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S U M M A R Y
Measurement of magnetic vector or tensor quantities, namely of field or field gradient, delivers
more details of the underlying geological setting in geomagnetic prospection than a scalar
measurement of a single component or of the scalar total magnetic intensity. Currently, highest
measurement resolutions are achievable with superconducting quantum interference device
(SQUID)-based systems.

Due to technological limitations, it is necessary to suppress the parasitic magnetic field
response from the SQUID gradiometer signals, which are a superposition of one tensor
component and all three orthogonal magnetic field components. This in turn requires an
accurate estimation of the local magnetic field. Such a measurement can itself be achieved via
three additional orthogonal SQUID reference magnetometers. It is the calibration of such a
SQUID reference vector magnetometer system that is the subject of this paper.

A number of vector magnetometer calibration methods are described in the literature. We
present two methods that we have implemented and compared, for their suitability of rapid data
processing and integration into a full tensor magnetic gradiometry, SQUID-based, system.

We conclude that the calibration routines must necessarily model fabrication misalign-
ments, field offset and scale factors, and include comparison with a reference magnetic field.
In order to enable fast processing on site, the software must be able to function as a stand-alone
toolbox.
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1 M O T I VAT I O N

Prospection of Earth’s magnetic field anomalies is an important tool in, for example, mineral exploration (Macnae 1979), in detection of
unexploded ordnance (Barrow & Nelson 1998; Nelson & McDonald 2001; Munschy et al. 2007) or in archaeological surveys (Clark 1996;
Linzen et al. 2009). Such applications often require high spatial and magnetic field resolution for adequate quality of inversion and 3-D
modelling. The use of high sensitivity vector magnetometers and/or tensor gradiometers that measure all gradient tensor components is
advantageous. Schmidt & Clark 2000 summarize the main advantages of measuring the gradient tensor.

Due to their low intrinsic noise, superconducting quantum interference devices (SQUIDs) are extremely sensitive detectors of magnetic
field components (Clarke & Braginski 2004), and of gradient tensor components when appropriately configured. There exist high-sensitivity
and high-bandwidth SQUID vector magnetometer instruments (Bick et al. 1999; Burghoff et al. 2004; Schnabel et al. 2004) that allow for
prospection of the Earth’s magnetic field vector, as well as systems containing both SQUID tensor gradiometers and vector magnetometers.
Stolz et al. (2006) introduced a Full Tensor Magnetic Gradiometry (FTMG) system for recording all components of the magnetic field and
the independent tensor gradient components, with high resolution. This instrument, named JeSSY STAR, was developed at the Institute
of Photonic Technology (IPHT) in Jena. The system contains planar-type first-order gradiometers that provide a high intrinsic balance or
suppression ratio of the homogeneous magnetic field. Due to fabrication limitations of these gradiometers, measurement of any magnetic
gradient component Bik = ∂Bi

/
∂xk becomes superposed with small proportions of the three magnetic field components Bj weighted by

certain orthogonal areas called parasitic areas Apar,ik j :

Bmeas
ik = Bik +

∑
j
αik j B j with i, j, k ∈ (x, y, z) (1)
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The factors αik j = Apar,ik j

/
(b · A)

ik
represent the inverse intrinsic balance of the gradiometer, a measure of suppression of the corresponding

homogeneous magnetic field component. With an ideal gradiometer, the balance would reach infinity. The parameters b and A are the baseline
and the sensing area respectively of one of the individual pickup loops of the gradiometer (Stolz 2006). Therefore, a SQUID based FTMG
system requires a vector magnetometer measuring in the same reference frame as the gradiometers. According to eq. (1) the intrinsic balance
of the individual gradiometer can be further enhanced via appropriate data post-processing.

