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S U M M A R Y
We present an analytical approach to jointly estimate the correlation window length and
number of correlograms to stack in ambient noise correlation studies to statistically ensure
that noise cross-terms cancel out to within a chosen threshold. These estimates provide the
minimum amount of data necessary to extract coherent signals in ambient noise studies using
noise sequences filtered in a given frequency bandwidth. The inputs for the estimation process
are (1) the variance of the cross-correlation energy density calculated over an elementary time
length equal to the largest period present in the filtered data and (2) the threshold below which
the noise cross-terms will be in the final stacked correlograms. The presented theory explains
how to adjust the required correlation window length and number of stacks when changing
from one frequency bandwidth to another. In addition, this theory provides a simple way to
monitor stationarity in the noise. The validity of the deduced expressions have been confirmed
with numerical cross-correlation tests using both synthetic and field data.
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1 I N T RO D U C T I O N

In the past 15 yr, seismic ambient noise studies for monitoring and
imaging purposes have gained increasing importance in seismol-
ogy and surrounding research fields (e.g. Lobkis & Weaver 2001;
Derode et al. 2003; Shapiro & Campillo 2004; Snieder 2004; Wape-
naar 2004; Roux et al. 2005; Curtis et al. 2006; Sens-Schönfelder &
Wegler 2006; Draganov et al. 2013). All of these noise studies are
based on interferometric principles in which empirical Green func-
tions (EGFs) are extracted based on different signal processing
strategies (e.g. Bensen et al. 2007; Schimmel et al. 2011). The
strategies to extract coherent signals from ambient noise are com-
monly based on cross-correlation and stacking approaches. The
processing, however, is complicated by certain decisions taken to
improve the signal extraction. One of the main decisions, particu-
larly important in monitoring problems, is the choice of the amount
of data to be used in the averaging process. Usually this choice is
based on some empirical or pre-established experience values (e.g.
Seats et al. 2012). The time series need to be sufficiently long to
assure a balanced coverage of noise sources for a complete build-
up of the EGF and to reduce the impact of noise cross-terms (e.g.
Snieder 2004), which in all theoretical derivations are supposed to
vanish. The emergence of EGFs has been studied from statistical
view points by analysing the variance of cross-correlation studies
(e.g. Sabra et al. 2005; Weaver & Lobkis 2005) as function of data

length and frequency bandwidth (FBW). However, the length of
data which needs to be averaged for cross-term cancellation is still
unknown (Weemstra et al. 2014).

Using a statistical approach, we analyse here how much data av-
eraging is needed to restrain the cross-terms variance to be below
a pre-defined value in the final stacked correlograms. We obtain
expressions that provide the starting correlation window length and
number of stacks for ambient noise correlation studies, taking also
in consideration the dependence on the FBW. Our expressions can
also be used to detect non-stationarity in data caused by fluctuations
in the noise field. Note that the results say nothing about how effi-
ciently EGFs emerge which means that analysing more data might
be necessary, depending on source characteristics (Sabra et al. 2005;
Weaver & Lobkis 2005) and abundance of scatterers (Larose et al.
2006). However, fulfilment of the minimum averaging condition
makes SI viable, as exemplified by Weemstra et al. (2014) in their
analysis of amplitude attenuation.

2 M E T H O D S

Let u(t) and z(t) be two simultaneous noise records from two differ-
ent locations. Both records are filtered in the FBW [fmin, fmax], where
we expect to exist coherent signals (s) and random noise (n and r) so
that u(t) = s(t) + n(t) and z(t) = s(t + α) + r (t). We assume that
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s(t) and s(t + α) are the same signal lagged by α, and that n(t) and
r(t) are both stationary, spatially non-correlated zero-mean random
noises. The signals can be of arbitrary shape, but we assume without
loss of generality that the amplitudes are not attenuated.

The geometrically normalized cross-correlation of u(t) and z(t)
for time lag τ in a correlation window length L is given by

cuz(τ ) = css(τ, α) + csr (τ ) + cns(τ, α) + cnr (τ ), (1)

where cab is the correlation of a(t) and b(t), defined by

cab(τ ) =
∫ t0+L

t=t0
a(t + τ )b(t)dt√∫ t0+L

t=t0
[a(t + τ )]2dt · ∫ t0+L

t=t0
[b(t)]2dt

, (2)

where t0 is the start time of the correlation window length. The
denominator �(τ ) is the geometric mean of the energy within the
correlation window length L. Note that all cross-correlation terms
in eq. (1) involve noise. In turn, if one uses z(t) = u(t) in eq. (1), the
noise auto-correlation cnn is peaked at zero lag and decays approx-
imately as e−Dτ (Beran 1992), where D is a diffusion coefficient.
Seismic noise has very short-range temporal correlation (that is,
D is very high) so that cnn(τ ) is considered henceforth as a noise
cross-correlation term for τ �= 0.

