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S U M M A R Y
Volcanic crises are often preceded and accompanied by volcano deformation caused by mag-
matic and hydrothermal processes. Fast and efficient model identification and parameter esti-
mation techniques for various sources of deformation are crucial for process understanding,
volcano hazard assessment and early warning purposes. As a simple model that can be a
basis for rapid inversion techniques, we present a compound dislocation model (CDM) that is
composed of three mutually orthogonal rectangular dislocations (RDs). We present new RD
solutions, which are free of artefact singularities and that also possess full rotational degrees
of freedom. The CDM can represent both planar intrusions in the near field and volumetric
sources of inflation and deflation in the far field. Therefore, this source model can be applied to
shallow dikes and sills, as well as to deep planar and equidimensional sources of any geometry,
including oblate, prolate and other triaxial ellipsoidal shapes. In either case the sources may
possess any arbitrary orientation in space. After systematically evaluating the CDM, we apply
it to the co-eruptive displacements of the 2015 Calbuco eruption observed by the Sentinel-1A
satellite in both ascending and descending orbits. The results show that the deformation source
is a deflating vertical lens-shaped source at an approximate depth of 8 km centred beneath Cal-
buco volcano. The parameters of the optimal source model clearly show that it is significantly
different from an isotropic point source or a single dislocation model. The Calbuco example
reflects the convenience of using the CDM for a rapid interpretation of deformation data.

Key words: Geomechanics; Kinematics of crustal and mantle deformation.

1 I N T RO D U C T I O N

Since their early development, analytical models of crustal de-
formation have been used to interpret volcano deformation pro-
cesses (Segall 2010; Lisowski 2007). Despite their simplicity, the
widespread application of these models has proven that they are no-
tably useful tools as first-order approximations for studying phys-
ical processes at volcanoes. These models are based entirely on
the mathematical theory of elasticity applied to the deformation
of the Earth’s surface and its interior due to forces or dislocations
(Love 1944). The diversity of volcano deformation processes (see
Segall 2010) requires a flexible representation of the wide varia-
tion in source geometries in elastic media. Despite being in use
for decades, some basic analytical models based on either concepts
of dislocations (Okada 1985, 1992) or forces (Davis 1986) include
numerical artefacts and structural imperfections that are to be ad-
dressed in this paper.

The simplest models of planar volcanic sources, namely, dikes
and sills, are those based on rectangular dislocations (RDs) with
only a prescribed uniform opening (Segall 2010). One limitation of
the existing RD solutions (Okada 1985, 1992) is that they lack full

rotational degrees of freedom. The reason for this limitation is that
in these solutions, two parallel edges of an RD can be dipping at any
arbitrary angle, but the other two edges, which are perpendicular to
the first two, have to be parallel to the free surface. The existence of
the artefact singularities along the edges and below and above the
vertices is the other problem with these RD solutions. Okada (1992)
reported this problem and addressed it in a small neighbourhood of
the artefact singularities. The predefined size of the neighbourhood,
however, makes the Okada (1992) analytical solution scale depen-
dent, which means that the solution depends on the dimensions of
the RDs and on the distribution of the calculation points in a model.
Bradley & Segall (2012) addressed the artefact singularities along
the edges of RDs but not below and above their vertices. Never-
theless, neither of these attempts fully addressed the problem of
artefact singularities.

The widely known point-source models of pressurized cavities
are based on force dipoles. The simplest case in this group of
cavity models is the centre of dilatation, referred to as the Mogi
model (Mogi 1958). The Mogi model is a point-source approxima-
tion that is suitable only for deep spherical sources (Segall 2010).
Comparatively, the Davis (1986) point ellipsoidal cavity model is
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Figure 1. Addressing the problem of artefact singularities and numerical instabilities for rectangular dislocations (RDs). (a) Two different configurations for
the RD, named by ABCD, are depicted. Apart from the placements of the semi-infinite dislocation lines, these two configurations are equivalent and can
be used interchangeably. The calculation point P in the plane of the RD intersects one of the dislocation lines of the configuration I. For the ‘alternative’
configuration II, the point P is located at the maximum possible distance from the dislocation lines. Through the selection of the appropriate configuration, any
artefact singularity or numerical instability can be avoided. (b) The partitions in the plane of the RD formed by the RD angle bisectors and the RD perpendicular
bisectors (the solid blue lines). The red short dashed lines and the green dashed lines represent the lines of singularities of the RD configurations I and II in (a),
respectively. Each line of singularity lies in only one of the partitions. To avoid artefact singularities and numerical instabilities, we use configuration I for the
calculation points in which their orthogonal projection onto the RD plane falls in the dark partitions, and for the other calculation points, we use configuration II.
Either configuration can be used for the points inside the RD.

a point-source approximation for deep triaxial ellipsoidal sources,
which also includes the spherical cavities as a special case. Nonethe-
less, compared to the Mogi model, the Davis (1986) solution has
not yet been adopted as a routine modelling tool.

These issues also affect other analytical and numerical solutions.
It has been shown that a certain combination of a few dislocations
can reproduce the same displacement and stress fields as that of
an isotropic pressurized point source (Bonafede & Ferrari 2009).
Had this model been generalized, it could have replaced most of the
volcano deformation analytical models, which are based on either
concepts of dislocations or forces.

Given the problems and imperfections in the aforementioned
analytical solutions, developing new solutions that first enhance
the functionality and improve the performance of these analytical
solutions and then make the application of such solutions more
convenient is of relevance.

In the following, we first develop new solutions for the sur-
face, internal displacement and stress fields of RDs with full ro-
tational degrees of freedom in both full-space and half-space. We
address the problem of artefact singularities along the edges and
below and above the vertices of the RDs. Using our RD solutions,
we develop a compound dislocation model (CDM) as an alterna-
tive generalized source model of pressurized cavities and compare
the CDM with analytical and numerical solutions. Finally, we ap-
ply the CDM to the 2015 April 22 co-eruptive displacements of
Calbuco volcano in Chile. The application of the CDM to the
Calbuco case study supports a vertically elongated lens-shaped
source, which is significantly different from both spherical and
planar volcanic sources. We show that the CDM can be simply
integrated in any optimization algorithm to invert the observed dis-
placements for the unknown parameters of various deformation
sources.

2 M E T H O D S

In this section, we develop new analytical solutions for RDs in a
full-space and half-space based on the earlier works of Comninou &
Dundurs (1975) and Nikkhoo & Walter (2015). We then elaborate
a CDM, which is a generalization of the Bonafede & Ferrari (2009)
dislocation source.

2.1 New analytical, artefact-free solutions for rectangular
dislocations

We develop new artefact-free solutions for the displacement and
stress fields associated with RDs with full rotational degrees of
freedom in an elastic full-space and half-space.

In the first step, we construct two different but mathematically
equivalent configurations of angular dislocations in a full-space
(Fig. 1a). The double dislocation lines in Fig. 1(a) show the lines of
artefact singularities. These lines in the first configuration are ex-
tended in directions that completely differ from those in the second
configuration (Fig. 1a). The edges of the RD and their perpendicular
bisectors, as well as the bisectors of the RD external angles, mark
the boundaries between the two complementary partitions (white
and dark shadings in Fig. 1b). Clearly, the artefact singularities of
each configuration remain inclusively inside one of the two par-
titions. Additionally, the orthogonal projection of any calculation
point onto the RD plane falls into only one of the two partitions.
In the new RD solution, we first specify the partition that includes
the projection of the calculation point, and then we use the config-
uration that is located in the other partition. In this way, we always
avoid all of the artefact singularities in our RD solution. Moreover,
we calculate the Burgers function associated with the RD as the
sum of the Burgers functions of two triangular dislocations or four
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Figure 2. The geometry of the Okada (1985, 1992) solutions (dashed line) and the new solution (solid line) for a rectangular dislocation (RD) in a half-space.
E0, N0 and d are the coordinates of the RD centroid, and L and W are the RD length and width, respectively. δ and α, which define the orientation of the RD
plane, are the dip and strike angles, respectively. The plunge angle, θ , which only exists in the new solution, can change the orientation of the RD within the
RD plane. Note that the upper edge of the Okada (1985, 1992) RD solutions is always parallel to the free surface. Because of having the plunge angle in its
geometrical configuration, the new RD solution possesses full rotational degrees of freedom.

angular dislocations that form exactly the same RD (Nikkhoo &
Walter 2015).