In general, SQUID vector magnetometers require a precise calibration that produces a sensor-to-sensor alignment and simultaneously
estimates a set of scale factors reflecting the specific sensitivity of each sensor to its magnetic field component. Additionally, because SQUIDs
provide only a relative measure of the magnetic field component, the calibration has to determine the offset value of each sensor. For this
purpose often a series of measurements in different spatial orientations is used. Calibration of vector magnetometers is a well-known problem
in ship navigation, and many calibration techniques have been presented in the literature (e.g. Merayo et al. 2000; Olsen et al. 2001; Alonso
& Shuster 2002, and others). Here, the methods presented in Olsen et al. (2001) and Merayo et al. (2000) are applied to the recorded signals
of SQUID vector magnetometers and compared in order to assess their suitability for handling misalignments, scaling errors and offsets.
These methods were initially developed for satellite-based magnetic mapping missions (Marklund et al. 2001; Sabaka et al. 2004); and
therefore it is assumed that these mature routines reflect an error model appropriate to SQUID magnetometers such that a robust calibration
is obtained.

The calibration routines are intended to become part of a daily fieldwork processing toolbox. The numerical details of this work show
how the methods can be implemented such that they run efficiently and robustly in the sense that the correct calibration coefficients can be
estimated with least restrictions as possible. To check that, the evaluation is performed on a FTMG survey data set acquired with the JeSSY
STAR system. The instrument used in this survey will first be described briefly. In the subsequent section the chosen calibration methods
approaches are recapitulated and adapted to the calibration of SQUID vector magnetometer data. Finally, the numerical precautions for the
particular implementation of these routines are described.

The chosen magnetometer calibration methods require a magnetic reference field. Here we implemented a toolbox which calculates
the reference for each particular survey from harmonics coefficients used in the International Geomagnetic Reference Field (IGRF, Finlay
et al. 2010) or in the High Definition Geomagnetic Model (HDGM, Maus & Manoj 2010). The description of the reference field calculation
is followed by application of the adapted calibration methods to an example case data set. Finally, performance of the methods, as well as
implementation and the choice of reference field are discussed with respect to the presented case.

2 S E T U P O F T H E M E A S U R E M E N T S Y S T E M U N D E R O P E R AT I O N

Here, we give a brief overview of the system actually used, which is the JeSSY STAR system already introduced (Stolz et al. 2006). All
SQUID sensors were produced in the Nb/AlOX/Nb thin-film technology at IPHT in Jena (Stolz et al. 1999). The JeSSY STAR system consists
of a set of six first-order SQUID gradiometers and a triple of lower sensitivity reference SQUID magnetometers used for the reduction of
the parasitic response to the magnetic field itself in a post-processing procedure which is called balancing (Vrba 1996). The gradiometer
arrangement enables the reduction of the system noise on the measurements and ensures that all linearly independent tensor components can
be calculated. The system actually returns six gradient signals, but any set of five can be used to derive a full tensor of the magnetic field
gradient.

The three magnetometers are orthogonally mounted onto a small cube (1 cm3) in order to measure the magnetic field vector.
The entire setup is mounted inside a cryostat (a cooling unit) and immersed into liquid helium at 4.2 K. The sensor signals are recorded

using 24-bit analogue-to-digital-converters. As intended for a range of ±100 µT, this system yields an accuracy of ≈12 pT. The data
acquisition system contains a high-precision inertial measurement unit (IMU) consisting of three orthogonally oriented gyroscopes and three
accelerometers as well as a differential GPS receiver. These units provide information about attitude given by the Euler angles (Shin 2005;
Shin & El-Sheimy 2007) and position of the measurement system during airborne operation. The Euler angles are used to transform the
recorded data into a local or Earth-centred-Earth-fixed (ECEF) coordinate system.

3 C A L I B R AT I O N M E T H O D S F O R V E C T O R M A G N E T O M E T E R S

Vector magnetometer calibration obtains a system of equations for transformation of the three magnetometer readings into three magnetic
field vector components in the corresponding measurement coordinate system, which is tracked together with the system during motion. It
should take into account the non-orthogonality of the three axes described by the orientation of magnetometer antennae, the scaling factor
from the magnitude of the magnetic field vector component to the corresponding sensor signal, and the offsets of the magnetometers. SQUIDs
can provide only relative magnetic field values since their operation requires a feedback loop (Clarke & Braginski 2004), and the offset is set
at the start of the feedback operation.

