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2Università di Torino, 10125 Torino, Italy
3Univ. Grenoble Alpes, ISTerre, 38000 Grenoble, France

Accepted 2019 June 12. Received 2019 May 7; in original form 2018 October 11

S U M M A R Y
The analysis of surface wave dispersion curves (DCs) is widely used for near-surface S-wave
velocity (VS) reconstruction. However, a comprehensive characterization of the near-surface
requires also the estimation of P-wave velocity (VP). We focus on the estimation of both
VS and VP models from surface waves using a direct data transform approach. We estimate
a relationship between the wavelength of the fundamental mode of surface waves and the
investigation depth and we use it to directly transform the DCs into VS and VP models in
laterally varying sites. We apply the workflow to a real data set acquired on a known test site.
The accuracy of such reconstruction is validated by a waveform comparison between field
data and synthetic data obtained by performing elastic numerical simulations on the estimated
VP and VS models. The uncertainties on the estimated velocity models are also computed.
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I N T RO D U C T I O N

Analysis of surface wave dispersion-curve (DC) is a well-
established technique to obtain local near-surface S-wave velocity
(VS) models for stratified media (Socco et al. 2010). These local
vertical stratified models could be used for building 2-D and 3-D
velocity models through lateral interpolation. There are several es-
tablished approaches available in literature to obtain DCs from the
data (McMechan & Yedlin 1981; Bergamo et al. 2012). The DC in-
version is an ill-posed problem and different approaches have been
investigated with varying degrees of complexity, from deterministic
to stochastic strategies for better assessing the non-uniqueness of
this reconstruction problem (e.g. Xia et al. 1999; Beaty et al. 2002;
Socco & Boiero 2008; Bodin et al. 2012).

More important is the local laterally invariant assumption of
the shallow structures, which can be a limitation when significant
velocity variations and complex topography are considered. This
has been the motivation for considering the full-waveform inversion
(FWI) which potentially alleviates this lateral invariance restriction
(Brossier et al. 2009; Masoni et al. 2014; Pérez Solano et al. 2014;
Yuan et al. 2015). However, this nonlinear imaging technique needs
an initial guess of the medium properties. In spite of many attempts
to start FWI from crude initial models (Warner & Guasch 2016;
van Leeuwen & Herrmann 2013) in scheme of acoustic FWI crustal
targets, workflows as traveltime tomography of first-arrival and/or
reflected P waves are current working strategies when missing low-
frequency data. For near-surface experiments, aside cycle-skipping
problems of FWI induced by the selected initial model (Virieux &
Operto 2009), separation of phases, needed for picking times/phases

(to be used by tomography methods), is very challenging. Moreover,
for near-surface targets, surface waves have high amplitudes and can
be easily recorded in noisy environments. Their use in building the
initial model will hence be preferable because the picking of first-
arrival P times or the picking of reflections could be difficult (Badji
et al. 2016).

Could one use such reconstructed models from the DC analysis
of surface waves as initial models for FWI? This is the question
we want to answer, and this work proposes a strategy for the recon-
struction of both VS and P-wave velocity (VP) from surface waves.
The DC exhibits strong sensitivity to VS while VP has a weaker
effect and the density an even smaller influence on the DC (Foti &
Strobbia 2002). However, recently, Socco et al. (2017) have shown
that DCs have higher sensitivity to time-average S-wave velocity
(VSZ) than to layered velocity models. Consequently, a method to
directly transform DCs into VSZ models avoiding the inversion step
has been proposed (Socco et al. 2017). The method requires a sin-
gle specified VSZ reference profile along the seismic line together
with its associated DC in order to obtain a relationship between
the DC wavelength and the investigation depth (the so-called W/D
relationship). The W/D relationship is obtained by searching the
wavelength at which the surface-wave phase velocity is equal to
the VSZ at a certain depth. The wavelength–depth pairs provide a
relationship that represents the skin depth of the fundamental mode
and can be applied to all the DCs in the data set to directly transform
them into local VSZ profiles. Socco et al. (2017) applied the W/D
method to two sets of synthetic models with different level of com-
plexity and they estimated the VSZs with less than 5 per cent error
compared to the true VSZs. In addition, they applied the method
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to two experimental data sets and, similarly, less than 5 per cent
error was encountered by comparing the results with benchmarks.
Socco & Comina (2017) showed that the W/D relationship is highly
sensitive to the Poisson ratio and they exploited this sensitivity to
estimate also the time-average VP (VPZ) profile, using only the sur-
face wave data. Socco & Comina (2017) performed three synthetic
tests (on models with different level of complexity). The estimated
VPZ showed an error of less than 4 per cent with respect to the true
values. In addition, they applied the method to two experimental
data sets and in both cases the difference of the estimations with the
benchmarks was within 10 per cent.

This approach can be extremely efficient but, in case of strong
lateral variations, Khosro Anjom et al. (2017) have shown that a
further step is needed. Using a single reference model (a single
W/D relationship) for the whole data set can lead to incorrect ve-
locity profiles in some places of the medium where strong lateral
variations occur. As proposed by Khosro Anjom et al. (2017), a
hierarchical clustering algorithm allows to group similar DCs into
consistent clusters for which the same W/D relationship can be
used. Accordingly, instead of using a single W/D relationship for
the whole seismic line, they proposed to use a reference W/D rela-
tionship for each DC cluster.

The time-average velocities estimated with this approach can be
directly used in many applications such as seismic hazard (VS30) or
static corrections for seismic reflection processing. However, wave
propagation modelling (as required for FWI, e.g.) requires interval
velocities which need to be deduced from time-average velocities.

In this paper, we make use of the above-mentioned methods to
estimate the VSZ and the VPZ in a laterally varying site and we
provide a formulation to transform the time-average velocities into
interval VS and VP models, which requires differentiation regu-
larization tools. The estimated VS and VP models can be used by
seismic modelling method to generate synthetic seismograms. We
use a spectral element-based method (Trinh et al. 2019) to check
whether the synthetic data are immune to cycle-skipping issues
when compared with the real data. We also propagate the experi-
mental uncertainties of the DCs through the process and estimate
the uncertainties on the final models. In the following, as for many
methods of surface wave analysis, we assume that the DCs are
related to the fundamental mode of Rayleigh waves and they are
representative of a local vertical profile of the subsurface.