In the second step, we apply the method of images directly to the
new RD full-space solution and develop an artefact-free solution
for an RD in a half-space (see Nikkhoo & Walter 2015). For this
purpose, using the artefact-free solution for RDs in a full-space,
we calculate the main and image dislocation contributions. The
sum of these two together with the free surface potential function
contribution (Comninou & Dundurs 1975) completes the solution
for the RD in a half-space. Using this technique, we are able to
calculate displacement and stress fields at depth and on the surface
of a half-space.

As the final step, using the Comninou & Dundurs (1975) solution
for an angular dislocation in a half-space, we develop another so-
lution only for the surface displacement and stress fields associated
with an RD with full rotational degrees of freedom in a half-space.
Implementing two configurations and switching between them in a
method similar to the full-space case, we remove the artefact sin-
gularities that appear when one of the RD edges is in the vicinity of
or breaches the free surface (see Nikkhoo & Walter 2015).

The geometrical parameters of the Okada (1985, 1992) and the
new RD solutions are illustrated in Fig. 2. The strike angle (α) and
the dip angle (δ) determine the orientation of the plane upon which
the RD is located. We introduce a new parameter that controls the
orientation of the RD in this ‘extended RD plane’. This parameter,
which we call the ‘plunge angle’ (θ ), is the angle between the upper
edge of the RD and the intersection of the free surface with the
extended RD plane (see Fig. 2). The possibility of having a plunging
upper edge in the new RD solutions allows them to possess full
rotational degrees of freedom. In other words, the new RD solutions
that we developed here extend the well-known Okada (1985, 1992)
solutions by addressing the numerical artefacts and the geometrical
limitation problem in their structure.

2.2 The compound dislocation model

The displacement field of three mutually orthogonal square dislo-
cations with the same prescribed uniform opening is equivalent to
that of the Mogi model (Bonafede & Ferrari 2009). We generalize
this concept and use three mutually orthogonal RDs to develop a
source model that can represent planar and volumetric sources of
various aspect ratios. As a result of utilizing the RD solutions of
Section 2.1 in its configuration, this generalized model may possess
any arbitrary size and orientation in space (Fig. 3). We refer to this
new model as the compound dislocation model (CDM).

In the following, we adopt two coordinate systems (see Fig. 3).
The x, y and z axes, which lie on the CDM axes, establish a Cartesian
coordinate system, which its origin is located on the CDM centroid.
The lengths of the CDM semi-axes along the x, y and z axes (Fig. 3a)
are equal to a, b and c, respectively. The RDs labelled as ‘A’, ‘B’
and ‘C’ are perpendicular to the x, y and z axes and their dimensions
are (2b, 2c), (2a, 2c) and (2a, 2b), respectively. The origin of the
XYZ coordinate system is at the Earth’s surface and the positive X,
Y and Z axes point to the east, north and up, respectively. There-
fore, the XYZ coordinate system is a local Earth-fixed Cartesian
coordinate system and the XY plane represents the free surface. We
use the XYZ coordinate system as the reference frame to define the
orientation and location of the CDM and the xyz coordinate system.
The clockwise rotations of ωX, ωY and ωZ about the X, Y and Z
axes, respectively, specify the orientation of the CDM in space (see
Fig. 3). Note that before applying the rotations the xyz and XYZ
coordinate systems are coincident (see Fig. 3a) and after applying
the rotations these coordinate systems still share the same origin
(see Fig. 3d). The translation vector that moves the CDM to its final
location in space is (X0, Y0, −d), where X0, Y0 and d are the east and
north coordinates and the depth of the CDM centroid, respectively,
in the XYZ coordinate system. Considering the angles of rotation
in Figs 2 and 3 it can be shown that ωX = θA, ωY = π

2 − δA and
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Figure 3. The geometrical structure and rotation angles of a compound dislocation model (CDM) composed of three rectangular dislocations (RDs), labelled
as ‘A’, ‘B’ and ‘C’ (the yellow, green and blue planes). The origin of the XYZ coordinate system is at the Earth’s surface and the positive X, Y and Z axes point
to the east, north and up, respectively. The origin of the xyz coordinate system is located on the CDM centroid and the x, y and z axes are normal to ‘A’, ‘B’
and ‘C’, respectively. The xyz coordinate system is fixed to the CDM. The a, b and c are the semi-axes of the CDM along the x, y and z axes, respectively. The
ωX, ωY and ωZ are angles of rotation about the X, Y and Z axes, respectively. Positive values of these angles correspond to clockwise rotations. (a) The initial
orientation of the CDM. (b) The orientation of the CDM after applying ωX. (c) The orientation of the CDM after applying ωX and ωY. (d) The final orientation
of the CDM. The numerical values of the rotation angles for this given example are denoted on the bottom right of each panel.

ωZ = αA, where θA, δA and αA are the plunge angle, dip angle and
strike angle of the first RD of the CDM, which is labelled as ‘A’ in
Fig. 3. The RDs that form the CDM all have the same amount of
uniform opening u. Therefore, the CDM has a total number of 10
parameters that include the CDM centroid location (X0, Y0, d), the
CDM rotation angles (ωX, ωY, ωZ), the CDM semi-axes (a, b, c) and
the opening (u).

If we consider the long-wavelength components of the displace-
ment signal associated with a CDM in the far field only, then the
model will effectively be a point source (Aki & Richards 2002).
Then, the CDM can be considered as a system of force dipoles
located at its centroid, with a moment tensor equal to the integral of
the moment density over the CDM surface (Aki & Richards 2002).
Due to the linearity of the integral operator, the moment tensor of
the effective point source is equal to the sum of the moment tensors
of the individual RDs in the model. Without loss of generality, we
derive the moment tensor of the CDM in Fig. 3 with respect to
the ‘CDM-fixed’, xyz coordinate system. For this CDM, the areas
of the RDs ‘A’, ‘B’ and ‘C’ are equal to SA = 4bc, SB = 4ac and
SC = 4ab, respectively, and u is the uniform opening of all three
RDs. Based on the moment tensor density of a tension crack after

Aki & Richards (2002), the moment tensor of the CDM in the xyz
coordinate system will be

MCDM =

⎛
⎜⎝

(λ + 2μ) uSA 0 0

0 λuSA 0

0 0 λuSA

⎞
⎟⎠

+

⎛
⎜⎝

λuSB 0 0

0 (λ + 2μ) uSB 0

0 0 λuSB

⎞
⎟⎠

+

⎛
⎜⎝

λuSC 0 0

0 λuSC 0

0 0 (λ + 2μ) uSC

⎞
⎟⎠ , (1)

where μ, known as the shear modulus, and λ are the Lamé coeffi-
cients.
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The contraction of eq. (1) is

MCDM = u

⎛
⎜⎝

λS + 2μSA 0 0

0 λS + 2μSB 0

0 0 λS + 2μSC

⎞
⎟⎠ , (2)

where S = SA + SB + SC = 4(ab + bc + ac).
Moreover, eq. (2) can be written as

MCDM =⎛
⎜⎝

λ �V + 2μ �VA 0 0

0 λ �V + 2μ �VB 0

0 0 λ �V + 2μ �VC

⎞
⎟⎠ ,

(3)

where �VA = uSA, �VB = uSB and �VC = uSC are the potencies
of the three RDs that compose the CDM and �V = �VA + �VB +
�VC is the potency of the CDM. The potency is the product given by
area × slip, which describes the strength of a dislocation source and
holds the dimensions of volume change (Aki & Richards 2002).
The potency of a tensile dislocation is given by area × opening.
From eq. (3), we can write

�V = MCDM
kk

3K
, (4)

where MCDM
kk is the sum of the diagonal components of MCDM and

K = λ + 2
3 μ is the bulk modulus. The fact that MCDM

kk is the first
invariant of MCDM shows that eq. (4) is independent of the coordinate
system.