There are different calibration methods, for example, described in Bonnet et al. (2009), Olsen et al. (2001), Alonso & Shuster (2002)
and Merayo et al. (2000). Two of them attracted our particular interest for magnetometer calibration.
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3.1 Method (a): Vector magnetometer calibration after Olsen et al. (2001)

This method was originally developed for the Ørsted satellite mission magnetometers (Olsen et al. 2001) and adapted later by Munschy et al.
(2007). Here, we briefly introduce our adaptation of it.

Olsen et al. (2001) initially introduced a set of nine parameters as in eq. (5) describing the raw measurement data �F = (Fx , Fy, Fz)T

by �F = Ŝ · D̂dist · �B + �O as a function of the magnetic field �B = (Bx , By, Bz)T where Ŝ = diag(sx , sy, sz) is the sensitivity matrix consisting
of the three scale factors, the quantity D̂dist is the distortion matrix (4), and �O = (ox , oy, oz)T is the vector of the three sensor offsets. The
calibration is then done by minimizing the value

χ 2 =
∑

(B − Bref )
2, (2)

where

B =
√(

�F − �O
)T (

D̂−1
dist Ŝ

−1
)T (

D̂−1
dist Ŝ

−1
) (

�F − �O
)

(3)

is the total magnetic intensity (TMI) of the measured magnetic field and Bref is the reference field magnitude (IGRF or HDGM).
In our case, the offsets of the three magnetometers are arbitrary due to the readout circuitry of DC SQUIDs. Their sensitivities account

for the transformation of magnetic field readings into a voltage recorded by the data acquisition system. The misalignment error produced
from non-orthogonal sensitive axes (caused by the mounting accuracy of the magnetometer triplet on the cube) is described by the distortion
matrix D̂dist (eq. 4). This matrix is a transformation between an ideal orthogonal coordinate system and the non-orthogonal sensor system:

D̂dist =

⎛
⎜⎜⎜⎝

√
1 − sin2 αxy − sin2 αxz sin αxy sin αxz

sin αxy

√
1 − sin2 αxy − sin2 αyz sin αyz

sin αxz sin αyz

√
1 − sin2 αxz − sin2 αyz

⎞
⎟⎟⎟⎠ , (4)

where αxy , αxz and αyz are the three misalignment angles. Comparing to the original form described in Olsen et al. (2001) this should lead to
transformation of the magnetometer readings into the correct magnetic field vector components with respect to the measurement coordinate
frame. Up to now there is no scalar magnetometer implemented in the JeSSY STAR instrument. Therefore, the reference field is calculated
from the IGRF or HDGM for the geographic coordinates of the survey site and the calibration is done by minimizing eq. (2) which depends
on the parameter set

�p = (αxy, αxz, αyz, sx , sy, sz, ox , oy, oz). (5)

3.2 Method (b): Vector magnetometer calibration after Merayo et al. (2000) and Bonnet et al. (2009)

Instead of comparing the TMI calculated from the magnetometer signals with the one from a reference field, the Merayo method (Merayo
et al. 2000) uses the fact that the three orthogonal components of �B measured by ideal magnetometers should appear on the surface of a

sphere with radius B =
∣∣∣ �B

∣∣∣ in a Cartesian coordinate system. Here, errors in scale factors Ŝ transform the sphere into an ellipsoid. The

misalignment and offset errors lead to a rotation and a translation of the centre point of the ellipsoid in space, respectively. The task to be
solved by calibration is to find the ellipsoid parameters given by

( �M − �c)T (Û T Û )( �M − �c) = 1, (6)

where �M is the vector of the magnetometer readings, Û (eq. 9) an upper triangular matrix, and �c is the ellipsoid centre. After obtaining the
matrices Û and �c, the calibrated and normalized measurement values are

�B = Û ( �M − �c). (7)