M E T H O D

Let us assume that a set of DCs has been obtained along a seismic
line (2-D geometry) or over an acquisition area (3-D geometry).
These DCs will be used for constructing 2-D or 3-D velocity models,
following the workflow described in Fig. 1.

DCs are analysed using a specific algorithm for grouping them
into clusters of rather homogeneous sets (a). For each cluster, the
following different analyses are performed: A reference DC is se-
lected and inverted with a Monte Carlo Inversion (MCI) algorithm
to obtain VS and VSZ models as reference models (b). This es-
timated VSZ and the corresponding DC are used to compute a
reference W/D relationship for this cluster (c). The reference W/D
relationship is used to transform all DCs of this cluster into VSZ
models (d). An apparent Poisson ratio for this cluster is estimated
using the reference W/D relationship and the reference VS model
(e). Using the apparent Poisson ratio of this cluster, each VSZ pro-
file is transformed into a VPZ profile (f). All the reconstructed VSZ
and VPZ profiles are then transformed into interval VS and VP

profiles using specific rules of differentiation (g). Finally, laterally
varying VS and VP 2-D or 3-D models can be interpolated from all
these interval VS and VP profiles. These models can be used for
computing seismograms which can be compared with the recorded
ones. Let us now consider each step of this workflow for a more
detailed description.

Dispersion curves clustering

Given a data set of DCs, a hierarchical clustering algorithm (Rokach
& Maimon 2005) is applied to divide the data set into homogeneous
sets of DCs (Khosro Anjom et al. 2017). Hierarchical clustering
algorithms do not require prior information, regarding, for example,
possible lateral velocity variations. Moreover, the number of clusters
does not need to be defined and they are obtained from the algorithm.
The distinction between the clusters is based on the dissimilarity
between DCs, which is obtained by defining appropriate metrics
and linkage criterion. Euclidean distance between two DCs is used
as metrics and is expressed as

D
(
vi , v j

)
=

√
(vi 1 − v j 1)2 + (vi 2 − v j 2)2 + . . . + (vi p − v j p)2 , (1)

where the quantity D is the Euclidian distance and where frequency-
dependent phase velocities {vi } and {v j } are vectors of the two DCs.
The linkage criterion is the distance between clusters, computed as
the average distance between each component of one cluster to each
component of the other clusters. The average distance between clus-
ters allows all elements of each DC to contribute in the clustering
process. The outcome of the hierarchical clustering is a dendrogram
that is used to identify the clusters obtained for the DC set.

Reference models and W/D estimation

a reference VS and a reference VSZ models and their correspond-
ing DC are needed for each cluster in the data transform process.
For each cluster, the DC with the broadest frequency band is cho-
sen as the reference DC. It is inverted using an MCI algorithm
(Socco & Boiero 2008), to estimate a reference 1-D VSZ model.
A wide model space is defined by selecting ranges for each model
parameters (VS, thicknesses and the Poisson ratio for each layer). A
large population of random models is generated, and their relevant
fundamental modes are computed using the Haskell and Thomp-
son forward modelling (Haskell 1953; Thomson 1950; Maraschini
2008). The MCI is optimized by applying scale properties between
parameters (see Socco & Boiero 2008 for details). The final result
of the MCI is a set of accepted VS models, according to the im-
posed level of confidence in a statistical one-tailed Fisher test. The
accepted models are then transformed into their corresponding VSZ
models by the equation

VSZ (z) =
∑

n hi∑
n

hi
/
V Si

, (2)

where n is the number of layers down to depth z while the thickness
of the ith layer is denoted by hi and its S-wave velocity by V Si .
The reference VS and VSZ models are computed by averaging the
accepted values at each depth. A W/D relationship is then computed,
following the method of Socco et al. (2017).
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Figure 1. Complete workflow of the direct transformation of DCs of surface wave data into VS and VP models. The DCs are grouped into clusters. For each
cluster, one inversion for a reference DC is performed leading to reference VS and VSZ profiles. A W/D relationship is deduced as well as a reference apparent
Poisson ratio profile. VSZ and VPZ models are estimated over each cluster and they are used to construct interval VS and VP models. Through interpolation,
2-D or 3-D models are obtained, and they could be used as input for 2-D or 3-D wave propagation modelling.

VSZ estimation over a cluster

Socco et al. (2017) showed that given a homogenous set of DCs
(where no strong lateral variations exist), the reference W/D rela-
tionship can be valid for all DCs to obtain the local VSZs at the
position of each DC. The clustering mimics somehow the same
configuration as for a stratified medium and the reference W/D re-
lationship for this cluster can be used for all DCs of this cluster to
retrieve the associated VSZ profiles.

Reference apparent Poisson ratio and VPZ estimation

Through synthetic and real examples, Socco & Comina (2017)
proved that the W/D relationship is sensitive to apparent Poisson
ratio υz given at the depth z by the relation

υz = 1

2

(
VPZ
VSZ

)2 − 2(
VPZ
VSZ

)2 − 1
. (3)

In order to find the apparent Poisson ratio, a set of DCs is computed
using the reference VS model and different values of the Poisson
ratio, which are the same for all the layers of each synthetic DC.
Using the reference VSZ and the synthetic DCs, we compute a
set of W/D relationships representing different Poisson ratios. By
comparing the experimental W/D relationship and the synthetic
W/D relationships, we obtain an apparent Poisson ratio for the
reference VSZ model of this cluster. Assuming negligible variation
of the apparent Poisson ratio inside each cluster, we extend the
reference apparent Poisson ratio to all VSZs and we obtain the
VPZs with the equation

VPZ = VSZ

√
2 (υz − 1)

2υz − 1
, (4)

corresponding to the position of each DC. The result of such analysis
is hence a set of VSZ and VPZ models: more details in Socco &
Comina (2017).
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Figure 2. (a) Noise-free VSZ (True) in black and noisy VSZ in blue. (b) Estimated VS profiles using numerical stepwise finite differentiation (noisy-fin, green)
and regularized differentiation (noisy-reg, red) compared to the true profile. (c) Estimated d(VSZ)/dt using numerical stepwise finite differentiation (noisy-fin,
green) and regularized differentiation (noisy-reg, red) compared to the true derivative.