In the case of a CDM that simulates an inflating crack-like or
volumetric cavity, the potency �V represents the volume available to
host new fluids intruding into the cavity from the outside (Bonafede
& Ferrari 2009). The potency, however, must not be confused with
the actual volume change δV, which represents the expansion that a
deformation source applies to the surrounding elastic medium (see
Aki & Richards 2002; Kumagai et al. 2014; Ichihara et al. 2016).

2.2.1 The point CDM

We develop another source model by replacing the finite RDs in the
CDM configuration with point tensile dislocations (Okada 1992).
This model is a point-source version of the CDM and we refer to
it as the point CDM. Similar to other point sources such as the
Mogi (1958) and Davis (1986) models the point CDM is exactly
equivalent to a single moment tensor that represents a system of
three mutually orthogonal force dipoles in a half-space (see Aki &
Richards 2002; Bonafede & Ferrari 2009). In the far field, the point
CDM and CDM are equivalent and therefore share the same moment
tensor in eq. (3). The point CDM, from a geometrical point of view
and by using the concept of the calculus of infinitesimals, can be
visualized as the CDM in Fig. 3(a), but with the semi-axes a, b and
c replaced with ‘differential’ semi-axes da, db and dc, respectively.
Because the point CDM is inherently a point source, the differential
semi-axes tend to zero, that is da −→ 0, db −→ 0 and dc −→ 0,
respectively. However, the potencies of the point dislocations, that
form the point CDM, and the ratios of the differential axes, that
determine the geometrical shape of the point CDM, can be different
from zero. The parameters that specify the location and spatial
orientation of the point CDM are the same as those of the CDM.
These parameters and the potencies of the point dislocations are
the 9 parameters that uniquely specify the point CDM. Considering
the definition of potency, it is straightforward to show that the axes

ratios of the point CDM can be calculated as ratios of the point
dislocation potencies.

3 E VA LUAT I O N O F T H E C O M P O U N D
D I S L O C AT I O N M O D E L

In this section, we evaluate the CDM through comparisons with
analytical and numerical solutions. We compare the CDM to point
and finite ellipsoidal sources and assess the ability of the CDM to
simulate deformation sources of various geometries and depths in
the near field and far field.

3.1 The CDM and point ellipsoidal source comparison

Moment tensors reveal the far-field behaviour of their corresponding
deformation sources (Aki & Richards 2002) and can therefore be
used for a quantitative assessment of these deformation sources.
To better understand the performance of the CDM, we compare its
moment tensor to that of the Davis (1986) point ellipsoidal cavity.
Because the CDM and point CDM share the same moment tensors
(see Section 2.2), the results of the comparison in this section, which
are presented in Fig. 4, apply to both the CDM and point CDM.

The equivalent moment tensor ME for the point ellipsoidal cavity
after Davis (1986) is

M E = σ T V, (5)

where σ T is the transformation stress after Eshelby (1957) and V is
the volume of the ellipsoid (see Segall 2010).

To calculate σ T, we implement the Carlson (1995) algorithms for
numerical computation of elliptic integrals and the Eshelby (1957)
transformation strain equations in a MATLAB function. Using eqs
(2) and (5), we calculate the moment tensors MCDM and ME that
cover the entire range of various aspect ratios of the CDM and
the Davis (1986) point ellipsoidal cavity. By applying the Trasatti
et al. (2009) convention to the eigenvalues of the calculated moment
tensors, we can represent the domains of moment eigenvalue ratios
that correspond to the CDM and point ellipsoidal cavity in a Poisson
solid, where μ = λ (Fig. 4). Clearly, the CDM possesses a wider
domain, which as its subset also encompasses the domain of the
ellipsoidal cavity model. This implies that corresponding to any
arbitrary point ellipsoidal cavity, there is a CDM with the same
moment tensor; however, the reverse statement does not necessarily
hold. To derive the direct relationship, we assume that the diagonal
moment tensor

M =

⎛
⎜⎝

M11 0 0

0 M22 0

0 0 M33

⎞
⎟⎠ (6)

represents a point ellipsoidal cavity with arbitrary dimensions in the
same xyz coordinate system introduced in Section 2.2. The potencies
of the RDs that compose a CDM with the same moment tensor M
are uniquely determined through comparing eqs (3) and (6) as

�VA = 1

2μ

(
M11 − λ

3K
Mkk

)
,

�VB = 1

2μ

(
M22 − λ

3K
Mkk

)
,

�VC = 1

2μ

(
M33 − λ

3K
Mkk

)
, (7)

where Mkk = M11 + M22 + M33.
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Figure 4. The moment tensor spectrum of the compound dislocation model (CDM) and point ellipsoidal cavity models in a Poisson solid (μ = λ) as a
function of M2/M1 and M3/M1, where M1, M2 and M3 are the eigenvalues of the moment tensors and M1 ≥ M2 ≥ M3 holds (Trasatti et al. 2009). The lower
right-triangle area on the plot represents the universal set of moment tensors. The CDM possesses a wider moment tensor spectrum (light and dark grey area),
which encompasses that of the ellipsoidal cavity (dark grey area) as a subset.

We find that eqs (3) and (7) establish a one-to-one relationship
between any point ellipsoidal cavity and a CDM in the far field
(see also Fig. 4). Moreover, it is straightforward to calculate the
aspect ratios of the CDM from eq. (7). Using eqs (5) and (7) and
the MATLAB function that we mentioned above, we also develop
MATLAB functions for forward-model calculations associated with
point ellipsoidal cavities.

The uniform pressure p on the walls of a pressurized ellipsoidal
cavity with a volume of V is related to the actual volume change
δVE of the cavity through

δV E

V
− εT

kk = − p

K
, (8)

where εT
kk is the sum of the diagonal components of the transforma-

tion strain (Segall 2010). By using the isotropic form of Hooke’s
law (Segall 2010), and assuming the bulk modulus to be the same
inside and outside the cavity, it can be shown that

εT
kk = σ T

kk

3K
, (9)

where σ T
kk is the sum of the diagonal components of the transforma-

tion stress. Combining eqs (4), (5), (8) and (9) yields

�V E = δV E + pV

K
, (10)

where �VE is the potency of the ellipsoidal cavity.
The potency and actual volume change of the ellipsoidal cav-

ity, and consequently, its corresponding CDM, are related through
eq. (10). It is straightforward to show that for the Mogi model,
eq. (10) can be written as �V Mogi = (

1 + 4μ

3K

)
δV Mogi, which in a

Poisson solid with μ = λ will be reduced to �VMogi = 1.8δVMogi

(Bonafede & Ferrari 2009).

3.2 The CDM and finite ellipsoidal source comparison

To evaluate the efficiency of the CDM in a more general sense, we
compare the surface displacement fields associated with finite ellip-
soidal cavities and their corresponding CDMs, the results of which
are presented in Figs 5–7. For this purpose, we calculate the sur-
face displacements associated with the ellipsoidal cavities using a
numerical approach based on the boundary element method (BEM)
after Kuriyama & Mizuta (1993). In the following comparisons, the
moment tensor and depth to the centre of the corresponding ellip-
soids and CDMs are identical. We calculate the moment tensors of
the ellipsoidal cavities using eq. (5). Then, using eq. (7), we derive
the potency and aspect ratios of the corresponding CDM uniquely.
However, similar to other finite source models in the far field, there
is a trade-off between the CDM dimensions and opening. Therefore,
using the known potency and aspect ratios of the CDM from the
previous step, we determine the optimized CDM dimensions and
opening that provide the best fit to the BEM displacements. How-
ever, because the point CDM is dimensionless, the displacements
associated with it can be directly calculated from the potency and
aspect ratios. Following this approach for the comparisons min-
imizes the optimization-related uncertainties and guarantees that
any deviation from the accurate BEM calculations is due to the
mathematical and geometrical structures of the CDM and point
CDM.