For fast determination of Û and �c eq. (6) is rewritten to a linear parameter form(
M2

x M2
y M2

z Mx My Mx Mz My Mz Mx My Mz

)
�p = 1 (8)

with the parameter set �p = (p1 . . . p9) (Bonnet et al. 2009) reflecting the unknowns in Û and �c. According to Merayo et al. (2000), Barraud
& Lesecq (2008) and Bonnet et al. (2009) Û is returned by Cholesky factorization of the matrix

Â = Û T Û =

⎛
⎜⎜⎜⎝

p1 p4

/
2 p5

/
2

p4

/
2 p2 p6

/
2

p5

/
2 p6

/
2 p3

⎞
⎟⎟⎟⎠ (9)

and the ellipsoid centre can be calculated by �c = − 1
2 Â−1(p7, p8, p9)T . The equation D̂′ �p′ = 0 is solved by a singular value decomposition

(SVD) in order to determine �p′ = (p1 . . . p9, p10), where p10 = �cT Â−1 �c − 1. The processing scheme is described in detail for instance in
Bonnet et al. (2009).
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In contrast to Merayo et al. (2000), we neglect all soft and hard iron effects since such materials are not located close to the magnetic
sensors in our measurement system.

4 I M P L E M E N TAT I O N O F T H E C A L I B R AT I O N RO U T I N E S

As pointed out earlier, the Olsen calibration method with our modifications on SQUID vector magnetometer signals requires an implementation
of a reference magnetic field. This procedure is contained in standalone rapid data processing and quality control software for FTMG surveys.
The general outline of the algorithms relies on the calculation of the harmonic potential series (Jacobs 1987)

Vi = a
N∑

n=1

n∑
m=0

(a

r

)n+1 (
gm

n cos mϕ + hm
n sin mϕ

)
Pm

n (cos θ ) (10)

for a set of geographic coordinates (latitude θ , longitude ϕ and altitude h), where a is Earth’s mean radius, r = a + h, gm
n and hm

n are the
Gauss–Schmidt coefficients available (NGDC 2012a,b) for the IGRF (N = 13) or the HDGM (N = 729). The derivation of the magnetic
field vector components from eq. (10) delivers the respective reference field for the vector magnetometer calibration task.

In order to perform the calibration we followed two different approaches. In the first approach, the measured magnetic field components
of the time series acquired by the moving sensor system were compared with the calculated reference field components. This was done by
rotating the reference field components into the measurement coordinate system using the geographic coordinates and Euler angles (Fig. 1)
derived from the IMU.

The comparison shows smaller differences caused by diurnal variations of the Earth’s magnetic field and larger differences caused by
insufficient accuracy of the Euler angles derived from the IMU signals. Although the performance of our IMU is generally good enough for
navigation purpose, the Euler angles therein derived typically have inaccuracies of the order of 0.1◦. Hence, motion noise on the order of
one hundred nanoteslas is superimposed on the magnetic field components. This noise contribution is clearly visible in the magnetic field
components rotated into the ECEF in Fig. 2, and is due primarily to the influence of roll and pitch angle changes. Therefore, we conclude that
rotation of magnetic field vector components into the ECEF using IMU data yields precision levels four or five orders of magnitude worse
than the intrinsic SQUID precision levels.

This observation forces us to the second approach. Returning to the original calibration idea described by Olsen et al. (2001), the
TMI—as rotational invariant of the magnetic field—is calculated on the one hand from the reference field (Bref ) and on the other hand from
the magnetometer readings (B). Eq. (2) is used to minimize the difference between them in dependence of the parameter set �p.

For successful numerical implementation of this method, the following important aspects have to be taken into account:

(i) The minimization of eq. (2) in dependence on the parameter set �p is performed via a quasi-Newton algorithm using a cubic line
search procedure. The algorithm implements the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) (Broyden 1970) method
for updating the Hessian matrix.
The whole calibration is implemented in MATLAB R© with the fminunc function call or external package minFunc (Schmidt 2012).