Estimation of interval velocities from time-average velocity
profiles

Eq. (2) expresses the time-average velocity profile. We develop
a stable approach for inverting this equation to transform time-
average velocities into interval velocities and apply it to the VSZ
and VPZ models relevant to all the DCs. Let us define the resident
time �ti inside the ith interval. Considering hi = vi �ti , eq. (2) can
be written as

Vz =
∑n

i = 1(vi�ti )∑n
i �ti

, (5)

and, by moving to a continuous depth description, the time-average
velocity can be expressed under the integral form as

Vz = ∫t
0 vt dt

∫t
0 dt

= ∫t
0 vt dt

t
, (6)

where the quantity vt is the interval velocity defined within each in-
terval dt . In this paper, by interval velocity we mean the continuous
local velocity profile and it should not be confused with the layered
velocity. Eq. (6) is simply the continuous analogue of the discrete
eq. (2): an illustration why the quantity Vz is called time-average ve-
locity. This relation is unique between the time and depth variables.
The differentiation of the eq. (6) gives vt dt = d(Vz .t) from which
we can deduce the interval velocity (vt ) through the expression:

vt = Vz + t
dVz

dt
. (7)

Based on eq. (7), the interval velocity vt consists of a time-
average velocity term and a derivative term. For all VSZ and VPZ

models that sample the lateral variations along the seismic line,
the difference dVz can be discretized at each depth and divided by
the stepwise �t to get a numerical value of the derivative; however,
small perturbations in the time-average velocity lead to large relative
changes in the derivative estimation. Hence, a different approach
must be applied for the derivative calculation, especially for noisy
data.

Many methods are available in literature for such derivative es-
timation of noisy data, such as least-squares polynomial approxi-
mation, Tikhonov regularization and total-variation regularization
(Knowles & Renka 2014). The estimated VSZ and VPZ are noisy,
because they are directly obtained through data transform. On the
other hand, abrupt vertical variations in the velocity profile produce
discontinuities in the derivative trend. So, the method to calculate
the derivative term should intrinsically allow discontinuities in the
derivative estimation to avoid too strong smoothing. Total variation
regularization seems to be a good option. Total variation regular-
ization was initially introduced by Rudin et al. (1992) to remove
the noise from images without smearing the edges. In this method,
given a discrete set of data points Vz , the first derivative ( dVz

dt ) is
approximated by the solution u of the minimization of the function
given by

F (u) = α ∫T
0

∣∣u(t)′
∣∣ dt + 1

2
∫T

0 |Au (t) − Vz (t) |2dt, (8)

where the equation Au (t) =
t
∫
0

u(τ )dτ defines the smoothed Vz

and the regularization parameter is denoted by the symbol α. The
term |Au(t) − Vz(t)|2 minimizes the distance between the smoothed
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Figure 3. Map (a) and cross-section (b) of the acquisition outline over the known sand body. In (b), the position of the estimated DCs (numbers) is also
reported.

function Au(t) and the input function Vz(t). On the other hand,
T
∫
0
|u(t)′|dt represents the total variation of the first derivative u.

The regularization parameter controls the balance between the two
terms. The numerical implementation in Matlab to be used in our
application is provided by Chartrand (2011).

Let us consider a synthetic example for the illustration of the
noise onto the adopted derivative solution. In Fig. 2 we show the ap-
plication of eqs (7) and (8) to a noise-free case and to a noisy case. In
Fig. 2(a) the noisy VSZ (noise level ±2 m s−1) is plotted in blue and
the noise-free VSZ is represented in black. The difference between
these two VSZ is almost unnotable given the low noise level. In
Fig. 2(c), the derivative term ( dVz

dt ) of noisy data is evaluated either
by finite differentiation in green or by the total variation technique of
eq. (8) in red, while Fig. 2(b) provides the wanted interval velocity:
a minor amount of noise, present in the time-average velocity, has a
great impact on the interval velocity estimation. The total variation
regularization provides acceptable reconstruction of the true model
(shown in red). This procedure is applied to all estimated VSZ and
VPZ models from the seismic experiment to obtain interval VS and
VP. These interval velocity profiles could be laterally interpolated
for deducing 2-D or 3-D velocity models which can be used for
waveform modelling.

The synthetic and real examples previously carried out (Socco
& Comina 2017; Socco et al. 2017) have shown the validity of
the workflow up to the estimation of the time-average VS and VP
models. Teodor et al. (2018) successfully applied a similar workflow

to a synthetic 3-D model to estimate the interval VS and VP. We
illustrate the procedure of building interval velocity models on a
real data set from a controlled test site which has the advantage of
showing a real example of a known model. Reconstructed velocity
models are then used for computing synthetic waveforms which are
compared with the recorded ones for assessing the potential use of
these models as viable initial models for FWI.

T E S T S I T E

The field data are acquired at CNR (National Research Council)
headquarter in Turin, Italy (Fig. 3). This test site contains an ar-
tificial loose sand body embedded in more compacted geological
formations (i.e. sand and gravel). The sand body occupies an area
of 5 m × 5 m and the sand volume extends to 2.5 m depth.

The acquisition is carried out along a line crossing the sand body,
using an 8 kg hammer source in 11 shot positions and 72 vertical
4.5 Hz geophones, evenly spaced every 0.3 m. The acquisition
layout is reported in Fig. 3(a). For each source position 8–10 shots
are stacked depending on the signal-to-noise ratio. In addition, four
cross-line acquisitions are carried out using the same hammer source
shooting externally to 18 vertical 4.5 Hz geophones, 0.5 m spaced,
for each line. The cross-line acquisitions are carried out in the
framework of future 3-D analyses and are here used to increase the
density of the DCs along the main (2-D) seismic line. More details
about the seismic acquisition can be found in Teodor et al. (2017).
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R E S U LT S

The DCs are retrieved along the seismic line in different positions
using a moving Gaussian window and the f–k processing (Bergamo
et al. 2012; Fig. 3b). For each position of the window the spectra
from the four sources external to the line are stacked to improve
the signal-to-noise ratio before extracting the DC. The standard
deviation of the adopted Gaussian windows is defined as

σ = N

2α
, (9)

where σ is standard deviation of the Gaussian window in terms of
number of receivers from the centre of the window, N is the number
of receivers minus one and α is a parameter related to the width of
the Gaussian window. The value of the parameter α is determined
based on the minimum detectable wavenumber required in the f–k
domain. Having 72 receivers for the experimental data CNR along
the 2-D seismic line, we use an α number of 6 which corresponds to
standard deviation of 1.8 m and wavenumber resolution of 0.3 rad.
We acquire nine DCs along the seismic line each 1.8 m apart. In
addition, to increase the density of the DCs along the seismic 2-
D line, we compute four DCs using the cross-line acquisitions.

