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S U M M A R Y
In an attempt to overcome the difficulties of the full waveform inversion (FWI), several
alternative objective functions have been proposed over the last few years. Many of them are
based on the assumption that the residuals (differences between modelled and observed seismic
data) follow specific probability distributions when, in fact, the true probability distribution is
unknown. This leads FWI to converge to an incorrect probability distribution if the assumed
probability distribution is different from the real one and, consequently it may lead the FWI to
achieve biased models of the subsurface. In this work, we propose an objective function which
does not force the residuals to follow a specific probability distribution. Instead, we propose to
use the non-parametric kernel density estimation technique (KDE) (which imposes the least
possible assumptions about the residuals) to explore the probability distribution that may be
more suitable. As evidenced by the results obtained in a synthetic model and in a typical P-wave
velocity model of the Brazilian pre-salt fields, the proposed FWI reveals a greater potential
to overcome more adverse situations (such as cycle-skipping) and also a lower sensitivity to
noise in the observed data than conventional L2- and L1-norm objective functions and thus
making it possible to obtain more accurate models of the subsurface. This greater potential
is also illustrated by the smoother and less sinuous shape of the proposed objective function
with fewer local minima compared with the conventional objective functions.

Key words: Inverse theory; Probability distributions; Statistical methods; Waveform inver-
sion; Controlled source seismology; Wave propagation.

1 I N T RO D U C T I O N

Full waveform inversion (FWI) is a powerful geophysical technique
that makes it possible to obtain accurate and sharp models of the
subsurface from seismic data. This technique consists of an opti-
mization problem that aims to find the physical properties of the
subsurface that lead to the best fit of the modelled data to the ob-
served seismic data (Lailly 1983; Tarantola 1984; Fichtner 2011;
for a review see for example Virieux & Operto 2009 and Virieux
et al. 2014).

The original FWI formulation proposed by Lailly (1983) and
Tarantola (1984), and still the most applied, is based on minimiz-
ing the square of the L2-norm of the residuals (differences between
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modelled and observed seismic data), which stems from the assump-
tion that these residuals follow a Gaussian probability distribution
(Tarantola 2005). However, this assumption is not always the most
appropriate since (1) FWI is a nonlinear problem (Amundsen 1991;
Fichtner 2011), (2) the amount and quality of information regarding
each variable (physical properties of the subsurface) contained in
the observed data is quite different (with predominant information
regarding the physical properties of the better illuminated regions
and little or no information regarding the physical properties of the
poorly illuminated regions), (3) the subsurface models are in gen-
eral quite heterogeneous, (4) the observed data may contain noise
that is not random as, for example, coherent noise, and (5) errors
from incorrect modelling may be present, for instance, when using
the acoustic approximation in situations where elastic modelling
would be closer to the actual propagation of the waves (Aravkin
et al. 2011), among other factors. And, thus, the assumption that the
residuals follow a Gaussian probability distribution may lead the
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FWI to achieve biased models of the subsurface far from the reality
(Constable 1988).

In the literature, over the last few years, several alternative objec-
tive functions have been proposed for FWI, based on the assumption
that the residuals follow well-defined probability distributions dif-
ferent than the Gaussian probability distribution, when in fact the
true probability distribution is not known. For example, it is known
that FWI based on the L1-norm of the residuals, which comes from
the assumption that the residuals follow a Laplace probability dis-
tribution (or double exponential, Tarantola 1987) is less sensitive
to large errors and outliers than the L2-norm. Therefore, it is possi-
ble to provide more reliable subsurface models using the L1-norm
when the observed data is noisy and even with outliers (Guitton
& Symes 2003; Brossier et al. 2010). However, the L1-norm has
a singularity for null residuals. Guitton & Symes (2003) sought
to combine the qualities of L2- and L1-norm and eliminate their
drawbacks in a single objective function: the Huber (1973) norm, to
obtain an objective function less sensitive to large residuals and dif-
ferentiable everywhere. However, although this proposal, as well as
other hybrids L1/L2 (e.g. Bube & Langan 1997), have considerable
advantages over the conventional L2-norm, they depend on a thresh-
old (which defines where the transition between L1 and L2 occurs)
that requires ‘tedious trial-and-error investigations’ to find the best
one (Brossier et al. 2010). Also, Crase et al. (1990) investigated
objective functions that are based on the assumption that the resid-
uals follow Cauchy and hyperbolic secant probability distributions,
demonstrating that these are also more robust than the L2-norm.