We conduct the comparisons for various prolate, equidimensional
and oblate cavities in the near field. Here, we only detail three
cases, which represent all of the three geometrical categories of
ellipsoidal cavities. However, utilizing triaxial ellipsoidal cavities
and considering the model performance along the X and Y axes
simultaneously, we cover a wider spectrum of cavity aspect ratios.
In the following comparisons, the Lamé coefficients are μ = λ =
33 GPa, the depth to the centre of the cavity is d = 3 km, and the
uniform pressure on the cavity walls is P = 10 MPa. We summarize
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Figure 5. Comparison of the BEM (solid line), CDM (dashed line) and point CDM (dotted line) normalized displacements along the X axis (left) and the Y
axis (right) for the first ellipsoidal cavity with 0.75, 0.5 and 1.5 km semi-axes along the X, Y and Z axes, respectively.

Figure 6. Comparison of the BEM (solid line), CDM (dashed line) and point CDM (dotted line) normalized displacements along the X axis (left) and the Y
axis (right) for the second ellipsoidal cavity with 1, 2 and 0.75 km semi-axes along the X, Y and Z axes, respectively.

Figure 7. Comparison of the BEM (solid line), CDM (dashed line) and point CDM (dotted line) normalized displacements along the X axis (left) and the Y
axis (right) for the third ellipsoidal cavity with 2, 3 and 0.25 km semi-axes along the X, Y and Z axes, respectively.

the results of the comparisons in Figs 5–7 in which profiles of
the BEM, CDM and point CDM horizontal and vertical surface
displacements along the X and Y axes are presented. In each case,
the distances are normalized by the depth to the centre of the cavity
and the horizontal and vertical displacements are normalized by the
maximum vertical displacement of each method.

For the first comparison, we use an ellipsoidal cavity with semi-
axes of 0.75, 0.5 and 1.5 km along the X, Y and Z axes, respectively.
In this case, the point CDM and CDM displacements are equivalent,
and both are in reasonable agreement with the BEM displacements
(Fig. 5). The fit to the BEM displacements along the X and Y axes
of the model are very similar; however, the quality of the fit for the
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Figure 8. Sentine1-1A ascending (left) and descending (right) interferograms representing the ground deformation due to the 2015 April 22 eruption of
the Calbuco volcano in Chile. The ascending images are acquired on April 14th and April 26th, and the descending images are acquired on April 21st and
May 3rd.

horizontal displacements along the longest horizontal axis of the
cavity, that is, along the X axis, is slightly better (Fig. 5, left). As
the second case, we consider an ellipsoidal cavity with semi-axes
of 1, 2 and 0.75 km along the X, Y and Z axes, respectively. In this
comparison, the CDM displacements are in very good agreement
with the BEM displacements, and in general, the CDM performs
better than the point CDM (Fig. 6). In particular, along the major
axis of the ellipsoid, which aligns with the Y axis, the CDM clearly
shows a better fit to the BEM displacements than the point CDM
does (Fig. 6, right). In the third comparison, we consider an ellip-
soidal cavity with semi-axes of 2, 3 and 0.25 km along the X, Y and
Z axes, respectively. Fig. 7 clearly shows that the CDM and BEM
displacements match perfectly, whereas the point CDM overesti-
mates the near-field displacements and underestimates the far-field
displacements. This case shows that in the near field, the CDM can
be used as an appropriate source model for rather thin magma bod-
ies, particularly those that resemble planar intrusions such as dikes
and sills.

The first ellipsoidal cavity in our comparisons resembles a prolate
ellipsoidal source. For this cavity, the ratio of the semi-major axis
to the depth to the centre, which we refer to as the characteristic
ratio, is equal to 0.5. Prolate cavities in the near field can be ap-
proximated by a point source if their characteristic ratio is smaller
than 0.5 (Yang et al. 1988). This explains the rather good agreement
between the BEM displacements and those of the CDM and point
CDM (Fig. 5). However, the equivalence of the CDM and point
CDM displacements shows that for prolate ellipsoidal sources of
pressurization, the point CDM can perfectly replace the CDM.

The second ellipsoidal cavity, however, represents a near equidi-
mensional volumetric source. For a spherical cavity, the point-
source approximation (Mogi 1958) is appropriate if the charac-
teristic ratio of the cavity is smaller than 0.5 (McTigue 1987). The
characteristic ratio of the second cavity in the XZ-plane is equal
to 0.3, and as mentioned earlier, both the CDM and point CDM
perform very good in this cross-section (Fig. 6, left). Additionally,
the characteristic ratio of the cavity in the YZ plane is equal to 0.7.
Therefore, in this plane, the point CDM does not perform as well as
in the XZ plane. However, the CDM, due to its finite spatial extent,
performs considerably better than the point CDM (Fig. 6, right).

The third ellipsoidal cavity resembles a horizontal sill. The
point-source approximation of a horizontal penny-shaped crack

(Fialko et al. 2001) is fully adequate for characteristic ratios smaller
than 0.2 (Segall 2010). Therefore, in this case, the characteristic ra-
tios of 0.7 and 1 completely explain the poor performance of the
point CDM in the XZ and YZ planes, respectively (Fig. 7). However,
again due to the finite spatial extent of the CDM as in the second
test and also because of the aspect ratios of the third cavity, the
performance of the CDM is excellent (Fig. 7).

We performed other tests using dipping cavities with arbitrary
orientations in space. Similar to the three cases above, the re-
sults of these tests show that the performance of the CDM is a
function of the depth and aspect ratios of the cavity and that the
cavity orientation does not significantly alter the performance. Ac-
cording to the results of the evaluation tests that we discussed here,
in the near field, the CDM and point CDM perform equivalently
only for prolate ellipsoidal sources. However, in all the other tests,
the performance of the CDM is better than the performance of the
point CDM. In the following, we will apply the CDM to explain the
deformation data measured at a real volcano.

4 T H E 2 0 1 5 C A L B U C O C O - E RU P T I V E
D E F O R M AT I O N M O D E L L I N G

After more than four decades of being dormant, Calbuco volcano
(72.614◦W, 41.326◦S) in the southern volcanic zone in Chile erupted
on 2015 April 22. The summit of the Calbuco volcano is approxi-
mately two kilometres above the mean sea level. This dome build-
ing volcano is an andesitic stratocone that produces pyroclastic and
blocky lava flows (López-Escobar et al. 1995).

We estimate the surface displacements due to the 2015 eruption
from the Sentinel-1A satellite ascending acquisitions of April 14th
and April 26th and descending acquisitions of April 21st and May
3rd. We process the data following the Prats-Iraola et al. (2012)
interferometric approach. For this purpose, we use the satellite state
vectors and the 90 m resolution topographic data generated from
NASA’s Shuttle Radar Topography Mission (SRTM) to align the
radar images and to remove the topographic component from the
interferometric phase. By applying this method to the two Sentinel-
1A pairs, we retrieve the two ascending and descending differential
InSAR interferograms shown in Fig. 8. Due to the small perpen-
dicular baselines of 43 m and 96 m for the Sentinel-1A ascending
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Figure 9. The results of the best-fitting CDM for the 2015 Calbuco eruption. The first row shows the InSAR line-of-sight (LOS) displacements, the CDM
displacements and the residuals for the ascending acquisition. The second row corresponds to the descending acquisition. The stars in the residual panels
indicate the centroid of the best-fitting CDM. The summit of Calbuco is located on the origin of the coordinate system.

and descending track pairs, respectively, topographic errors would
be minimal. Therefore, the phases observed in the differential inter-
ferograms are primarily attributed to deformation and minor atmo-
spheric artefacts. However, in both cases, the topography correlated
atmosphere has minimal effect on the Calbuco deformation because
the main deformation fringes, which are coherent, fall in rather flat
areas that have minor atmospheric noise (see Fig. 8).