Figure 4. (a) EstimatedDCs in frequency, indicated with different colours based on clusters. (b) Estimated DCs in wavelength, indicated with different colours
based on the clusters. (c) The dendrogram obtained through hierarchical clustering.

Figure 5. The resultsof the MCI for the reference model outside the sand body. (a) The experimental DC with uncertainties and the accepted DCs, (b) the
accepted VSZs and the average VSZ used to retrieve the W/D and (c) the W/D of the accepted models with the horizontal and vertical error bars representing
the standard deviation of depth and wavelength, respectively.
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Figure 6. The results of the MCI for the reference model inside the sand body. (a) The experimental DC with uncertainties and the accepted DCs, (b) the
accepted VSZs and the average VSZ used to retrieve the W/D and (c) the W/D of the accepted models with the horizontal and vertical error bars representing
the standard deviation of depth and wavelength, respectively.

Figure 7. Transformation of the estimated VSZ from DC number 1 of CNR
to interval VS with (reg) and without (diff) regularization.

The retrieved DCs (represented in terms of phase velocity versus
frequency in Fig. 4a) are continuous and smooth and since the
expected velocity model at the site does not contain strong velocity
contrast or velocity inversions, we assume that the DCs correspond
to the fundamental mode of Rayleigh wave propagation without any
contamination by higher modes.

The extracted DCs are analysed by the hierarchical clustering
strategy (Fig. 4c). Two main clusters are detected: six profiles for
the blue cluster and five profiles for the green cluster. Two DCs are
identified as outliers by the clustering process (indicated in red), they
are therefore excluded from the workflow. It can be observed that the
two selected clusters correspond to DCs located inside and outside
the sand body and that the outliers are located at the sand body
boundaries. The clustering is, therefore, effective in identifying
positions over the survey line where sharp lateral variations occur.
The same DCs in terms of wavelength are shown in Fig. 4(b) where
the colour scale indicates the clusters and outliers corresponding to
the dendrogram in Fig. 4(c).

A reference DC is chosen in each cluster based on the frequency
band. The DC number 11 is selected as representative of the cluster
blue related to the medium away from the sand body and the DC
number 8 is chosen for the other cluster relevant to the sand body.

In Figs 5 and 6, we show the results of the MCI to estimate VSZ ref-
erence models from the two selected DCs. DCs, VSZs profiles and
W/D relationships are shown in Fig. 5 for the background medium
and in Fig. 6 for the sand body. When comparing the results shown
in Figs 5 and 6, the different velocity between loose sand and more
compact surrounding can be seen. The experimental uncertainties
associated to the DCs in Figs 5(a) and 6(a) have been determined
from a recent work of Passeri (2019), who performed a consistent
statistical analysis of DCs uncertainty on a wide data set (see the
Appendix). The synthetic DCs shown in Figs 5(a) and 6(a) are
relevant to the accepted VSZ models of Figs 5(b) and 6(b) where
the black profile shows the average VSZ of the accepted models.
Using the experimental DC and the average VSZ, the W/D rela-
tionship is deduced (Figs 5c and 6c). In Figs 5(c) and 6(c), we also
show the uncertainties associated to the reference W/D relationships
as depth standard deviation (horizontal error-bars) and wavelength
standard deviation (vertical error-bars). The uncertainties associ-
ated to the estimated W/D relationship are estimated by uncertainty
propagation analysis through the whole workflow as reported in the
Appendix.

All DCs inside each cluster are transformed into VSZ profiles
using the reference W/D relationship of the cluster. These VSZ
profiles are converted into interval VS profiles by applying eqs (7)
and (8). Fig. 7 is an illustration of the more robust estimation of
interval velocities using the derivative regularization for the DC
number 1 shown in solid grey with respect to finite differentiation
shown in dashed grey.

From the 11 DCs, 11 VS profiles are estimated. These continuous
depth-dependent VS models are linearly interpolated and a 2-D
section of the S-wave velocity is obtained. In Fig. 8(a), we show
the estimated interval VS with the sand body shape superimposed
on the continuous velocity description. The estimated VS shows
lower velocity inside the loose sand region, as expected. We use
the reference W/D relationships (Figs 5c and 6c) to transform the
DCs wavelength into depths. Being the adopted workflow a data
transform, the DCs data distribution directly reflect the vertical and
lateral resolution that can be attended in the 2-D section of the S-
wave velocity. In Fig. 8(a), we also show the DCs data distribution
in depth and along the profile (black dots). In Fig. 8(b), we show the
normalized uncertainty distribution of the estimated 2-D section of
the S-wave velocity (Fig. 8a), following the uncertainty propagation
process described in the Appendix.
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Figure 8. (a) The 2-D VS model extracted from the proposed workflow of DCs, as well as the sand body shape superimposed in black; the black dots represent
the DC data distribution along the profile. (b) The normalized uncertainty of the estimated VS in Fig. 8(a).

Figure 9. The Poisson ratio analysis ofthe W/D relationships in Figs 5 and 6. (a) Comparing the experimental and synthetic W/Ds for the reference model in
Fig. 5. (b) Comparing the experimental and synthetic W/Ds for the reference model in Fig. 6. (c) The estimated apparent Poisson ratio of the reference model in
Fig. 5 where the horizontal error bars are the standard deviations. (d) The estimated apparent Poisson ratio of the reference model in Fig. 6 where the horizontal
error bars are the standard deviations.
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Figure 10. 2-D VP models andsand body shape superimposed: (a) Estimated VP. (b) Benchmark VP from the P-wave tomography. (c) The normalized
difference between the estimation and the benchmark. (d) The normalized uncertainty of the estimated VP in (a).
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Figure 11. (a) The estimated Poisson ratio calculated from the estimated VP (Fig. 10a) and estimated VS (Fig. 8a). (b) The normalized uncertainty of the
estimated Poisson ratio.