(ii) On the one hand, the magnitudes of the misalignment angles and scale factors have magnitudes below 5 and the offsets on the other
hand are measured in nT (≈104). The minimization routine uses finite difference gradient calculation for pointing towards the minimum.
Therefore, a modification of each parameter value pi of a fixed ε during the minimization process leads to a significantly smaller change in
offsets than in the distortion or sensitivity. For a good minimization ensuring the correct offset values and an equal gradient calculation of all
elements of �p, the offset values are internally downscaled to the unit of ten or hundred nT.

(iii) In order to fit the measured to the calculated reference TMI we use the standard deviation as minimization criterion as a modification
to eq. (2):

σ =
√

χ 2

n − 1
=

√∑
(B − Bref )2

n − 1
, (11)

where n is the number of measured samples. After a successful minimization process this standard deviation should reflect magnitude of the
actual anomalies with respect to the background reference field. If the calibration process returns σ considerably lower or higher than the
expected value of the anomaly, for example, too close to zero, the rescaling should be revisited and the routine be run again. A careful quality
check or further a priori knowledge about the setting will enhance the results.

In contrast to Olsen’s routine, the first approach in comparing the individual measured and reference magnetic field components is
essential for successful calibration using the method (b) after Merayo et al. (2000) and Bonnet et al. (2009). In this algorithm only a fit of
the ellipsoid eq. (6) via SVD to the measurement data and subsequent application of eq. (7) is performed and therefore neither the correct
scale factors si nor the correct offsets oi can be obtained. Therefore, an initial least square fit to the model �F = Ŝ · �B + �O is performed. The
misalignment errors are neglected in this first raw calibration. The reference field vector is rotated into the measurement system’s coordinate
frame via application of �Bref ,b = D̂b

NED · �Bref where D̂b
NED is the appropriate rotation matrix (Goldstein 1980) containing the Euler angles.

Then a linear regression is performed to fit the therein measured magnetometer readings to the vector �Bref ,b. Subsequently, the SVD-based
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Figure 1. Euler angles of the measurement system’s attitude during the survey: (a) roll, (b) pitch and (c) heading angle.

calculation of Û and �c estimates the misalignment and the correction of the residual scale factor and offset errors. Finally, the calculation of
the resulting sphere provides only normalized magnetic field vector components and thus makes it necessary to multiply the results with the
reference field magnitude which is obtained from the total intensity corresponding to the IGRF or HDGM model for the present geographic
coordinates.
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Figure 2. (a) Northward (x) component, (b) Eastward (y) component, (c) Downward (z) component of the magnetic field vector of a survey in South Africa
(RSA) obtained after calibration by Olsen method. The scanned area is discussed in the subsequent results.

5 C A S E S T U DY F O R E VA LUAT I O N O F C A L I B R AT I O N M E T H O D S

The newly implemented vector magnetometer calibration methods introduced above are assessed in detail on data obtained in an airborne
magnetic survey with the FTMG system mounted in a nonmagnetic towed body underneath a helicopter (Stolz et al. 2006). The study area
is located in the Republic of South Africa in the Northern Province between Groblersdal and Loskop Dam on the Southeast flank of the
Dennilton Dome and represents an area of about 5 km × 5 km. The towed system had in minimum 30 m ground clearance and a line separation
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Figure 3. Vertical gradient of the vertical magnetic field component (a) and measurement altitude (b) for the survey in RSA.

of 50 m was chosen. The survey was accomplished in two flights on one day. According to the magnetic gradients and altimeter readings
(Fig. 3) obtained during this survey, the acquired data set offers low magnetic noise amplitudes, smooth topography, and only a few distinct
anomalies. Thus, the test conditions appeared to be well-suited for this experiment.

The residual occurrence of motion noise in the calculated TMI from the measured SQUID vector magnetometer data, represented by
its correlation to the calculated Euler angles, is a measure for the success of the magnetometer calibration. Any measurement error would
lead to response to motion noise in the TMI. As the calibration routines are benchmarked for application to any SQUID magnetometer
survey, the test was performed on low-noise data with usual ground clearance but few anomalies, thus enabling a meaningful check for
recurring noise.

Here, we focus just on the general methodological description of the new processing algorithms. The presented data serve as a suitable
field example demonstrating typical ranges of variation of the error parameters and computational time for the particular implementation.
For a general overview of the geological setting at the test site which is formed by the Transvaal Sequence and Bushveld Complex, refer to
Crous (1997).