The broad range of the observed surface deformation with a
radius exceeding a few tens of kilometres about the summit implies
that the deformation source is rather deep or horizontally elongated.
In either case, considering the tests in Section 3, the CDM can be
applied to the 2015 Calbuco co-eruptive displacements as a first
source model.

We invert the subsampled Sentinel-1A ascending and descend-
ing line-of-sight (LOS) displacements (see Fig. A1) to infer the
unknown parameters of the deformation source. For this purpose,
we implement the CDM in a non-linear inversion scheme based on
the genetic algorithm (GA; Haupt & Haupt 2004). The objective
function that is minimized in the inversion is the L1-norm of the
model residuals. We use the reciprocal of the observation variances
as the observation weights in the inversion. Due to a better data
quality and coherence, the standard deviation of the ascending data
is on average half the standard deviation of the descending data.
Therefore, the influence of the ascending data on the modelling
outcomes is four times greater than the influence of the descending
data. In addition to the unknown CDM parameters in the inversion,
we also account for two more parameters, which represent the phase

biases of the ascending and descending interferograms. We intro-
duce these biases to the simulated ascending and descending LOS
displacements as independent constant shifts. Consequently, these
biases in the interferograms, which may exist due to atmospheric
noise, unwrapping errors or local site effects, cannot significantly
alter the modelling results. In the inversion procedure that we follow,
the solution space is chosen to be very wide initially in order to span
the likely parameter solution space and find the global minimum
residual solution. We then restrict the solution space boundaries
based on the preliminary inversion results. To estimate the uncer-
tainties associated with the parameters of the optimal solution, we
repeat the inversion 5000 times. We use a population size of Npop

= 60 chromosomes, a mutation rate of mr = 0.25 and Nitr = 55
iterations in the GA (see Haupt & Haupt 2004). The Poisson ra-
tio in the model is 0.25. We show the ascending and descending
observations and predicted displacements and residuals from the
best-fitting CDM in Fig. 9 (see also Fig. A1). The largest absolute
value of the residuals for both the ascending and descending cases
is about 1 cm. Additionally, the 1-D and 2-D marginal distributions
of the estimated CDM parameters from the inversions, and also the
geometry of the best-fitting CDM are illustrated in Fig. 10. The
marginal distributions show that, in the restricted solution space,
any trade-off between the estimated CDM parameters in the inver-
sions are fairly well controlled. The best-fitting CDM parameters
and their 95 per cent confidence bounds are summarized in Table 1.
Using the estimated CDM dimensions and opening from Table 1 in
�V = 4u(ab + ac + bc) (see Section 2.2), we estimate a potency
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Figure 10. Results from the 5000 genetic algorithm inversions of the InSAR data using the compound dislocation model (CDM). (a) The 1-D and 2-D marginal
distributions for estimated parameters of the CDM as well as the two phase bias terms (see Section 4) are shown on the diagonal and off-diagonal panels,
respectively. The black distributions represent the parameters that the CDM and point CDM have in common. The grey distributions represent the parameters
that determine the source shape and potency. Vertical red lines and black points indicate parameter values for the best-fitting CDM, respectively. The exact
numerical values of the estimated parameters and their 95 per cent confidence bounds are given in Table 1. (b) Illustration of the south-north and east-west
cross-sections and the top view of the best-fitting CDM in the local coordinate system as introduced in Fig. 9. Geodetic coordinates are provided in Table 1.
The colours and labelling of the RDs are the same as in Fig. 3.

of �̂V = −0.099 km3 for the best-fitting CDM. The 95 per cent
confidence bounds for the estimated potency are (−0.114, −0.057).
The minimum axis to maximum axis and intermediate axis to
maximum axis ratios for the best-fitting CDM are a

c = 0.171 and
b
c = 0.693, respectively.

In our second modelling attempt, we utilize the point CDM as the
source model and follow the same inversion procedure that we men-
tioned above. The predicted displacements and residuals from the

best-fitting point CDM are almost the same as those of the CDM (see
Fig. A2). The marginal distributions of the estimated point CDM
parameters from the inversions, and also the force dipoles that form
the best-fitting point CDM are depicted in Fig. 11. The correspond-
ing estimated parameters and 95 per cent confidence bounds are
summarized in Table 2. We use the estimated potencies for the indi-
vidual point dislocations in �V = �VA + �VB + �VC and calculate
the total point CDM potency of �̂V = −0.091 km3 with (−0.176,
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Table 1. The parameter values and 95 per cent confidence bounds of the best-fitting CDM associated with the 2015 Calbuco eruption. The λ0 and φ0

are the geodetic longitude and latitude of the CDM centroid, respectively, and d is the depth to the CDM centroid from the free surface in the model.
The ωX, ωY and ωZ are the angles of rotation about the X, Y and Z axes, respectively. The a, b and c are the semi-axes of the CDM that, before applying
the rotations, align with the X, Y and Z axes, respectively. The biasasc and biasdsc are the ascending and descending bias terms. The coordinates of the
best-fitting CDM centroid in the local coordinate system in Fig. 9 are (0.263, −0.161) km. The 95 per cent confidence bounds for these local coordinates
from the inversions are (−2.445, 1.337) and (−2.710, 1.070), respectively.

Parameter Value 95 per cent confidence bounds Parameter Value 95 per cent confidence bounds

λ0 (◦) −72.611 (−72.643, −72.598) a (km) 0.409 (0.200, 0.731)
φ0 (◦) −41.327 (−41.350, −41.316) b (km) 1.660 (0.936, 1.844)
d (km) 8.206 (6.557, 9.534) c (km) 2.395 (1.805, 3.305)
ωX (◦) 1.316 (−12.494, 12.669) u (m) −4.398 (−6.307, −2.591)
ωY (◦) −4.023 (−8.653, 11.631) biasasc (cm) −0.100 (−0.974, 0.340)
ωZ (◦) 159.500 (144.886, 178.928) biasdsc (cm) 1.163 (0.542, 1.698)

−0.087) as its 95 per cent confidence bounds. We also calculate
da
dc = �VC

�VA
= 0.151 and db

dc = �VC
�VB

= 0.706, where the da, db and
dc are the differential axes of the point CDM (see Section 2.2), and
da
dc and db

dc are the ratios of minor axis to major axis and intermediate
axis to major axis, respectively.

4.1 Implications of the 2015 Calbuco eruption modelling

The inversions of the 2015 Calbuco co-eruptive displacements that
we detailed in the previous section, do not rely on any a priori
information or constraints on the deformation source geometry and
mechanism. This is a major advantage, particularly because no
prior knowledge was available regarding the depth and type of the
magma source. The parameters of the best-fitting CDM in Table 1
clearly show that the deformation source is a rather thin, vertically
elongated source that may somewhat resemble a dike. From the
best-fitting CDM parameters, a characteristic ratio of 0.3 can be
estimated for the deformation source. Given this small characteristic
ratio, one can reasonably deduce that the far-field approximation
can be applied to the deformation source, implying that the point
CDM can replace the CDM in this case. We tested this by repeating
the inversion procedure using the point CDM as the source model.
As expected, the depth and potency, as well as the aspect ratios
and the surface displacement field associated with the best-fitting
point CDM, are equivalent to those of the best-fitting CDM (see
Section 4).