The reference W/D relationships (Figs 5c and 6c) and the refer-
ence VS (from the MCI) of each cluster are used to estimate the
reference apparent Poisson ratio. In Figs 9(a) and (b), we show the
experimental W/D relationships along with synthetic W/D relation-
ships (each related to a constant Poisson ratio) corresponding to the
reference models in Figs 5 and 6, respectively. By comparing the ex-
perimental W/D relationships with the synthetic ones, we obtained
the apparent Poisson ratio profiles in Figs 9(c) and (d), respectively,
where the error bars show the standard deviations. The process of
obtaining these uncertainties is reported in the Appendix.

VPZ profiles are then obtained from the estimated VSZ models
by using the reference apparent Poisson ratio in each cluster. Using
eqs (7) and (8), these VPZ models are converted to interval VP and
interpolated into a 2-D VP model (called VPest) shown in Fig. 10(a).
In Fig. 10(b), VPest is compared with the VP model (called VPtom)
obtained from a P-wave traveltime tomography. At each point, the
difference ε between these two models is calculated through the
expression

ε = VPtom − VPest

VPtom
. (10)

In Fig. 10(c), we show this normalized difference ε. In most of the
regions of the 2-D section, the difference between the estimated VP
and the benchmark is less than 5 per cent. The highest differences
are registered at very shallow depths as well as at the bottom and
below the sand body. The normalized uncertainty distribution of the

estimated 2-D section of the P-wave velocity (Fig. 10a) following
the uncertainty propagation process described in the Appendix is
shown in Fig. 10(d).

The Poisson ratio is computed using the estimated VP and VS
models . In Fig. 11 we show the estimated Poisson ratio. In most
parts of the models, the estimated Poisson ratio shows values be-
tween 0.2 and 0.35 which is expected for the dry granular materials
encountered at such site. The normalized uncertainty of the esti-
mated Poisson ratio (Fig. 11a) is shown in Fig. 10(b). The process
of retrieving this uncertainty is reported in the Appendix.

F U L L - WAV E F O R M S I M U L AT I O N

Using the estimated 2-D VP and VS models, we construct a full 3-D
model, representative of the site conditions, to numerically simulate
the full-waveform propagation from the position of the sources and
store the recordings at the position of the 72 receivers along the 2-D
acquisition line. These synthetic records are then compared with
the observed (real) recordings.

Full-waveform numerical simulations are performed using a 3-D
spectral-element method (Trinh et al. 2019). To construct the 3-D
simulation domain, we extend laterally the estimated 2-D models to
a 3-D structure, by symmetrically replicating the 2-D section along
the cross-line direction ( y-direction). The extent of the sand body in
the y-direction is kept equal to the one observed in the x-direction.
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Full-waveform matching of surface waves 1883

Figure 12. (a) The vertical section view of the extended VS superimposed with the boundaries of the estimated VS before extension. (b) The map view of the
extended VS (at z = 0). (c) The vertical section view of the extended VP superimposed with the boundaries of the estimated VP before extension. (d) The map
view of the extended VP (at z = 0).

In addition, the models are extended laterally along the x-direction
and in depth, beyond the investigation limits of the method, with the
aim of avoiding boundary artefacts during numerical simulations.
The vertical extension is performed using a constant gradient, ex-
trapolating the trend of the lower portion of the estimated models.
In Figs 12(a) and (c), we show the vertical sections of the extended
VS and VP superimposed with the boundaries of the estimated VS
and VP before extension (dashed black line). In Figs 12(b) and
(d), we show the horizontal section of the 3-D models (at z = 0)
where the black line shows the position of the receivers along the
2-D seismic line.

The model parameters needed for the simulations are the esti-
mated VP and VS, density and quality factors (QP and QS). The
density is assumed constant over the 3-D space (1800 kg m−3), while
the values of QP and QS are estimated from the velocity models
according to Hauksson & Shearer (2006).

We perform the simulations considering the space and time nu-
merical dispersion criteria. In agreement with the frequency band
(10–150 Hz) and the velocity range (80–1050 m s−1), a mesh with
constant element size of 0.3 m (in the x-, y- and z-directions) is
used for honouring the wavelength sampling to avoid numerical
dispersion. This requires a choice for the minimum element size
so that at least 5 Gauss–Lobatto–Legendre nodes are present per

shortest wavelength to accurately model the elastic waves propa-
gation with the interpolation order equal to 4 implemented in the
finite-element code (code SEM46 described in Trinh et al. 2019).
We set the explicit time integration stepping to 1.4e-5 s for hon-
ouring the Courant–Friedrichs–Lewy time stability condition (i.e.
the minimum time step, related to the mesh size and the maximum
velocity of the model).

The results of the simulation together with the observed (real)
records at one shot position (in Fig. 3, the fourth shot from the left)
are shown in Fig. 13. The results (in red) of the forward modelling
show the same patterns of phases as the real data (in black), except
for small diffracted phases. In Figs 13(b) and (c), zoomed sections
(shown as black boxes in Fig. 13a) illustrate the in-phase shape of
waveforms. This suggests that the VS and VP models could be good
candidates as initial models for FWI.

As a further validation, DCs are extracted from the synthetic
data and compared with those deduced from real data (Fig. 14).
Differences between phase velocities of these DCs are always less
than 10 per cent. The two different phase velocity trends, inside and
outside the sand body, can be observed both for the real DCs and
for the ones deduced from numerical simulations.

Cross-correlation between real and synthetic data can be a fair
criterion for the goodness of the full-waveform matching when
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Figure 13. Full-waveform comparison. In black we show the traces of shot number 4 recorded on the field. In red we display the traces, for the same shot
position, obtained by running forward simulations on the 3-D estimated VP and VS models. (a) The whole recordings. (b) The zoomed view of the traces 0–17.
(c) The zoomed view of the traces 45–72.