Usually, noise is assumed to be uncorrelated with signals or with
other noise. That is, all noise terms in eq. (1) are assumed to cancel
out after averaging. However, we will not take this assumption as
being a priori warranted; instead of this, we will focus on the noise
cross-terms to find statistical conditions which ensure that they
cancel out to within an ascribed confidence level.

Let us express the already defined correlation window length L
as function of fmin by the equations

L = K L0, where L0 = 1/ fmin. (3)

Note that L0 is the largest noise period contained in the data and that
K is an integer number. Now we define the minimum total record
length R to be used in the averaging process as

R = N (L + τmax), (4)

where N is the number of stacks and τmax is the maximum lag to
be used (that is, −τmax ≤ τ ≤ τmax). Next, we estimate K and N to
statistically ensure that the noise cross-terms cancel out to within a
pre-specified threshold.

2.1 Cancellation of noise cross-terms

The noise cross-term ci
ns(τ ) (eq. 1) is given by

ci
ns(τ ) =

∫ t0+L
t=t0

si (t + τ )ni (t)dt

�i (τ )
, (5)

where the superscript i stands for the ith summand of the stacking
and �i(τ ) is defined in association with eq. (2). The integrand is
a signal–random noise product which results in a new sequence of
random numbers m(t, τ ). So

ci
ns(τ ) =

∫ t0+L

t=t0

mi (t, τ )dt . (6)

Using the relation between L and L0 (eq. 3), eq. (6) can be ex-
pressed as the sum

ci
ns(τ ) =

K∑
k=1

∫ tk+L0

t=tk

mi
k(t, τ )dt =

K∑
k=1

μi
k(τ ), (7)

where k stands for the kth segment of L, each one with time length
L0 (eq. 3). μi

k(τ ) is proportional to the mean of mi
k(t, τ ) over L0,

that is, μi
k(τ ) = L0〈mi

k(τ )〉, where 〈 〉 stands for the mean.

Let σ i
k

2
be the time-domain variance of μi

k(τ ) over L0. Thus, σ i
k

2
is

proportional to the variance of the mean 〈mi
k(τ )〉. Observe that σ i

k
2

is
a standardized energy density variance because μi

k(τ ) is normalized

relative to �i(τ ) (eq. 5). For the summation process, σ i
k

2
is the input

variance. After K summations along the correlation window length
L, ci

sn(τ ) (eq. 7) has its variance reduced to σ i
K

2 = σ i
k

2
/K , according

to the expected decay of the sample mean variance with the number
of measurements (Navidi 2011). The stacking operation further
reduces this variance, so that:

cns(τ ) =
N∑

i=1

K∑
k=1

μi
k(τ ) and σ N

K
2 = σ i

k
2
/(N K ). (8)

The output variance σ N
K

2
thus decreases with increasing values for K

or number of stacks N. Given a confidence level ε2 to be satisfied by
the output variance of the stacked cross-terms (that is, by imposing
σ N

K
2 ≤ ε2), NK can be estimated as

N K ≥ σ i
k

2
/ε2, (9)

ensuring that csn(τ ) integrates to zero within this confidence level.
The same value NK is sufficient to cancel out the other noise

cross-terms in eq. (1). Moreover, using eqs (3) and (4), this statis-
tical condition will be attained for any lag τ . Altogether, the above
arguments justify the use of eqs (3) and (4). Note that σ i

k
2

may be
estimated from the correlated series.

The order of magnitude of NK can be estimated from eq. (9).
Because csn(τ ) is a standardized cross-correlation (eqs 2 and 5),
μi

k(τ ) in eq. (7) satisfies −1 ≤ μi
k(τ ) ≤ 1. So, in the worst case the

input variance σ i
k

2 ≈ 1, given that 〈μi
k(τ )〉 ≈ 0. Using ε ≈ 0.01,

then NK ≈ 104. Computational cost of correlation operations is
usually higher than for stacking, which may justify N > K. To
simplify, we use N ≈ K so K ≈ 100. For example, if fmin = 0.05 Hz
then L ≈ 2000 s (eq. 3). Therefore, for zero lag, the minimum total
record length R (eq. 4), ensuring that the noise cross-terms cancel
out within the confidence level ε ≈ 0.01, must be approximately
equal to 2.3 days.

2.2 Variance dependence on the FBW

So far, the dependence of NK on the FBW does not explicitly appear.
In fact, this dependence is already implicitly incorporated in σ i

k
2
.