The potency of the largest RD of the best-fitting CDM, however,
is only 71 per cent of the total CDM potency. This result shows that
the deviation of the deformation source from a planar tensile dis-
location is significant. The large differences between the estimated
aspect ratios of the optimal CDM in Section 4 show that the defor-
mation source is also different from the McTigue (1987) and Mogi
(1958) isotropic source models. Using eq. (2), we calculated M1,
M2 and M3, which are the eigenvalues of the optimal CDM moment
tensor. The eigenvalue ratios M2/M1 = 0.559 and M3/M1 = 0.515
correspond to a point near the lower boundary of the domain of
ellipsoids in Fig. 4, again showing that the deformation source has
a lens-shaped geometry, different from a plane and substantially
different from a sphere. To check this result numerically, we per-
formed other inversions using the Mogi (1958) and Okada (1985)
models (see Appendix A). The best-fitting Mogi model is located at
4.5 km to the west and 2.9 km to the south of the volcano at a depth
of 8.3 km, and its potency is −0.058 km3. The estimated depth
is comparable to that of the best-fitting CDM in Section 4; how-
ever, the potency is approximately 41 per cent smaller. Although the
model fit to the ascending data in this case is good, the Mogi model
completely fails to model the descending data (see Fig. A4). The

centre of the best-fitting Okada (1985) model, however, is located
at 1.5 km to the east and 0.4 km to the north of the volcano at a
depth of 8.1 km. The strike and dip angles of the best-fitting Okada
(1985) model are 157◦ and 88◦, respectively. The horizontal and
along-dip dimensions of this best-fitting RD are 3.8 km and 2.7 km,
and its potency is −0.066 km3. In this case, the depth to the centre
also compares well to the CDM depth, but the potency is approx-
imately 33 per cent smaller than the best-fitting CDM potency. As
expected from the moment tensor ratios of the optimal CDM, the
Okada (1985) model performs better than the Mogi (1958) model.
However, the Okada (1985) model residuals are greater than those
of the best-fitting CDM (see Fig. A3), and given that the best-fitting
Okada (1985) model is almost vertical, the deviation of its centre
from the volcano centre cannot be realistic.

Considering the results of the 2015 Calbuco co-eruptive dis-
placement modelling in Figs 9 and A1, the CDM displacements
show a very good agreement with both sets of the ascending and
descending observations with residuals that are generally smaller
than 1 cm. The residuals may partly be due to atmospheric arte-
facts in the InSAR data. The small systematic residuals near the
summit area, however, can be related to the shallow part of the
plumbing system, which became active during the eruption. Given
the very small magnitude of the residuals, we speculate that any
contribution from other shallow processes cannot be significant.
We note that each InSAR interferogram reflects the total displace-
ments over the period of time spanned by the two master and slave
images. However, these periods for the ascending and descending
acquisitions are not the same (see Section 4). The possible differ-
ences between the temporal variations of the displacements in the
ascending and descending interferograms might be reflected in the
results as the systematic residuals. Because both ascending and de-
scending InSAR data can be well explained by a single model, we
conjecture that the deformation episode was fully covered by the
data.

5 D I S C U S S I O N

The CDM that we presented in this paper is a generalization of
the Bonafede & Ferrari (2009) dislocation model. Under the far-
field approximation, the CDM represents a pressurized ‘rectan-
gular box’ of arbitrary aspect ratios and orientation (Bonafede &
Ferrari 2009; Ferrari et al. 2015), which in some cases is equiva-
lent to the Davis (1986) point ellipsoidal cavity in a half-space (see
Fig. 4). The aspect ratios and the pressure boundary condition of the
latter case can be determined through the Eshelby (1957) theory.
However, in the near-field case, the CDM can represent finite planar
intrusions, namely, dikes and sills, and more volumetric variations

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/208/2/877/2454292 by guest on 24 April 2024



888 M. Nikkhoo et al.

Figure 11. Results from the 5000 genetic algorithm inversions of the InSAR data using the point CDM. (a) The 1-D and 2-D marginal distributions for
estimated parameters of the point CDM and the two phase bias terms (see Section 4). The grey distributions represent parameters that determine the source
potency. Vertical red lines and black circles indicate parameter values for the best-fitting point CDM. The exact numerical values of the estimated parameters
and their 95 per cent confidence bounds are given in Table 2. (b) Cross-sections and the top view of force dipoles of the best-fitting point CDM. The dipole
magnitudes are calculated from eq. (3). The orientation of each dipole shows the opening direction of a point dislocation. The colour and labelling allow for
comparison to the RDs in Figs 3 and 10. Note that the dipole with the largest magnitude corresponds to the dislocation with the largest potency, which in case
of a CDM is the RD with the largest area.

Table 2. The parameter values and 95 per cent confidence bounds of the best-fitting point CDM associated with the 2015 Calbuco eruption. The �VA,
�VB and �VC are the potencies of the point dislocations that, before applying the rotations, are normal to the X, Y and Z axes, respectively. The other
parameters are the same as the CDM (see Table 1). The coordinates of the best-fitting point CDM in the local coordinate system in Fig. 9 are (0.521,
−0.607) km. The 95 per cent confidence bounds for these local coordinates from the inversions are (−2.445, 1.337) and (−2.710, 1.070), respectively.

Parameter Value 95 per cent confidence bounds Parameter Value 95 per cent confidence bounds

λ0 (◦) −72.608 (−72.630, −72.576) �VA (km3) −0.067 (−0.124, −0.055)
φ0 (◦) −41.332 (−41.351, −41.309) �VB (km3) −0.014 (−0.040, −0.005)
d (km) 8.271 (7.732, 10.953) �VC (km3) −0.010 (−0.030, −0.007)
ωX (◦) 2.086 (−12.632, 13.110) biasasc (cm) 0.009 (−0.383, 1.087)
ωY (◦) 1.115 (−11.732, 8.229) biasdsc (cm) 1.119 (0.340, 1.808)
ωZ (◦) 160.259 (144.930, 178.616)
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thereof. In either case, given the simple configuration of the CDM
as a kinematic model (see Section 2.2), the potency associated with
the underlying deformation source can be easily estimated through
simple arithmetic operations, which utilize the CDM dimensions
and opening as well as the Lamé parameters. Central to the imple-
mentation of the CDM are the new solutions for the displacement
and stress fields of the RDs that we developed in Section 2.1.

5.1 The limitations of the CDM

Like all other analytical solutions used for volcano deformation
modelling, the CDM assumes that the Earth’s crust is an isotropic,
uniform elastic half-space. Therefore, to apply the CDM to case
studies that involve a rough topography or substantial layering
and material heterogeneity, one would need to be very care-
ful about possible contributions of these factors. Moreover, the
CDM can only represent the geometry of the deformation that
a subsurface fluid reservoir may undergo. In the absence of fur-
ther physical and geological evidences the inferred deformation
geometry does not necessarily represent the real shape of the
reservoir.

Regarding the results of the evaluation tests in the near field (see
Section 3), for pressurized cigar-shaped cavities, the CDM and the
point CDM perform alike. However, for the other cases in the near
field, the more oblate the cavities are, the better the CDM performs
over the point source models. This is very distinctive particularly
for sheet-like intrusions such as dikes and sills in the near field
(see Fig. 7). Considering the geometrical structure of the CDM in
Fig. 3, it is clear that in the vicinity of pressurized cavities, the
CDM cannot accurately simulate the stress field. In such cases and
for more detailed modelling of the displacement and stress fields
associated with the deformation sources, numerical models provide
considerably better results.

In contrast to the source potency, the pressure that a deforma-
tion source applies to the surrounding medium does not appear in
the CDM formulation. Therefore, the problems that require pres-
sure boundary conditions associated with the cavities cannot be
investigated through applying the CDM only. In such cases and for
estimating the pressure associated with deformation sources, the
CDM relies on the Eshelby (1957) solution. However, because of
this simple geometrical and mathematical structure, the CDM and
point CDM are versatile models for kinematic source modelling
purposes.