The first calibration approach using Olsen’s method leads to the TMI presented in Fig. 4.
Each of the three scale factors si and offsets oi are pre-initialized using a least-square fit of the measurement data to the IGRF rotated

into the body coordinate system. The rotation matrices (Goldstein 1980) for this conversion contain Euler angles calculated via Kálmán
filtering techniques (Shin 2005; Shin & El-Sheimy 2007) from measured IMU data. The three misalignment angles are initially set to zero.
The resulting parameter sets of the calibration algorithm for the two survey flights in the study area are shown in Table 1. The residual
correlation coefficients of the TMI to the Euler angles are −0.07 per cent for the roll angle, 1.48 per cent for the pitch angle and 4.72 per
cent for the heading angle, the standard deviation for the individual flights was decreased from 21.5 µT to 51 nT and from 21.9 µT to 41 nT,
respectively. These are the numbers of the standard deviation of the anomalies which would be obtained by additional TMI measurements for
this area.
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Figure 4. TMI obtained by a calibration after Olsen of the survey in RSA. The standard deviation in the study area is σ = 43 nT.

Table 1. Minimization parameters for the sample survey for the Olsen calibration method.

Flight no. αxy (◦) αxz (◦) αyz (◦) sx sy sz ox (µT) oy (µT) oz (µT)

1 0.37 −2.36 −0.42 −0.501 0.511 −0.518 4.67 −2.06 −14.24
2 0.42 −2.27 −0.56 −0.501 0.504 −0.516 6.38 −1.38 −13.70

For the calibration with the Merayo method it is necessary to know the alignment of the magnetometer cube with respect to the IMU.
After a first rescaling of the magnetometers and subtracting a raw least-squares approximation of the offset, the determination of Û and �c is
carried out. The results for the two individual flights are:

Û 1 =

⎛
⎜⎜⎝

0.3337 −0.0048 0.0334

0 0.3163 −0.0188

0 0 0.2979

⎞
⎟⎟⎠ × 10−4 nT−1

and

Û 2 =

⎛
⎜⎜⎝

0.3334 −0.0067 0.0305

0 0.3209 −0.0148

0 0 0.2974

⎞
⎟⎟⎠ × 10−4 nT−1,

as well as �c1 = (−2.73, 1.86, 4.72)T µT and �c2 = (−2.60, 1.46, 4.76)T µT. After application of eq. (6) to the measured data, we observe a
TMI shown in Fig. 5. Table 2 shows the pre-calibration values of offset and scale. For this pre-calibration a linear least-squares approach was
used without determination of the alignment to the IMU.

Figure 5. TMI obtained after Merayo calibration. The standard deviation in the study area is σ = 47 nT.
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Table 2. Sensitivities and offsets for pre-calibration using least-square fit for
Merayo calibration method.

Flight no. sx sy sz ox (µT) oy (µT) oz (µT)

1 −0.511 0.491 −0.514 3.69 −1.92 −14.17
2 −0.509 0.493 −0.512 5.37 −1.20 −13.63

6 C O M PA R I S O N A N D A S S E S S M E N T O F T H E C A L I B R AT I O N R E S U LT S

The deviations in the minimization parameters due to effects caused by the particular magnetometer system have been evaluated; then the
selected reference field information is estimated; and finally, both calibration methods are compared with respect to usability and computational
time.

6.1 Olsen method

The scale factors si differ only in a range of 0.01 (Table 1) and the misalignment angles αi j differ only in a range 0.1◦ between both flights for
the Olsen magnetometer calibration methods. Ideally, these values should be constant; at least the change of the misalignment angles should
be lower than 0.01◦ for a specific measurement system. It should be noted that a full thermocycle to room temperature and back to operation
temperature of 4.2 K will cause changes in scaling and misalignment angles for the SQUID sensors due to mechanical stress. During data
acquisition performed for this study the sensor setup was kept cool throughout the survey. Therefore, it is possible that temperature variations
and relative motions in the towed bird’s interior system components could cause the observed effect. As the first survey flight was undertaken
early in the morning while the second was flown at noon, on the one hand the temperature changes could reflect the respective conditions.
Further investigations are necessary to clearly identify the source of the deviations.