Later, Aravkin et al. (2011) proposed an objective function that
derives from the assumption that the residuals follow a Student’s
t-probability distribution demonstrating that it is more robust than
the conventional ones and that it is particularly suitable for situa-
tions in which data have very poor quality (e.g. with large outliers)
or situations where the modelling is poor or far from the real data
generating process. Also Yuan & Wang (2013) assuming that the
residuals follow a Student’s t-probability distribution together with
non-smooth regularization in a Bayesian framework show that it is
possible to retrieve blocky structures and edges of geology body
even in the presence of large errors. More recently da Silva et al.
(2020a, b) proposed objective functions based on generalizations
of the Gaussian probability distribution: the κ- and q-generalized
Gaussian probability distributions associated with the Kaniadakis
(2001) and Tsallis (1988) statistics, respectively. Both proposals
provide more accurate models of the subsurface than the conven-
tional L2-norm, especially when the observed seismic data are very
noisy and with outliers.

However, although these proposals may seem promising, they all
impose specific probability distributions to the residuals, when in
fact, the true probability distribution is unknown. Consequently, im-
posing probability distributions that may be not be the most suitable
FWI may lead to biased models of the subsurface. In addition to the
aforementioned objective functions, a wide range of other objective
functions has also been proposed over the past few years that do not
directly derive from the assumption of a specific probability distri-
bution for the residuals, which also prove to be robust (Tejero et al.
2015; Métivier et al. 2016) but they are not focused on exploring
the true probability distribution of the residuals.

In this work, we do not assume any specific probability distri-
bution for the residuals, but instead, we propose to use the non-
parametric kernel density estimation (KDE) technique (Rosenblatt
1956; Parzen 1962; Silverman 1986; Scott 1992) to explore the
most suitable probability distribution. This technique aims to esti-
mate the probability density function (PDF) of a random variable

(in our problem, the residuals) exclusively from observations of the
variable, imposing the least of assumptions on the random variable,
other than some degree of smoothing of the probability distribution
(Hart 1997; Fan & Yao 2003) and, thus, ‘allowing the data speak
for themselves’ (e.g., Fan & Yao 2003). Therefore, our proposal
makes it possible to approach the true probability distribution of
the residuals, which can have any shape. For example, it may be
asymmetric regarding the null residuals, contrary to what all pro-
posals in the literature have considered so far, which have assumed
symmetric probability distributions. It should further be pointed out
that there are other techniques in the literature that seek to approxi-
mate probability distributions, however, they are mostly parametric
techniques, that is, they are based on specific probability distri-
butions, such as, for instance, the well-known Gaussian Mixture
Models (GMM) which is based on the assumption that the true
probability distribution is composed of a weighted sum of a certain
number of Gaussian probability distributions (e.g. Bishop 2006).
Conversely, in the KDE technique, each observation contributes
with a kernel function (which can be Gaussian or any other, but
which in practice has no significant influence on the final estimated
probability distribution—Chen 2017) to estimate the probability
of each value of the variable, resulting in the estimation of the
probability distribution exclusively from the data and therefore in
a completely non-parametric way. Note also that Xue et al. (2016)
have used smoothing kernels in FWI, however, based on a different
idea. Xue et al. (2016) proposed using smoothing kernels to smooth
the residuals in seismic traces (over time). They proposed to start
FWI with high smoothing parameters (similar to the bandwidths
in our proposal), which corresponds to oversmoothing and conse-
quently giving greater relevance to the lower frequencies and then,
in subsequent steps, they proposed to decrease the bandwidths in a
way to enable the progressive inclusion of information regarding the
highest frequencies in the inversion. In contrast, in the present work,
we propose to use the KDE technique to estimate the probability
distribution of residuals in a completely non-parametric way. Also
in contrast to the Xue et al.’s (2016) proposal, our proposal does
not require the assumption of bandwidths throughout the FWI, but
instead, the (optimal) bandwidths are estimated automatically and
exclusively from the residuals themselves.