5.2 Method improvements and comparison
to earlier works

The Okada (1985, 1992) solutions for RDs in a half-space have the
limitation that the upper edge of the RDs is constrained to be parallel
to the free surface. We addressed this issue by adding the ‘plunge
angle’ to the new RD solutions, which have full rotational degrees
of freedom (see Figs 2 and 3b). Note that such an RD solution can
also be formed as a superposition of two triangular dislocations
(TDs), as detailed in Nikkhoo & Walter (2015). However, such an
approach is not only computationally more expensive but also due
to the diagonal dislocation line in its configuration, it does not allow
for calculations at the centroid of the RD. The latter in particular
is an important drawback for implementing the RD solutions in
computer routines based on the boundary element method (BEM).

Another problem in the Okada (1985, 1992) solutions is the im-
perfection in dealing with the artefact singularities and numerical

instabilities along the edges and underneath and above the ver-
tices of the RDs. For the calculation points within a predefined
neighbourhood of the artefact singularities, Okada (1992) replaced
the singular and numerically instable terms by their mathematical
limits. This approximative approach, however, makes the Okada
(1992) solution scale dependent, meaning that depending on how
small the RDs in a model are or how close the calculation points
to the artefact singularities are, the accuracy of the results may be
degraded. Bradley & Segall (2012) considered this problem in a
high-resolution BEM simulation based on RDs and addressed the
instabilities along the RD edges. However, the Bradley & Segall
(2012) work does not remark on the other artefacts and instabilities
associated with the Okada (1992) solution. Following the Nikkhoo
& Walter (2015) approach, we addressed the problem of the artefact
singularities in the RD solutions in both full-space and half-space
(Fig. 1).

Bonafede & Ferrari (2009) showed the analogy between the Mogi
model and a dislocation model composed of three mutually orthog-
onal square tensile dislocations. They interpreted the dislocation
model as a pressurized box in the far field and detailed its implica-
tions in the internal and external volume changes associated with a
magma chamber. A generalization of the Bonafede & Ferrari (2009)
model in its primary form that is based on the Okada (1985, 1992)
solutions could only simulate pressurized horizontal and vertical
‘boxes’. This is because of the geometrical limitation of the Okada
(1985, 1992) RD solutions. Thanks to the new RD solutions that we
discussed above, the CDM can take any arbitrary orientation in the
space.

Ferrari et al. (2015) developed a numerical model for pressur-
ized rectangular ‘boxes’ by using the Okada (1992) solution in a
BEM scheme. Each side of the rectangular box in this model can
be composed of any number of RDs. A uniform traction bound-
ary condition is fulfilled at the centroid of the RDs that form the
box. This numerical model is a good approximation of rectangu-
lar boxes in both the far field and near field. The moment tensor
representation of the Ferrari et al. (2015) model and the CDM are
identical, and their corresponding eigenvalue ratios cover the same
area in the moment tensor spectrum (see Fig. 4). Nevertheless,
due to the same geometrical limitation in the Okada (1992) RD
solution, the Ferrari et al. (2015) model can only simulate pressur-
ized horizontal and vertical rectangular ‘boxes’. Clearly, this issue
can be addressed by using the RD solutions that we developed in
Section 2.1.

Under the far-field approximation, a second-order moment ten-
sor that corresponds to a system of force couples located at a point
can represent generalized point sources, including uniformly pres-
surized cavities (Aki & Richards 2002). Although the inversion of
geodetic data sets for the location and components of a moment
tensor does not require any a priori information about the geometry
of the deformation source, the interpretation of the source geometry
and mechanism through the inferred moment tensor is not unique
(Trasatti et al. 2009).

The point CDM, as a special case of a moment tensor (see Sec-
tions 1 and 3.1), can only represent volumetric changes due to
expansion or contraction in all directions in space. This is be-
cause in the point CDM formulation, potencies of the point dis-
locations that form the point CDM are constrained to have the
same sign. As a result, the point CDM does not cover the whole
domain of universal moment tensors as illustrated in Fig. 4. In-
cluding arbitrary positive and negative potencies for the point dis-
locations in the point CDM formulation allows for modelling of
sources that randomly expand or contract in any of the three main
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Figure 12. Comparison of the CDM and the Bonaccorso & Davis (1999) pipe models. In both cases, the conduit is a vertical cylinder with a height of 1 km,
a radius of 0.1 km and a centroid depth of 1.5 km. The horizontal and vertical surface displacements of the closed pipe model (left) and the open pipe model
(right) are normalized by the maximum vertical displacement and maximum horizontal displacement, respectively. The solid and dashed lines represent the
pipe and the CDM, respectively.

directions. However, in the present paper we do not consider this
case.

Based on the moment tensor inversion concept, Davis (1986) de-
veloped a multi-stage inversion scheme for estimating the unknown
parameters of a generalized point ellipsoidal cavity in the far field.
After inverting the surface displacements for the components of
a generic moment tensor, Davis (1986) estimated the source pa-
rameters by using the moment tensor eigenvalues and eigenvectors
as well as the Eshelby (1957) tensor. However, the estimated mo-
ment tensor in the first step of the Davis (1986) method might not
represent a pressurized ellipsoidal cavity (Trasatti et al. 2009). Con-
sequently, for some cases, the Davis (1986) inversion scheme does
not converge to an optimal solution. As another disadvantage, the
Davis (1986) method, because of its special multi-stage inversion
scheme, cannot be implemented in computer codes that use forward-
model-based heuristic search algorithms, such as genetic algorithm
(GA) or Markov chain Monte Carlo (MCMC) methods. These prob-
lems have kept the Davis (1986) generalized point ellipsoidal cavity
model from replacing its isotropic counterpart, that is, the Mogi
model. Considering the details in Section 2.2, it is clear that these
issues do not apply to the CDM. Using the relationship between
the point CDM and point ellipsoidal cavity in Section 3, one can
easily perform the forward modelling of the point ellipsoidal cavity.
In this way, the convergence issue can be avoided. The point CDM
covers the entire domain of pressurized cavities in the far field (see
Fig. 4), while its application in practice is as convenient as the Mogi
model. The latter is because the point CDM does not rely on the
Eshelby (1957) method for calculating the displacement and stress
fields and the source volume change. Moreover, similar to other
dislocation models, the point CDM directly allows for the forward
model calculations, and it is straightforward to integrate this source
model in various inversion routines. Therefore, the point CDM is an
appropriate alternative for generalized point-source cavity models
in the far field.

In addition to the planar and ellipsoidal deformation sources,
the CDM can also be used to represent other source geometries.
Bonaccorso & Davis (1999) presented approximate analytical mod-
els for closed and open vertical volcanic conduits or pipes. The
closed pipe model is the limiting case of a pressurized prolate el-

lipsoid with a negligible short axis. The open pipe model is the
limiting case of a tensile cylindrical dislocation with a negligible
radius. Both models are effectively uniform distributions of mo-
ment tensors along their vertical axis. The moment tensors in the
closed pipe model generate lateral and upward pressure, but in the
open pipe model, they only exert lateral pressure to the surrounding
medium. A narrow vertical CDM has a similar configuration to the
open pipe model. However, the CDM generally cannot produce the
same amount of upward push that exists in the closed pipe model.
The characteristic ratio of the closed pipe in Fig. 12 is 0.5, but the
CDM approximation is not perfect. Therefore, the CDM is not an
ideal substitute for the closed pipe model, except for considerably
smaller characteristic ratios, which may not be realistic. However,
the limiting case of a very narrow CDM, which coincides with the
pipe’s vertical axis, can perfectly simulate the open pipe model (see
Fig. 12). Moreover, the CDM in this case can be applied to more
general non-vertical conduit models with a non-circular base.