Nevertheless, the presented approach can be adjusted to relate NK
for different FBW data. Consider two cross-correlations A and B
which result from records filtered in the FBWs [ f A

min, f A
max] and

[ f B
min, f B

max], having standardized time-domain energy variances σ 2
A

and σ 2
B , respectively, as input variances. The respective products

NAKA and NBKB are then related, as deduced in the Additional
Supporting Information, by the following expression:

NB K B/NA K A = σ 2
B/σ 2

A = (n2
A − 1)/(n2

B − 1), (10)

where n A = f A
max/ f A

min and nB = f B
max/ f B

min. Note that (n2
A − 1)/

(n2
B − 1) is a measure of the ratio between relative FBWs.

Eq. (10) thus shows that a cross-correlation, calculated with band-
passed white noise sequences with relatively wide FBW, needs a
smaller product NK to satisfy eq. (9) than a cross-correlation based
on relatively narrow FBW data.

The white noise hypotheses is not an unrealistic assumption
nor a limiting factor in our approach. Commonly, noise data are
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Figure 1. Synthetic data: (a) Noise sequences. (b) Energy density spectra of the noise sequences. Coloured boxes indicate FBWs. (c) Contour plot of σ N
K for

zero-lag cross-correlation of the sequences filtered in the FBW [0.2, 0.4] Hz. (d) σ N
N decay curves along the line N = K in the (K, N) plane and their zooms

in the interval 0 < σ < 0.05 (inset) for the FBWs shown in (b). (e) The same as in (d) for different FBWs. Data in (a) and (b) have been decimated for visual
purposes to every 50th and 100th sample, respectively. Data filtering was done using a zero-phase Butterworth bandpass filter.

approximately whitened within the considered FBW before compu-
tation of cross-correlations (Bensen et al. 2007). Nevertheless, in
the Additional Supporting Information (available in the online ver-
sion of the article) we show also how to apply eq. (10) for non-white
noise.

3 N U M E R I C A L T E S T S

3.1 Synthetic data

Two synthetic noise sequences (Fig. 1a) were generated using
pseudo-random white noise generators (Press et al. 1996). For zero-
lag cross-correlation of the two sequences filtered in the FBW [0.2–
0.4] Hz (Fig. 1b), σ N

K values were calculated (Fig. 1c) using eq. (8)
and visiting 100 times (each one for a different realization of the
noise sequences) every point of the mesh (K, N), 1 ≤ K(or N) ≤ 100,
with a step size equal to 1. As predicted by eq. (10), σ N

N (for N = K)
decay curves associated with different FBWs, but having the same
ratio n = fmax/fmin, practically overlap (Fig. 1d). In addition, correl-
ograms calculated with higher ratio n attain the tolerance threshold
at smaller values of K = N (Fig. 1e). Along the line N = K, we can
use the K-ratio KB/KA, associated with the respective values of K
where the decay curves cross the same threshold ε to measure the
relative decay rate. Table S1 (Additional Supporting Information)

shows that there is good agreement among predicted (eq. 10) and
observed (Fig. 1e) K-ratios associated with ε = 0.01.

3.2 Field data

We use now vertical component ambient noises recorded over
22 days starting on 2010 April 14 at two broad-band stations
separated by 477 km (Fig. 2a). These sequences are representative
of field data because they contain amplitude variations due to vari-
ant ambient noise excitation and earthquakes (the spikes in Fig. 2a).
Energy density spectra (normalized to amplitude 1) are clearly non-
white showing two maxima at 0.05 and 0.2 Hz (Fig. 2b).

For zero-lag cross-correlations of the two sequences filtered in the
FBW [0.1, 0.2] Hz (blue box in Fig. 2b), σ N

K values were calculated
(Fig. 2c) using 25 randomly chosen data segments for each (K, N)
mesh point; that is, using 25 zero-lag cross-correlation values per
(K, N) and window length L = K × L0 = K × 10 s. The FBW
[0.1, 0.2] Hz was deliberately chosen so that the filtered sequences
severely depart from the white noise assumption (Fig. 2b). Although
there exist perturbations in the σ N

K curves, the overall hyperbolic
appearance remains visible (Fig. 2c).