On the other hand, these parameters are obtained using a gradient-supported minimization process. Therefore the differences in these
values also reflect the numerical accuracy of the result of finding the optimized standard deviation. Reflecting the different anomaly roughness
in the right- and left-hand half of Fig. 3, the standard deviations of the residual TMI differ for both flights. Because the minimization affects
to such changes, it is a better approximation to take the averages of the values for si and αi j which is discussed below. From the here
presented state it remains not discriminated whether these small derivations primarily originate from the instrument drifts or the minimization
inaccuracies of Olsen’s method.

The differences in the offsets oi are due to the readout of the SQUID sensors leading to arbitrary DC values for the signal output. At begin
of the data acquisition the feedback loop of each SQUID is closed. At this moment in time the output of all SQUIDs is zero independently of
the magnetic field amplitude. Hence the SQUIDs measure an accurate relative value of the corresponding magnetic field component.

6.2 Merayo method

Using the Merayo method, the same behaviour is observed in the upper triangular matrix. Here changes are very small. The differences in the
ellipsoid centre position are in maximum 400 nT. Nevertheless, this is accomplished as a result of a pre-calibration which shows essentially
the same behaviour in the offsets.

A stationary magnetic base station was not installed for this survey. For SQUID FTMG surveys the vector magnetometer readings are
principally used for balancing the gradiometer signals; while the main information is derived from the tensor components of the magnetic
field gradient. For such surveys, no magnetic base station is necessary since gradiometers with sufficient suppression of the homogeneous
Earth magnetic field are not sensitive to diurnal effects: they already measure a difference signal from two magnetometer areas. Furthermore,
in airborne measurement as the data set presented here, each flight data set is divided into individual flight lines, each acquired within
less than three minutes. Therefore any temporal magnetic variations that occur during a given flight would be averaged into the individual
offset—calculated with one of the presented methods—for that line. In fact, offsets of SQUID magnetometers often change arbitrarily even
within an operation turn, thus making line-by-line offset determination necessary.

6.3 Reference field

As the reference field used in this compilation (Maus & Manoj 2012) is described by globally valid spherical harmonic coefficients it can be
easily calculated for each measurement sample point, for the survey midpoint, or for an evenly spaced grid covering the survey area. In Maus
& Manoj (2012), the spatial resolution of the IGRF is cited by approximately 1500 km and of the HDGM approximately 28 km. These values
are larger than typical SQUID magnetometer surveys used for high-resolution mapping of specific interesting areas. Therefore, a sampling of
one point per square kilometre and subsequent interpolation to each survey sample point returns an adequate reference field. Midpoint values
for the discussed case study are shown in Table 3. The regression was performed to the respective IGRF values for the first test discussed
herein. With respect to motion noise patterns, using HDGM instead of IGRF does not show significant differences in the calibration results
although average curvature (see Table 3) is slightly different and the amplitude of both reference fields calculated for the midpoint deviates
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Table 3. Comparison between IGRF and HDGM reference field
values. These components are calculated for the mean geographic
coordinates.

Model Bx (nT) By (nT) Bz (nT) Curvature

IGRF 12 578.69 −3987.71 −25 505.30 1.8 km–1

HDGM 12 639.59 −3999.88 −25 396.09 2.0 km–1

at about 100 nT for the downward component. The standard deviation of the curvature (Gray 1997) for our calibrated data in this example is
52.6 km–1.

6.4 Comparison of methods

One advantage of the Olsen method is that the rotation of the components of �B and �Bref into a common coordinate system is not necessary
because only the TMIs of measured and reference magnetic field components are compared. On the other hand, this prevents us from obtaining
detailed information on the alignment of the SQUID magnetometer triplet relative to the coordinate frame of the inertial measurement unit.
However, this can be performed after the calibration in a separate minimization routine, for example, to decrease the correlation of the motion
noise signal to magnetic field components or by comparison between the measured values to those obtained from TMI for instance by Hilbert
transforms. The mathematical methods for these transforms will be presented in a subsequent paper.