It is also noteworthy that most of the objective functions pro-
posed in the literature are restricted to considering that the residuals
corresponding to each instant of time (in temporal discretization)
are completely independent of each other and, therefore, without
taking into account possible relations between residuals at differ-
ent instants of time. Thus these proposals do not have a ‘global
view’ of all the differences between each modelled and observed
seismic trace and, as a consequence, they tend to be more suscep-
tible to incurring problems such as, for instance, cycle-skipping
problems. This latter problem is one of the major problems that
original FWI as well as many of the FWI proposals in the litera-
ture face. The cycle-skipping problems stem from the fact that the
observed seismic data, in general, does not contain sufficient low-
frequency information (usually below 3 Hz at exploration scales, Li
& Demanet 2016) to prevent the FWI from being conducted to an
incorrect fit during the optimization process when the model is far
from the real subsurface. In conventional FWI, the cycle-skipping
problems are overcome if one starts the optimization process from
an initial model close enough to the true subsurface so that the
corresponding modelled data match within half a period associated
with the shortest wavelength of the observed data (Bunks et al.
1995; Virieux & Operto 2009). However, in most situations, there
is no reasonable prior knowledge about the subsurface of the region
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under study, making it difficult to know whether the initial model
is close to the real subsurface or not. And, as a consequence, the
FWI ends up being held hostage by other techniques capable of
finding an initial model of the subsurface closest to the real one
(Métivier et al. 2016). In contrast to most of the proposals in the
literature, our proposal makes it possible to assess the relationship
between residuals of different instants of time, enabling a global
view of all differences between each modelled and observed seis-
mic trace. And, therefore, it is expected that our proposal to have the
potential to overcome more adverse situations (such as, e.g. some
cycle-skipping situations) and consequently to achieve closer to the
real and more accurate models of the subsurface.

The remainder of the paper is organized as follows. In the next
section, we briefly review the conventional FWI formulation and
then our proposal and the corresponding gradient are presented.
In Section 3, three different numerical experiments are presented:
in the first, a similar experiment to Mulder & Plessix (2008) is
performed to examine the shape of the proposed objective func-
tion, then, in the second, our proposal is applied to the inversion
of a synthetic model similar to the ‘Camembert’ model and, fi-
nally, our proposal is also applied to a more realistic velocity
model which represents a typical P-wave velocity model of the
Brazilian pre-salt field and the results obtained are compared with
those provided by the conventional FWI (L2-norm and L1-norm
of the residuals). Finally, in Section 4, the main conclusions are
summarized.

2 M E T H O D O L O G Y

2.1 Conventional full waveform inversion

FWI is a technique formulated as an optimization problem that
aims to find the physical properties of the subsurface that lead to
the best fit of the computationally modelled data to the observed
data. Its original formulation (1) is based on minimizing the square
of the L2-norm of the differences between modelled and observed
seismic data (Lailly 1983; Tarantola 1984), which comes from the
assumption that these differences (also known as residuals) follow
a Gaussian probability distribution (Tarantola 2005):

min SL2(m) = 1

2

ns∑
s=1

nr∑
r=1

∫ tmax

0

(
dmod

r,s (m, t) − dobs
r,s (t)

)2
dt, (1)

where dmod
r,s (m, t) and dobs

r,s (t) are the modelled and observed data
at the receiver r and at time t, respectively, due to the triggering of
the source s. m represents the model parameters (i.e. the physical
properties of the subsurface), tmax is the acquisition time and, ns and
nr are the number of sources and receivers, respectively.

Assuming that the residuals (�d = dmod − dobs) are independent
and identically distributed (i.i.d.) according to a Gaussian proba-
bility distribution with zero mean and unit variance, applying the
maximum-likelihood method:

max
m

L =
n∏

i=1

1√
2π

exp

(
−1

2
�di (m)2

)
, (2)

where n is the number of samples of the traces recorded at the
receivers. Taking the logarithm of the likelihood function:

max
m

logL =
n∑

i=1

(
log

(
1√
2π

)
− 1

2
�di (m)2

)
, (3)

which is equivalent to:

min
m

− logL = n log
(√

2π
)

+
n∑

i=1

1

2
�di (m)2, (4)

and disregarding the first term (since it does not depend on the
model parameters), a discretized version of the objective function
of conventional FWI (1) is reached.