Figure 14. Comparison between the experimental DCs and the DCs from synthetic seismograms of numerical simulations.

considering possible cycle-skipping effects (Fig. 15). In Fig. 15
we show the results of this cross-correlation. The red solid line in
Fig. 15 shows the zero-time lag. To avoid cycle-skipping in the FWI
process, the error in matching the real and synthetic data should
fall below half-the-period of the dominant frequency (Virieux &
Operto 2009). For our data, at a dominant frequency of 60 Hz,
the half-period corresponds to 8.33 ms. For the shot 4 (the source
located between the traces 18 and 19), it can be observed in Fig. 15
that the short-offset traces (0–52) show lower time-lag than half-the-
period, while long-offset traces (52–72) show a time lag higher than
8.33 ms, leading to possible cycle-skipping problems, relevant at
long offsets, for arrival times greater than 0.12 s (see Fig. 13c). The
high-frequency surface waves generated from the source are highly

affected by the low velocity of the sand body before reaching the
receivers 52–72. Slight errors in the velocity or in the size of the
sand body significantly affect the arrival time of the high-frequency
phases. These effects, related to the interaction of the wave front with
the sand body anomaly, can be mitigated by hierarchical strategies
from low-to-high frequencies and from short offsets to large offsets.
Dedicated FWI strategies should be designed for overcoming these
cycle-skipping issues.

As an illustration of such hierarchical strategy, let us mute this
portion of the recordings and consider the muted recordings as
inputs of FWI, at least for the first iterations. In Fig. 16(a), the
muted real recordings in black and the muted synthetic recording
in red are shown. In Figs 16(b) and (c), the zoomed views (again as
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Figure 15. The cross correlationof the experimental data with the synthetic ones.

black boxes in Fig. 16a) show better behaviours of wiggles for far
offsets.

The impact of the muting on the cycle-skipping is illustrated by
the cross-correlation of real and synthetic recordings in Fig. 16(a)
and plotted in Fig. 17. The cross-correlation shows an acceptable
time-lag for the whole seismogram considering the main frequency
of the recordings as 60 Hz. This will open the road for a more
systematic analysis based on frequency, offsets and multisources
acquisition for FWI high-resolution reconstruction.

D I S C U S S I O N

The lateral resolution of velocity models corresponds to the lateral
resolution of the local DCs (Fig. 8a) and depends on the processing
method used for estimating the DCs. The DCs in this work were esti-
mated by spatial Gaussian windowing of the data before computing
the f–k spectrum and picking the DCs (Bergamo et al. 2012). The
standard deviation (σ ) of the Gaussian window for a fixed number of
receivers is related to parameter α (eq. 9). The estimated DCs from
this method represent the properties of the subsurface in the posi-
tion of the Gaussian window’s centre and the lateral resolution can
be considered as 2σ (one σ at each side of the centre). Specifically,
a larger α corresponds to lower standard deviation of the Gaussian
window and therefore higher spatial resolution. The value of the pa-
rameter α is usually based on the minimum detectable wavenumber
required in the f–k domain and a trade-off exists between lateral and
spectral resolution. In this work a value of α equal to 6 was adopted,
with a resulting lateral resolution of 3.6 m. This corresponds to a
minimum detectable normalized wavenumber of 0.3 rad. However,
these values can be also tuned depending on the desired lateral res-
olution that is aimed to be obtained within the workflow. According
to Bergamo et al. (2012), the optimal distance between two neigh-
bouring DCs is twice the standard deviation. This ensures that each
DC is affected by independent portion of the subsurface. However,
here, we extracted a DC every 1.8 m ( = σ ) to increase the num-
ber of DCs and improve the lateral resolution. More dense set of

DC could be extracted by shifting the moving window with smaller
steps. Virtually the moving window could be shifted of a step equal
to receiver spacing leading to very dense set of DCs. This anyway
would not correspond to an improved lateral resolution since the
neighbouring windows would be highly overlapped to each other
replicating the same information. It is important to stress that the
lateral resolution depends on the DC extraction and on the spa-
tial sampling and not on the processing workflow which is applied
later. The presented data transform process does not introduce any
smoothing along the seismic line.

The vertical resolution of the estimated models is conversely re-
lated to the distance between experimental data points of DCs in
wavelength (Fig. 4b). To represent the vertical resolution in depth,
using the reference W/D relationships, we transformed the wave-
lengths of DCs into depth (the black dots in Fig 8a). Using a uniform
sampling in frequencies in the f–k domain and assuming higher
phase velocities at lower frequencies, the distance between DC’s
data points increases with increasing depth (Fig. 8a). This increase
leads to a lower resolution in the deeper portion of the investigated
medium. Conversely, shallow depth data points are closer to each
other which implies higher vertical resolution in the shallow por-
tion of the investigated medium. In the present case, the vertical
resolution of the obtained velocity models can be considered in the
order of 10 cm.

The velocity models extracted with the proposed approach have
also uncertainties that are related to the different steps of the work-
flow and that are specifically discussed through an uncertainty prop-
agation analysis reported in the Appendix. The results of this un-
certainty analysis for the estimated interval VS and VP (Figs 8b
and 10d) show minor and uniform uncertainties (less than 10 per
cent in most regions). The highest uncertainties (around 15 per
cent) for the interval VS and VP were recorded in some portion
inside and below the sand body area. The resulting uncertainties
are directly related to the DCs’ uncertainties and hence depend on
the data quality only. Since in this example only four source points
were used to estimate the DCs, it was not possible to estimate an
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Figure 16. Full-waveform comparisonof the muted data. In black we show the muted traces of shot number 4 recorded on the field. In red we display the traces,
for the same shot position, obtained by running forward simulations on the 3-D estimated VP and VS models and muted afterwards. (a) The whole recordings.
(b) The zoomed view of the traces 0–17. (c) The zoomed view of the traces 45–72.

Figure 17. The cross correlation of the muted experimental data with the muted synthetic ones shown in Fig. 16.
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experimental uncertainty from the data which is usually associated
with the DCs (see e.g. Xia et al. 2002; Marosi & Hiltunen 2004;
Lai et al. 2005; Socco et al. 2009). A conventional uncertainty was
assumed on the basis of a statistical study on a large number of
data sets (Passeri 2019, appendix). If a large number of shots is
acquired without stacking the records, the individual shots can be
used as element of population of measurement and uncertainties
of the DC data points can be estimated from the data (Socco et al.
2009). In general, the data quality can be improved using more pow-
erful sources to increase the signal-to-noise ratio or increasing the
density of the spatial sampling given the same seismic line length
(Socco & Strobbia 2004). Although the Poisson ratio is not a direct
output of the method, the uncertainty of the estimated Poisson ratio
is calculated to be less than 20 per cent in most parts of the model.
The highest uncertainties (more than 40 per cent) for the estimation
of the Poisson ratio were registered at shallow portions of the model.
This aspect can also be evidenced in apparent Poisson ratio estima-
tion of the reference models. The sensitivity in apparent Poisson
ratio conversely increases with depth given that constant Poisson
ratio W/D relationships diverge at large wavelengths (Figs 9a and
b) and therefore allow for a more consistent apparent Poisson ratio
estimation.