The disadvantage of the Olsen method is the dependence of the convergence of minimization on the choice of the aforementioned offset
scaling factor. On the one hand, the calibration is a process of parameter estimation based on the minimization of a standard deviation, which
is driven towards zero as the parameters converge on an estimate. On the other hand, the standard deviation reflects the difference between
the measured and the reference field TMI. Due to the smooth character of the reference, which can be approximated as a spatially constant
value, this standard deviation effectively becomes a measure of the anomaly strength for the survey area which has a finite and nonzero value.
The LBFGS minimizer therefore requires termination tolerances for the parameter changes and the gradient values. Else the minimization
diverges and non-realistic values (e.g. for the misalignment angles) are determined. Additional information from previously performed TMI
surveys on the one hand could improve the regression and the quality of the TMI obtained after calibration of our measurement data. But,
different processing (e.g. filters and specific subtraction of reference field values therein) could on the other hand lead to misleading results.
As the presented routines are intended to be self-contained and, except of the reference field coefficients, to be used standalone without further
information, the acquired quality meets the above discussed goal: Correlation of motion noise in the calculated TMI is hardly detectable
after application of one of the calibration methods to the magnetometer signals. The correlation coefficients for the particular data are of the
magnitude of one per thousand for the roll angle and in the percentage range for pitch and heading. This addresses correlations between pitch,
heading and topography and is not subject to magnetometer calibration.

For larger data sets with a larger number of survey flights the almost negligible differences in the scaling and misalignment behaviour of
the magnetometer system should be kept in mind. After calibration of each separate flight (line) individually, the scale factors and misalignment
angles could be averaged, and subsequently the offsets estimated by recalibration with fixed values for si and αi j . A single set of si and αi j

for a specific survey exists as well as the offsets for each flight line after proper calibration.
The ellipsoid method after (Merayo et al. 2000) instead is more robust to minimization for offset determination, but a common reference

coordinate frame for the measured data and the Earth’s magnetic field components is necessary. Secondly, the calibration routine is faster
than Olsen’s method et al. (2001) but only a raw calibration model for the offset and scale factor determination is used. Hence, the influence
of motion noise on the resulting TMI remains stronger than for Olsen’s routine. Application of the same minimizer (L-BFGS) for solving
this task would result in a longer computing time. Thirdly, it is necessary to estimate the misalignment of the magnetometer triplet relative to
the IMU because this causes further distortions. This step has to be performed via a minimization routine during the calibration procedure.
However, it results in an increased calculating time spent for the optimization. Furthermore, depending on the minimization algorithm,
convergence to realistic values is not always secured.

With appropriate offset scaling, especially the Olsen method has the potential to be used for calibration of a wide range of SQUID vector
magnetometer survey data.

7 C O N C LU S I O N A N D O U T L O O K

Initially thought to be more robust for typical SQUID vector magnetometer setups, the calibration after Merayo and Bonnet turns out to have
several disadvantages because the offsets and scale values have to be pre-calibrated. Olsen’s et al. (2001) however, allows calibrating the
vector magnetometer itself and determining its alignment to the IMU coordinate system. The orientation of the whole tri-axial setup relative
to the IMU coordinate system is determined afterwards. An appropriate rescaling of the offset values during the calibration process enhances
the stability of the algorithm and the quality of the resulting TMI values for the surveyed. The evaluation of the methods, as presented in this
paper, is based on comparisons with a reference field TMI derived from IGRF or HDGM spherical harmonics coefficients. However, better a
priori TMI data used for calibration may improve the stability.
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In regard to the FTMG system setup used for the example data presented here, we intend to publish a future approach for the generation
of a correct reference field, which utilizes magnetic field components that can be calculated from the vertical components of the gradient
tensor (Bxz , Byz and Bzz) under Hilbert and Hilbert-like transforms.
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