In this work, the acoustic approximation is assumed and, there-
fore, the seismic data correspond to acoustic pressures obtained
from the acoustic wave eq. (5) and the model parameters m are the
P-wave velocities.

1

κ(x)

∂2 p(x, t)

∂t2
− ∇.

(
1

ρ(x)
∇ p(x, t)

)
= f (t)δ(x − xs), (5)

where κ(x) is the bulk modulus of the medium at spatial position x of
the model and defined as κ(x) = ρ(x)v(x)2 (where ρ(x) and v(x) are
the density and P-wave velocity of the medium, respectively), p(x,t)
is the acoustic pressure field and the term f(t)δ(x − xs) represents
the source f(t) applied at the position xs.

FWI is summarized in the search for the minimum of the objective
function from a method based on the Newton’s method: a quasi-
Newton method. In this work, the L-BFGS-B quasi-Newton method
(limited memory Broyden–Fletcher–Goldfarb–Shanno with bound-
aries, Liu & Nocedal 1989; Byrd et al. 1995; Zhu et al. 1997) was
used, which has been shown to be one of the most effective meth-
ods (Brossier et al. 2009; Fei et al. 2014). This method estimates
an approximation of the inverse of the Hessian matrix from a few
gradients of the previous iterations, not requiring too much amounts
of memory and, therefore, making the optimization process more
efficient. Thus, the solution of FWI is obtained iteratively according
to:

ml+1 = ml + αl H̃−1
S (ml )∇S(ml ), (6)

where ml are the model parameters of the lth iteration, H̃−1
S is

an approximation of the inverse of the Hessian matrix, ∇S is the
gradient of the objective function with respect to model parameters
and αl > 0 is the step length obtained by line search.

2.1.1 Gradient computation

Deriving the objective function (1) with respect to each model pa-
rameter mk, the components of the gradient are obtained:

∂SL2

∂mk
=

ns∑
s=1

nr∑
r=1

∫ tmax

0
�dr,s(m, t)

∂dmod
r,s (m, t)

∂mk
dt, (7)

where �dr,s(m, t) = dmod
r,s (m, t) − dobs

r,s (t) are the residuals and
∂dmod

r,s

∂mk
is the Jacobian or the Fréchet derivative of the modelled data with
respect to the model parameter mk.

Assuming, for instance, that the model parameters are the P-wave
velocities, the Fréchet derivative of the modelled data with respect
to the model parameter k corresponds to a wavefield resulting from
a disturbance δk(t) of the model parameter (at position xk of the
model) (8). Therefore, for the computation of all components of the
gradient, from the explicit computation of the Fréchet derivative,
it would be necessary to solve one wave equation for each model
parameter, which would be impractical in terms of computational
cost. Thus, an adjoint formulation (Tarantola 1984; Plessix 2006;
Yang et al. 2015) is used, which makes it possible to estimate all
components of the gradient simultaneously and efficiently from
just the solution of only two wave equations: from a propagation

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/1/35/6412526 by guest on 24 April 2024



38 P.T.C. Carvalho et al.

forward in time to compute the wavefield po and from a propagation
backwards in time to compute the wavefield pback

�d , according to:

∂SL2

∂vk
=

ns∑
s=1

nr∑
r=1

∫ tmax

0
δk(t) pback

�d (xk, t) dt, (8)

where:

δk(t) = 2

κ(xk)v(xk)

∂2 po(xk, t)

∂t2
,

where pback
�d is the wavefield resulting from the propagation back-

wards in time of the residuals �d from the corresponding receivers
and po is the wavefield obtained from the propagation of the source
f(t) (from eq. 5).

2.2 The KDE technique and the proposed FWI

Bearing in mind that the true probability distribution of the residuals
is usually unknown, in this work a specific probability distribution
for the residuals is not assumed, but instead, we seek to explore a
probability distribution that best suits the residuals using the non-
parametric KDE technique.

2.2.1 The KDE method

The KDE is a non-parametric method that aims to estimate the PDF
f(x) of a random variable X from a sample of observations x1, x2,
. . . , xn (in our case, the residuals), using the following expression
(see e.g. Chen 2017; Hansen 2009; or Li & Racine 2007):

f̃ (x) = 1

nh

n∑
j=1

K

(
x − x j

h

)
, (9)

where K(.) is a kernel function and h > 0 is the bandwidth (or
smoothing parameter).