In the near field, the finite size of a deformation source must
be included in the source model, and rather than a point-source
model, a finite source or a multipole point-source model should be
used (Davis 1986). In fact, the explicit equations in the Eshelby
(1957) theory first showed that the displacement field of a pres-
surized ellipsoidal cavity in a full-space is exactly equivalent to
that of a uniform distribution of three orthogonal force dipoles in-
side the ellipsoid (Segall 2010). The full-space Green’s functions
(Kelvin 1848) associated with these force dipoles can be replaced
by the half-space Green’s functions (Mindlin 1936) to achieve an
approximate solution in the half-space (Segall 2010). These latter
points better explain the performance of the CDM in modelling
the finite cavities in the near field that we discussed in Section 3.2.
Each of the RDs that form the CDM has a uniform distribution of
orthogonal force dipoles with a moment tensor proportional to those
in eq. (1). Therefore, in contrast to point-source models, the CDM
can represent a portion of the uniform distribution of some force
dipoles in a cavity. This property of the CDM can generally improve
the performance of the CDM compared to the point-source models
(see Fig. 6). However, this improvement for planar intrusions and
thin oblate cavities in the near field can be significant (see Fig. 7).
Clearly, when the length of one of the CDM edges tends to zero, the
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CDM will be reduced to a single RD (see Fig. 3). Therefore, simi-
lar to finite dislocation models that in many cases are good source
models for dikes and sills (Davis 1983; Segall 2010), the CDM can
also adequately model the planar intrusions in the near field.

6 C O N C LU S I O N S

In this paper, we developed analytical artefact-free solutions for RDs
in the full-space and half-space. These RD solutions possess full
rotational degrees of freedom, meaning that their upper edge is not
constrained to be parallel to the free surface. Using these RD solu-
tions, we constructed a CDM in terms of three mutually orthogonal
tensile RDs. Under the far-field approximation, that is, for small
source dimension to depth ratios, the CDM can represent any tri-
axial ellipsoidal or planar sources. The point CDM is a generalized
point source that covers a wider spectrum of moment tensors com-
pared to the Davis (1986) point ellipsoidal cavity. In the near field,
however, the CDM can simulate planar intrusions, namely, dikes
and sills, as well as thin oblate ellipsoidal sources. The potency of
the CDM is the sum of the potencies of the individual RDs that
it comprises. Regardless of the shape of the deformation sources,
their potency can be uniquely determined by using the CDM.

The convenience of integrating the CDM and point CDM in
various optimization schemes compares to the Mogi model as the
simplest analytical point-source model. Therefore, the CDM can be
used as a first model for rapid co-eruptive displacement modelling.
This is particularly of great relevance for early warning and rapid
response systems, which shortly after or during a crisis require the
volcanic source parameters without any preliminary information on
the shape and depth of the source. As the first option in these cases,
using the point CDM can provide an even higher performance. If
this model could not succeed in simulating the ground deformation,
it implies that most probably a finite source in the near field is
causing the deformation. As the second option, the CDM can then
be used.

We applied the CDM to the 2015 Calbuco co-eruptive ground
deformation observed by the Sentinel-1A InSAR satellite. The
inferred deformation source is a vertically extended lens-shaped
magma body at a depth of 8.2 km. The estimated potency of the
source is −0.1 km3. We showed that applying the isotropic Mogi
(1958) model or the Okada (1985) model to this case study produces
erroneous estimations of the deformation source parameters.

We provide the 2015 Calbuco co-eruptive subsampled InSAR
data. The MATLAB functions that accompany this paper allow for
easy calculations using the new RD solutions, as well as the CDM
and the point CDM.
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A P P E N D I X A : C O M PA R I S O N
O F R E S U LT S F RO M I N V E R S I O N S
O F T H E 2 0 1 5 C A L B U C O C O - E RU P T I V E
D I S P L A C E M E N T S U S I N G
VA R I O U S S O U RC E M O D E L S

The Mogi (1958) and Okada (1985) models are the most well-known
and widely used analytical models in volcano deformation studies.
Due to the simplicity of the mathematical formulation of the Mogi
(1958) model in particular, using it in practice is very convenient.
However, as also shown by Davis (1986), the application of the
Mogi model may result in large errors in some of the estimated
source parameters. To determine how this is relevant in the 2015

Calbuco co-eruptive deformation, in addition to the CDM and point
CDM, we also perform separate inversions using the Mogi model
and Okada (1985) model, respectively. In the following figures, we
show the subsampled InSAR data that we used in the inversions.
We use the local XY coordinate system that we introduced in Fig. 9.
We show the results associated with the CDM in Fig. A1. In this
case study, the CDM results are almost equivalent to those of the
point CDM that are shown in Fig. A2. We also show the results
of the modelling for the Okada (1985) model and the Mogi model
in Figs A3 and A4, respectively. In this case, the Mogi model can
simulate the ascending data very well, but it completely fails to sim-
ulate the descending data (see Fig. A4). The inferred deformation
source derived using the Mogi model is 5.4 km off-centred (see Sec-
tion 4.1). The deviation of the best-fitting Okada (1985) model from
the Calbuco centre is 1.5 km. The Okada (1985) model simulates
the general pattern of the ascending and descending displacements
better than the Mogi model. Nevertheless, neither of these two mod-
els performs as well as the CDM and point CDM. This can be better
seen in the root mean square error (RMSE) values of the residuals
of the four models in Table A1. It should be noted that the Mogi
model can be considered as the special case of a CDM that has
three equal axes. Also, the Okada (1985) model is the special case
of a CDM that has only two non-zero axes. Therefore, in general
the CDM performs better than the Mogi (1958) and Okada (1985)
models and in special cases performs the same as these two models.

Figure A1. The results of the CDM for the 2015 Calbuco eruption. The first row shows the subsampled InSAR observations, the CDM displacements and the
residuals for the ascending acquisition. The second row corresponds to the descending interferogram. The summit of Calbuco is located on the origin of the
coordinate system. The stars in the residual panels indicate the centroid of the best fitting CDM.
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Figure A2. The results of the point CDM for the 2015 Calbuco eruption. The first row shows the subsampled InSAR observations, the point CDM displacements
and the residuals for the ascending acquisition. The second row corresponds to the descending interferogram. The summit of Calbuco is located on the origin
of the coordinate system. The stars in the residual panels indicate the centroid of the best fitting point CDM.

Figure A3. The results of the Okada (1985) model for the 2015 Calbuco eruption. The first row shows the subsampled InSAR observations, the Okada (1985)
model displacements and the residuals for the ascending acquisition. The second row corresponds to the descending interferogram. The summit of Calbuco is
located on the origin of the coordinate system. The stars in the residual panels indicate the centroid of the best-fitting Okada (1985) model.
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Figure A4. The results of the Mogi model for the 2015 Calbuco eruption. The first row shows the subsampled InSAR observations, the Mogi model
displacements and the residuals for the ascending acquisition. The second row corresponds to the descending interferogram. The summit of Calbuco is located
on the origin of the coordinate system. The stars in the residual panels indicate the location of the best-fitting Mogi model.

Table A1. Quantitative comparison of the residuals of the CDM, the point CDM, the Okada (1985) model and the Mogi model for the 2015 Calbuco
eruption. The min, max and RMSE in the table stand for the minimum residual, maximum residual and the root mean square error of the residuals,
respectively. All the numerical values are given in (mm).

Asc. data Desc. data Asc. & Desc. data
Model Min Max RMSE Min Max RMSE Min Max RMSE

CDM −9.8 9.2 3.5 −12.5 12.4 5.2 −12.5 12.4 3.9
Point CDM −10.9 8.7 3.6 −11.9 13.3 5.4 −11.9 13.3 4.0
Okada (1985) −19.2 10.9 4.6 −15.4 12.9 4.4 −19.2 12.9 4.6
Mogi (1958) −13.2 18.6 5.5 −14.2 53.4 15.2 −14.2 53.4 8.2

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/208/2/877/2454292 by guest on 24 April 2024


