxima of the horizontal gradient of the upward continued
field showing that the fault is dipping towards East. (d) DEXP analysis yielding information about the source z0 and dip (shown by the maxima located at the
shallowest depths). (e) and (f) Multiridge Geometric method applied to the third- (e) and first-order (f) vertical derivatives to obtain an estimation of the dip of
the sloping boundary (g).
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Figure 7. Density models obtained from the inversion of the dipping fault data contaminated by noise shown in Fig. 5(a) by resorting to different self-constraints:
(a) reconstruction obtained without any constraint. (b) Density solution constrained by using a depth-weighting function with β = N = 0.1 retrieved from
the data analysis (see Fig. 6b). (c) Solution with the additional constraint coming from the edge horizontal location and from the dip evaluation (see Fig. 5a
and Figs 6e and f). (d) Solution with a further constraint on the location of the source depth-to-the-top (see Fig. 6b). (e)–(g) Same as plots as (b)–(d) but with
β = N = 1, which allows obtaining a density distribution more balanced around the structure midpoint. In all the panels, the lines outline the actual source
position. We note that the presence of noise in the data did not affect the quality of the solutions.

estimates, respectively, of the position of the upper (Fig. 12a) and
lower part (Fig. 12b) of the dipping contact. This resulted in a con-
tact depth-to-the-top slightly greater than 320 m and in a dip of about
76◦. The subvertical characteristics of the fault were confirmed by
the application of the McGrath’s method (1991), which showed that
the contact is slightly dipping towards the SE (Fig. 12d). We esti-
mated the structural index of the structure by an indirect method
that is selecting the scaling exponent of the DEXP transformation
(Fedi 2007) such as the DEXP section gives a depth slightly greater
than 300 m for the upper part of the dipping contact, consistently
with the Geometric Method. The structural index so resulting was
NMAG = 0.1 (Fig. 12c) and this value, very similar to the theoretical
structural index of a contact, implies that the depth of about 320 m
is relative to the top of the dipping fault.

For the 2-D data inversion, we used a data spacing of 125 m
and discretized the source volume by 128 × 60 cubic cells, with
125 m sides. A positivity constraint was set for the inversions to

avoid strong positive/negative density oscillations and to mini-
mize the influence of regional gravity trends. The inversions were
stopped when the normalized misfit decreased under the threshold
of 1e−05.

The reconstructions obtained by resorting to the information de-
rived from the data analysis of Fig. 12 as inversion constraints are
shown in Fig. 13. The solution obtained by using only the structural
index NMAG = 0.1 as depth-weighting function is characterized by
a density maximum located at about 250 m depth (Fig. 13a), which
is close to the depth-to-the-top resulting by Multiridge Geometric
Method (slightly greater than 300 m), but the reconstruction does
not image the shape of the dipping contact. The inclusion of con-
straints about the depth-to-the-top (set up in our case at a slightly
deeper position than 320 m, that is, at 375 m, equal to the thick-
ness of three cubic cells) and dip of the structure as inferred by the
Multiridge Geometric Method (Figs 12a and b), and about the hor-
izontal position of the of the fault (x0 = 5875 m) as shown by the
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Figure 8. (a) Total field generated by two 3-D magnetized prismatic sources with contrast of 1 A m−1. See text for details. (b) Enhanced Horizontal Derivative
signal of the reduced to the pole data, whose maxima outline the source edge position. Stars show the location of the EHD maxima, and boxes show the actual
sources’ positions. (c) S-N vertical section of the synthetic model at x = 2500 m.

Figure 9. Scaling Function analysis carried out on the reduced to the pole data of Fig. 8(a). A ridge for each anomaly was selected from the vertical section of
the third-order vertical derivative of the field (a) and (b). The plots of the rescaled scaling function by using the depths of 0.25 km (shallow source) and 0.69 km
(deep source) versus the inverse of altitude are linear and the intercept represents the value of NMAG + the differentiation order (third in this case) (Florio
et al. 2009).
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Figure 10. Vertical sections of the magnetization models obtained inverting the data in Fig. 8(a). (a) Minimum-norm solution. (b) Reconstruction obtained by
using a depth-weighting function with an average exponent β = Nav. = 2.5. The reconstructed position and magnetization of the deeper source is underestimated
and both sources look blurred. (c) Solution obtained with the additional constraint deriving from the EHD analysis: the magnetization distribution clearly
shows information about the shallower source depth, edges and magnetization contrast. The deeper source position is well detected but its magnetization is
underestimated. (d) The use of the exact structural index found for the deeper source, that is, N = 2.7, as exponent of the depth-weighting function allows an
improvement in the reconstruction of the magnetization value for the deeper source. Boxes show the actual sources’ positions.