The proposed method is based on direct transformation of local
DCs. As a result, in the presence of complex topography along the
investigated area devoted attention is required in the application of
the workflow. In addition, the fundamental modes of DCs are the
inputs of the workflow and the method is not considering possible
contamination of fundamental mode curve by higher modes. In
the present case, the assumption of fundamental mode was strongly
supported by the data and by the expected smooth velocity gradient.
If higher modes are present in the data, and can be distinguished
from the fundamental one, they can be still used within the workflow
in a similar approach to the one presented here. An example of the
application of the workflow to higher mode DCs is reported in
Bamarouf et al. (2017).

C O N C LU S I O N

We have described a workflow to transform surface-wave data to
VS and VP models without any prior information and without the
need for intensive inversions. Direct transformation of DCs gath-
ered by clusters into time-average VS and time-average VP profiles
is possible using a W/D relationship specific to each cluster. These
profiles are converted into interval VS and VP profiles using total
variation regularization of needed derivatives. This specific VP es-
timation from surface waves shows, in most regions, less than 5 per
cent difference when compared to a VP tomographic model. These
profiles are interpolated into 2-D velocity models to be used for
different analysis. The clustering approach seems to be effective in
the presence of sharp lateral variations.

In the perspective of inverting the full content of seismograms
for recovering improved velocity structures, the performed full-
waveform simulation based on these estimated VS and VP shows
good agreement with the real records at short-offset ranges, while
far offsets may still require specific strategies for overcoming cycle-
skipping issues. Muting and/or filtering traces at least at the first it-
erations of the FWI should be advisable. Still the global agreement
between real and synthetic waveforms makes us confident that FWI
will work out when starting from these initial VS and VP models es-
timated from DCs, opening a door for near-surface high-resolution
seismic imaging.
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A P P E N D I X : U N C E RTA I N T Y A NA LY S I S
W I T H I N T H E P RO P O S E D W O R K F L OW

Starting from the uncertainties of the estimated surface wave DCs
we compute the uncertainties of the estimated VS, VP and Poisson
ratio profiles obtained with the proposed workflow. First, the uncer-
tainties of the estimated reference W/D relationships and apparent
Poisson ratios for the two reference DCs (outside and inside the
sand body) are computed. Then, we propagate the uncertainty to
the estimated models at the position of other DCs.

The experimental uncertainties of the DCs can be assumed fol-
lowing Passeri (2019) who studied the experimental uncertainties
distribution of DCs from a wide data set (52 different sites). He
observed a frequency dependence of the phase velocity standard
deviation according to the following:

σVR = [
0.2822 e−0.1819 f + 0.0226 e0.0077 f

] ∗ VR, (A1)

where f is the frequency, VR is the phase velocity at f and σVR

is the standard deviation of the phase velocity. Alternatively, in the
presence of enough pool of data from the recordings, the standard

deviation of the DCs can be estimated directly from the experimental
data and the following uncertainty propagation within the workflow
can be applied to these last uncertainties.

Considering f as a function of g and h, and assuming no corre-
lation between the error of g and h, the variance of g and h can be
propagated to f(g,h) as

σ 2
f =

(
∂ f

∂g
.σg

)2

+
(

∂ f

∂h
.σh

)2

, (A2)

where σ f , σg and σh are the standard deviation of f, g and h, re-
spectively. Considering that wavelength is given by phase velocity
divided by frequency and assuming negligible error for frequency,
using eq. (A2), we compute the uncertainties of surface wave’s
wavelength as

σλ = σVR

f
, (A3)

where f is the frequency, σλ is the standard deviation of wavelength
and σVR is the standard deviation of phase velocity. This last can
be computed from a given frequency using eq. (A1). In Figs A1(a)
and (b), in red, we show the reference DC number 11 (outside the
sand body) and DC number 8 (inside the sand body), in terms of
wavelength. The horizontal error bars of the DCs show the standard
deviation of the phase velocity obtained using eq. (A1) and the
vertical error-bars show the standard deviation of the wavelength
estimated using eq. (A3). The next step is to estimate VSZ of the
reference models by applying an MCI to the reference DCs. The
result of the MCI is an ensemble of accepted VSZ models according
to the implemented statistical test. The estimated reference VSZ
is computed by averaging these accepted models at each depth.
Evidently, the MCI of the reference DCs includes non-uniqueness
which should be considered in the uncertainty analysis. The velocity
standard deviation (σVSZ) of the reference VSZs is estimated based
on the velocity distribution of the accepted models at each depth.
Considering depth given by VSZ multiplied by one-way traveltime,
and assuming negligible error for time measurement, using eq. (A2)
the depth standard deviation of the reference VSZ models can be
obtained through

σz = σVSZ.tone-way, (A4)

where σz is the depth standard deviation, tone-way is the one-way
arrival time and σVSZ is the velocity standard deviation of the es-
timated reference VSZ. The one-way traveltime at each depth is
computed by dividing depth by the estimated reference VSZ model.
In Figs A1(a) and (b), in black, we show the reference VSZ for
outside and inside the sand body, respectively. The horizontal error
bars show the velocity standard deviation for VSZ and the vertical
error bars present the depth standard deviation.

The computed depth and wavelength uncertainties of the refer-
ence models are directly translated to the reference W/D relation-
ships estimated using the Socco et al. (2017) method. In Figs A2(a)
and (b), in red, we show the reference W/D relationships for out-
side and inside the sand body, respectively with vertical error bars
showing wavelength standard deviations and horizontal error bars
showing depth standard deviations.

The next step is to calculate the apparent Poisson ratio of the
reference models using the Socco & Comina (2017) method. As
a result, we are now considering the uncertainty associated to the
reference apparent Poisson ratios. Assuming normal Gaussian dis-
tribution of error at each depth-wavelength point and considering
the estimated W/D relationships (Fig. A2) as the centre of the dis-
tribution, we randomly sample 10 000 points corresponding to each
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Figure A1. Uncertainty of the reference DCs and VSZs with the standard deviation error bars: (a) the reference DC number 11 and VSZ for outside the sand
body and (b) the reference DC number 8 and VSZ for inside the sand body.