The kernel function aims to define the contribution of the obser-
vations to the estimation of the probability of a given value of the
variable X and the bandwidth governs the window of observations
that contribute to the estimation of that probability. There are several
kinds of kernel functions, however, the most commonly used are the
Gaussian and Epanechnikov. In this work, the Gaussian kernel was
used, which is defined as:

K (u) = 1√
2π

exp

(
−1

2
u2

)
. (10)

Whereas the choice of the kernel function usually does not have
a significant effect on the estimation of the PDF, the bandwidth
plays a crucial role (Chen 2017). If h is too high, the PDF becomes
too smooth with few details and, therefore, important structures
can be obscured due to the enormous amount of smoothing (i.e.
oversmoothing occurs). On the other hand, if h is too small it results
in a PDF with many structures that might derive just randomness (i.e.
occurring undersmoothing, see, for instance, fig. 3 in Chen 2017).
There are several methods to estimate the optimal bandwidth, such
as cross-validation methods, plug-in methods among others (Chen
2017), however, a simpler way is to consider the rule-of-thumb
suggested by Silverman (1986): h = 0.9 min(σ n, IQR/1.34) n−1/5

for Gaussian kernels (where σ n is the standard deviation of the
sample data and IQR is the interquartile range).

On the other hand, adopting a single fixed (or global) bandwidth
may be detrimental, since it may lead to an oversmoothing where
the data (in our case, the residuals) are denser in the probability

distribution and to an undersmoothing where the data are sparser
(Van Kerm 2003). For this reason, in the present work, the Adaptive
KDE method (Abramson 1982) is used, which enables the use of
bandwidths that vary locally in the probability distribution. In this
method, local bandwidths hj are estimated for the region around
each observation xj and which are mainly a function of the local
concentration of data around xj (denoted by f̃ (x j )) and the global
bandwidth h (Van Kerm 2003):

h j = λ j h, (11)

where λj is:

λ j (x j ) =
√

G

f̃ (x j )
,

and where f̃ (x j ) is the density estimate at xj assuming a global
bandwidth h obtained from eq. (9) and G is the geometric mean
over all j of the density estimate f̃ (x):

G =
⎛⎝ n∏

j=1

f̃ (x j )

⎞⎠1/n

= exp

{
1

n

n∑
j=1

log
(

f̃ (x j )
) }

.

Hence, the greater the data concentration around xj (denoted by a
high f̃ (x j )) the lower will be λj and consequently the lower the local
bandwidth hj and the opposite where the data are more sparse.

And lastly, the PDF estimate in Adaptive KDE method is obtained
from:

f̂ (x) = 1

n

n∑
j=1

1

h j
K

(
x − x j

h j

)
. (12)

This means that the estimate of the probability distribution at x
corresponds to the sum of the contribution of each observation xj

with a kernel function weighted by the inverse of the bandwidth pa-
rameter hj. The closer the value of observation xj is to x the greater
its contribution to the estimate of the probability distribution at x.
Furthermore, if there are a large number of observations with val-
ues close to xj, the bandwidth associated with xj (hj) will tend to be
small, thus corresponding to a steep kernel function (approaching
a Dirac delta function in the case of a Gaussian kernel) and, there-
fore, observation xj will only actually contribute to the estimate of
the probability distribution at x if it has a value very close to x.
Conversely, if there are few observations with values close to xj (as
for instance in the case of outliers), hj will tend to be high, corre-
sponding to xj a flatter kernel and, therefore, the observation xj will
contribute to the estimate of the probability distribution at x even if
it is relatively far away from the x value.