Nonetheless the noises are non-white, correlograms calculated
with higher ratios n attain the tolerance threshold at smaller values
of N = K (Fig. 2d). After the data preprocessing (1 bit + whitening),
σ N

N decay curves associated with different FBWs, but having the

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/203/2/1096/576884 by guest on 24 April 2024



Noise cross-term cancellation 1099

Figure 2. Field data from two broad-band stations of the Spanish TopoIberia project: (a,b) The same as in Figs 1(a) and (b). (c) The same as in Fig. 1(c), but
using the FBW [0.1–0.2] Hz. (d) The same as in Fig. 1(d) using non-preprocessed data. (e) The same as in (d) but using preprocessed data (1 bit + whitening).
In (b), yellow lines show staircase approximations of the spectra, which are used to calculate the predicted K-ratio values in Table S1 for non-preprocessed data
(see Additional Supporting Information).

same ratio n, almost coincide (Fig. 2e) as predicted by eq. (10). In
addition, reasonable ratios among the predicted and observed K-
ratios are obtained in most cases (Table S1 Additional Supporting
Information).

There is an overall agreement between synthetic and field data
results. However, a striking difference is present: for field data σ N

N

curves are non-monotonically decreasing (Figs 2d and e), evidenc-
ing non-stationarity, particularly when using non-preprocessed data.
A non-stationary process is one whose statistical properties change
over time, in particular the mean and variance (Nason 2006). So,
a departure from the expected time decay behaviour of the sample
mean variance must involve non-stationarity. Indeed, monitoring
the σ N

K decay curves is a simple strategy to detect non-stationarity.
When dealing with field data, care must be taken to face data non-
stationarity. The 1 bit normalization (Cupillard et al. 2011), the use
of short-time windows (Seats et al. 2012), and noise classification
and selection approaches (Groos & Ritter 2009) are some of the
used procedures to reduce data non-stationarity. Note that the con-
cept of non-stationarity depends on the time scale and/or number
of visits in a long series one uses. For non-preprocessed field data,
we verified that the oscillations in the N = K decay curves are
attenuated with increasing sample number.

The dependence of σ N
K with (KN)−1/2 (eq. 8) for cross-term can-

cellation is consistent with the results associated with the emergence
of EGFs presented by (1) Snieder (2004) (his eq. A12, where the
ratio of the standard deviation of the cross-terms to the diagonal
terms is proportional to T−1/2), (2) Weaver & Lobkis (2005) (their

eq. 43, where the signal-to-noise ratio variance Var is proportional
to T) and (3) Sabra et al. (2005) (their eq. 20, where the noise cross-
correlation function variance is proportional to 1/T). In addition,
the dependence of σ 2

A with 1/(n2
A − 1) (eq. 10) is also consistent

with the results of Weaver & Lobkis (2005) (Var ∝ 1/w2 in their
same eq. 43, where w is a central frequency).

Considering separately the effect of fmin on R (eqs 3 and 4) pro-
vides us with a geometry to describe the σ N

K behaviour in the (K,
N) plane through eqs (8) and (9). This geometry shows that, to re-
duce the output variance, averaging through K (correlation window
length) is equivalent to averaging through N (stacking). In addition,
because the summation in eq. (8) does not depend on how the sum-
mands are grouped, the final output variance depends on the initial
and final points in the (K, N) plane but not on the trajectory in this
plane. Thus, σ N

K is a potential function of K and N.

4 C O N C LU S I O N S

The correlation window length and number of stacks can be jointly
estimated to statistically guarantee that noise cross-terms cancel out
in stacked correlograms under the assumption that the noise is sta-
tionary. For practical use, one should estimate the cross-correlation
energy density variance contained in the time window equal to
the largest period present in the filtered FBW. Then correlation
window length and number of stacks are estimated so that the out-
put variance is reduced to attain a threshold in the final stacked
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correlograms. An expression was also deduced to reschedule the
required correlation window length and number of stacks when
changing from one FBW to another.

Stationarity is the most severe assumption of our deductions.
However, it is possible to monitor noise non-stationarity by detect-
ing a non-monotonically decreasing behaviour of the energy density
variance. The presence of non-stationarity and the absence of co-
herent signals in ambient noise are factors which are not controlled
by the theory described here. Therefore, our approach should be
considered as a starting point to guide computation trials in EGF
extractions. The final length of the correlation window and number
of stacks depends on the abundance, quality and duration of coher-
ent signals. However, the minimum amount of data is controlled by
the cancellation of noise cross-terms, which is a necessary condition
in SI.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper.

(1) The deduction of eq. (10),
(2) How to use it for non-white noise, and
(3) The predicted and observed K-ratios for both synthetic and field
data.
Table S1. Predicted and observed K-ratios (definition in text) as-
sociated with the tolerance thresholds ε = 0.01 for synthetic data
(Fig. 1e) and ε = 0.02 for field data (Figs 2d and e). Double hori-
zontal lines separate synthetic (above) from field data (below). For
field data, P and R stand for with and without preprocessing (1 bit
+ whitening), respectively.
(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/ggv336
/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.
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