Figure A2. The reference W/D relationships, in red, with the standard deviation error bars for depth and wavelength; in black, the random samples corresponding
to the W/D relationships and standard deviations: (a) for outside the sand body and (b) for inside the sand body.

Figure A3. The estimated reference apparent Poisson ratio profiles with the standard deviation error bars: (a) for outside the sand body and (b) for inside the
sand body.

depth–wavelength point. In Figs A2(a) and (b), we show the ran-
dom samples of the W/D relationships for outside and inside the
sand body in black. Applying the Socco & Comina (2017) method,
from all these randomly sampled points, we obtain a distribution
of apparent Poisson ratio values at each depth. This allows us to
estimate the standard deviation for the estimated reference appar-
ent Poisson ratio profile at each depth. In Figs A3(a) and (b), we

show the estimated reference apparent Poisson ratio profiles with
standard deviation error-bars for outside and inside the sand body,
respectively.

We now have to propagate the uncertainty estimated at the refer-
ence model to the other models of the cluster, which are obtained
by direct transform of the DCs through the reference W/D rela-
tionship and the reference apparent Poisson ratio. Hence, we have
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to consider the uncertainty of the reference W/D relationships and
apparent Poisson ratios and also the uncertainty of the local DCs.
As an example, in the following, we consider DC number 3 and DC
number 6 which belong to the same cluster of the reference DCs
in Figs A1(a) located outside the sand body and Fig A1(b) located
inside the sand body.

From the same random samples of the reference W/D relation-
ship for outside the sand body (Fig. A2a) and applying the direct
transformation method (Socco et al. 2017) to DC number 3, we get
a distribution of the estimated VSZ at each depth. Based on the
distribution of the estimated VSZ, we estimate the standard devi-
ation of VSZ at each depth. In addition, there is the uncertainty
of DC number 3 (from eq. A1) that needs to be considered for
the uncertainty of the estimated VSZ model. Using the reference
W/D relationship for outside the sand body (Fig. A2a), we trans-
form the uncertainty of the velocities in wavelength to uncertainty
of velocities in depth. We compute the final standard deviation of
the estimated VSZ model at the position of DC number 3 as the
summation of the standard deviation from the proposed workflow
and the standard deviation from the experimental uncertainty of the
DC. In Fig. A4(a), in black, we show the estimated VSZ model and
its standard deviation at the position of the DC number 3. Similarly,
in Fig. A4(b), we show the estimated VSZ, with its corresponding
standard deviation, at the position of DC number 6, using the refer-
ence randomly sampled W/D relationship for inside the sand body
(Fig. A2b) and the experimental uncertainty of DC number 6.

We now consider the estimation of the VPZ at the position of
DCs numbers 3 and 6. Considering the relationship between VPZ,
VSZ and reference apparent Poisson ratio and following eq. (A2),
we propagate the uncertainty associated to the estimated VSZ and
the reference apparent Poisson ratio to the estimated VPZ as

σ 2
vpz =

(√
2υapp − 2

2υapp − 1
.σvsz

)2

+
⎛
⎝VSZ.

1(
2υapp − 1

)2
√

2υapp−2
2υapp−1

συapp

⎞
⎠

2

, (A5)

where σvpz, σvsz and συapp are the standard deviations of VPZ, VSZ
and apparent Poisson ratio, respectively. Applying eq. (A5) to the

estimated VSZs and reference apparent Poisson ratios (Figs A3
and A4), we estimate the standard deviation of the estimated VPZs.
In Figs A4(a) and (b), in blue, we show the estimated VPZs and
standard deviations as error-bars at the position of DCs number 3
and 6, respectively.

The interval VS and VP are estimated using the relationship be-
tween interval velocity and time-average velocity and performing
total variation regularizations. We are now considering the uncer-
tainties of the interval VS and VP. To estimate the uncertainties
associated to interval velocities, assuming normal Gaussian distri-
bution for time-average velocity estimates in Fig. (A4), we ran-
domly sample 10 000 points at each depth of time-average velocity
models. Using the proposed workflow, we transform time-average
velocities into interval velocities. Then, we use the distribution of
the estimated interval velocity at each depth to estimate the stan-
dard deviations of the interval velocities. In Figs A5(a) and (b), we
show the estimated interval velocities (VS and VP) and the associ-
ated standard deviations at the position of the DCs numbers 3 and
6, respectively.

Considering the relationship between the interval VS, interval
VP and Poisson ratio and using eq. (A2), we propagate the standard
deviation of the interval velocities to Poisson ratio as

σ 2
υ = V 2

p V 2
s(

V 2
p − V 2

s

)4

[
V 2

p σ 2
VS + V 2

s σ 2
VP

]
, (A6)

where σVS, σVP and συ are the standard deviations of VS, VP
and Poisson ratio, respectively. In Figs A6(a) and (b), we show the
estimated Poisson ratio with the standard deviation error-bars at the
position of the DC number 3 and DC number 6, respectively.

The above reported uncertainty propagation approach can be
repeated for the estimated models at the position of all the DCs
along the investigated line. Then, the obtained uncertainties are lin-
early interpolated to create a pseudo 2-D view of the uncertainty
corresponding to the estimated VS, VP and Poisson ratio. The un-
certainties normalization for VS is obtained using

σnorm, VS = σVS

VS
, (A7)

where, the σnorm, VS is the normalized uncertainty of the VS. Fol-
lowing the same normalization approach, we normalize also the
standard deviation of the estimated VP and Poisson ratio.

Figure A4. The estimated VSZ and VPZwith the standard deviation error bars: (a) at the position of DC 3 (outside the sand body); (b) at the position of DC 6
(inside the sand body).
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Figure A5. The estimated VP and VS with the standard deviation error bars: (a) at the position of DC number 3 (outside the sand body); (b) at the position of
DC number 6 (inside the sand body).

Figure A6. The estimated Poisson ratio with the standard deviation error bars: (a) at the position of DC 3 (outside the sand body); (b) at the position of DC 6
(inside the sand body).
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