horizontal gradient (Fig. 11b) lead to a solution that images the
fault pattern rather well (Fig. 13b). It is characterized by a density
distribution that agrees with the geological information and the re-
sults of the analysis by Stavrev & Reid (2010). More specifically,
the solution shows a dense subvertical contact structure trending
north–south whose density contrast with less dense layers is close
to the density contrast determined by core samples (0.23 g cm−3).
This structure has a depth range of about 300–2700 m (Fig. 13b),
which is close to the depth, ranging from 195 to 2690 m, retrieved
by Stavrev & Reid (2010) and to the depth to the lower Creta-

ceous surface found in drillholes W-3 and W-4 (about 100 m) and
in drillholes W-66 and W-27 (about 1250–2000 m).

5 C O N C LU S I O N S

A priori information is needed to solve inverse problems for po-
tential fields. This is because of the general ambiguity characteriz-
ing such problems. In this paper, we distinguished between exter-
nal (drill logs, geological/geophysical information) and field-based
constraints, such as depth, structural index, horizontal position and
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Figure 11. The real case of the Venelin–Aksakov fault, Bulgaria. (a) Gravity map collected in the study area (from Stavrev & Reid 2010). (b) Gravity data
along the profile shown in (a) (dashed line) and modulus of the horizontal gradient of the gravity anomaly (solid line).

dip of the source edges. We presented a self-constrained inversion
procedure based only on the intrinsic properties of the potential field
anomaly, which makes use of constraints such as depth, structural
index, horizontal position and dip of the source edges. The proce-
dure applies to underdetermined problems and involves scenarios
where the source distribution can be assumed to be of a simple
character.

We showed that despite a few known assumptions/limitations
connected to the boundary analysis and despite some possible error
in the estimation of source parameters, adding as inversion con-
straints information retrieved by a previous analysis of the data has
a great potential to lead to well-constrained solutions with respect
to the source depth and to the horizontal variations of the source-
density distribution. The employed constraints can be successfully
retrieved by the many methods available in the toolbox of the po-
tential field interpreter. We concentrated our research on the use
of multiscale methods that are particularly suitable for a detailed
analysis of potential fields. Our analysis of synthetic data, with or

without added noise, and on real data, demonstrated that the more
self-constraints are included in the inversion, the less important is
the role of the tuning of the depth-weighting function through the
actual value of the source structural index. Although here we dealt
with of 2-D gravity and 3-D magnetic data, our procedure is also
suited to the analysis of potential field gradients. The success of our
strategy suggests that potential fields have a great potential to yield
realistic source distributions even without supplying other infor-
mation of external origin, at least when relatively simple property
distributions are implied.
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Figure 12. Analysis of the data shown in Fig. 11(b). (a) and (b) Results of the Multiridge Geometric method applied to the first-order vertical derivative of the
gravity field at low altitudes and to the gravity field at high altitudes to obtain estimates of the position, respectively, of the upper and lower part of the contact
and thus of its dip. (c) DEXP analysis yielding information about the source structural index N. (d) Plot of maxima of the horizontal gradient of the upward
continued field showing that the fault is slightly dipping towards SE.

Figure 13. Density models obtained from the inversion of the real grav-
ity data shown in Fig. 11(b). (a) Reconstruction constrained by a depth-
weighting function with β = N = 0.1 retrieved from the data analysis (see
Fig. 12). The source top is reconstructed at its correct depth but the shape
of the dipping contact is not well imaged and the horizontal position of the
density maximum does not coincide with the estimates shown in Fig. 12.
(b) Solution obtained with additional constraints about the fault upper edge
depth-to-the-top, horizontal position and about the fault dip. The recon-
structed density distribution is in agreement with the results of the analysis
by Stavrev & Reid (2010); the horizontal dashed lines in (b) represent the
estimates of the depths to the fault’s top and bottom as found by Stavrev &
Reid (2010).
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