2.2.2 Proposed FWI

Assuming that the residuals (�d) corresponding to each seis-
mic trace are i.i.d. and that their PDF can be estimated non-
parametrically from eq. (12) and considering the Gaussian kernel
(10), their PDF will be defined by:

f̂ (�d) = 1

n
√

2π

n∑
j=1

1

h j
exp

(
−1

2

(
�d − �d j

h j

)2
)

. (13)

Applying the maximum-likelihood method:

max L =
n∏

i=1

probability
(
�di

)
, (14)
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max
m

L =
n∏

i=1

1

n
√

2π

n∑
j=1

1

h j (m)

× exp

(
−1

2

(
�di (m) − �d j (m)

h j (m)

)2
)

, (15)

and taking the logarithm of the likelihood function:

max
m

logL =
n∑

i=1

log

[
1

n
√

2π

n∑
j=1

1

h j

× exp

(
−1

2

(
�di − �d j

h j

)2
)]

, (16)

which is equivalent to:

min
m

− logL = −n log

(
1

n
√

2π

)

−
n∑

i=1

log

⎡⎣ n∑
j=1

1

h j
exp

(
−1

2

(
�di − �d j

h j

)2
)⎤⎦ , (17)

the proposed objective function is obtained (for all sources and
receivers):

min
m

Sp(m) = ns nr n log
(

n
√

2π
)

−
ns∑

s=1

nr∑
r=1

n∑
i=1

log⎡⎣ n∑
j=1

1

hr,s
j (m)

exp

(
−1

2
u2

i, j (m)

)⎤⎦ , (18)

where:

ui, j (m) = �dr,s
i (m) − �dr,s

j (m)

hr,s
j (m)

,

and �dr,s
i (m) = dmod

i (m) − dobs
i and �dr,s

j (m) = dmod
j (m) − dobs

j

are the residuals at the instant of time i and j, respectively, hr,s
j (m)

is the bandwidth, n is the number of samples of the trace recorded
at the receiver position (i.e. the number of time steps in time dis-
cretization) and ns and nr are the number of sources and receivers,
respectively.

A close look at the proposed objective function shows that it not
only seeks to minimize the residuals of each instant of time but also it
seeks to minimize the differences between the residuals at different
instants of time, in particular the residuals of the closest value
which also are usually in neighbouring instants of time. This last
characteristic comes from the only relevant imposition by the KDE
technique, which is the imposition of smoothness in the probability
distribution of the residuals and which in the case of the proposed
objective function it also leads to that the differences between the
modelled and observed data are not abrupt over time. Note also
that low (local) bandwidths hr,s

j lead to evaluations of differences
only between similar residual values, which are often (but not only)
found at neighbouring time instants in the seismic trace, whereas
high bandwidths are associated with an evaluation of differences
between a wider range of residual values and, therefore, possibly
related to the evaluation of the relationship with more neighbours
in the seismic trace.

It should also be noted that if we assume that in each seismic
trace there is no relationship between the residuals corresponding to
different instants of time and that they are completely independent

of each other, the �dj term in the eq. (18) can be disregarded
and, furthermore, if unit local bandwidths (hj = 1) are assumed
and constant terms are ignored, the proposed objective function
becomes the conventional L2-norm FWI.

2.2.3 Computation of the proposed objective function gradient

Taking the derivative of the proposed objective function (18) with
respect to each model parameter mk, one obtains the components of
the gradient (for only one source and one receiver):

∂Sp

∂mk
= −

n∑
i=1

1

βi

n∑
j=1

γi, j

h j

×
[
− ∂h j

∂mk
+ ui, j

(
ui, j

∂h j

∂mk
− ∂

(
�di − �d j

)
∂mk

)]
, (19)

where:

γi, j = exp
(− 1

2 u2
i, j

)
h j

,

βi =
n∑

l=1

γi,l ,

and, therefore:

∂Sp

∂mk
=

n∑
i=1

1

βi

n∑
j=1

γi, j

h j

×
[

∂h j

∂mk

(
1 − u2

i, j

) + ui, j

∂
(
�di − �d j

)
∂mk

]
. (20)

For the sake of simplicity, assuming that the factor λj of the local
bandwidths does not depend on the model parameters and that the
global bandwidth depends only on the standard deviation, the

∂h j

∂mk
is:

∂h j

∂mk
= ∂

(
λ j h

)
∂mk

= ∂
(
λ j 0.9 σn n−1/5

)
∂mk

= 0.9 n−1/5λ j
∂σn

∂mk
= h j

σn

∂σn

∂mk
. (21)

And considering that the standard deviation of the residuals σ n is:

σn =
√√√√ 1

n − 1

n∑
l=1

(
�dl − �d

)2
, (22)

which can also be written as:

σn =

√√√√√ 1

n − 1

⎛⎝ n∑
l=1

�d2
l − 1

n

(
n∑

l=1

�dl

)2
⎞⎠, (23)

where �d is the mean of the residuals: �d = 1
n

∑n
l=1 �dl . The

derivative of the standard deviation of the residuals with respect to
model parameter mk is:

∂σn

∂mk
= 1

(n − 1) σn

(
n∑

l=1

�dl

(
∂dmod

∂mk

)
l

− �d
n∑

l=1

(
∂dmod

∂mk

)
l

)
, (24)

or:

∂σn

∂mk
=

n∑
l=1

�dl − �d

(n − 1) σn

(
∂dmod

∂mk

)
l

, (25)
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Figure 1. Variation of the value of the objective functions of conventional FWI (L2-norm of the residuals) (above), of the objective function corresponding to
the L1-norm of the residuals (middle) and of the proposed objective function (below) with the parameters that define the velocity models: the P-wave velocity at
the top of the model (vi) and the velocity gradient in depth (ϕ). And statistics of the global bandwidths (median and limits of the 95 per cent interval) associated
with each P-wave velocity model for the proposed objective function case (below).
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Figure 2. Variation of the value of the proposed objective function with the parameters that define the velocity models [P-wave velocity at the top of the model
(vi) and the velocity gradient in depth (ϕ)] for case of too small (above) and too high (below) global bandwidths (h = 10−8 and 104, respectively).

Figure 3. Differences between the value of the objective functions corresponding to the situation in which the ‘observed’ data contain Gaussian noise and the
situation in which the ‘observed’ data have no noise, for the various objective functions.
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Figure 4. Variation of the value of the objective functions of conventional FWI (L2-norm) (above), L1-norm (middle) and of the proposed objective function
(below) with the parameters that define the velocity models [the P-wave velocity at the top of the model (vi) and the velocity gradient in depth (ϕ)] for the case
where the ‘observed’ data contains a higher frequencies content (between about 3 and 60 Hz).
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Figure 5. True P-wave velocity model.

and, therefore, the derivative of the proposed objective function with
respect to model parameter mk becomes:

∂Sp

∂mk
=

n∑
i=1

n∑
j=1

γi, j

βi

[
1

σn

∂σn

∂mk

(
1 − u2

i, j

)
+ ui, j

h j

((
∂dmod

∂mk

)
i

−
(

∂dmod

∂mk

)
j

)]
, (26)

and, finally, leading to (for the several sources and receivers):

∂Sp

∂mk
=
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s=1

nr∑
r=1
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i=1

�i

(
∂dmod

∂mk

)
i

, (27)

where:
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and

ψr,s =
n∑

l=1

(∑n
o=1 γ

r,s
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l,o

)
β

r,s
l
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,
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hr,s
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,

and �dr,s
i (m) = dmod

i (m) − dobs
i and �dr,s

j (m) = dmod
j (m) − dobs

j

are the residuals at the instant of time i and j, respectively, hr,s
i (m)

and hr,s
j (m) are the bandwidths,

(
σ r,s

n

)2
is the variance of the residu-

als corresponding to the receiver r and the source s, n is the number
of samples of the trace recorded at the receiver position and ns and
nr are the number of sources and receivers, respectively.

Comparing the gradient of the proposed objective function (27)
and the gradient of the conventional objective function (7) and bear-
ing in mind that, in discrete terms, the integral in eq. (7) represents
the inner product between the residuals �d and the Fréchet deriva-
tive, it can be seen that the residuals in the gradient of the conven-
tional objective function were replaced by a vector with components
�i (corresponding to time instant i) in the gradient of the proposed
objective function. Therefore, the efficient gradient of the proposed
objective function consists of the propagation of a signal with com-
ponents �i (28) backward in time instead of simply the residuals as
in gradient of conventional FWI (8).

Note also that the gradient will tend to zero when all residuals (in
each trace) are as close as possible to each other and they approach
to the mean of the residuals, which also means that, in contrast
to most of the objective functions proposed in the literature, the
proposed objective function can deal with situations in which the
mean of the residuals is not exactly zero.

3 N U M E R I C A L E X P E R I M E N T S

In order to demonstrate the potential of our proposal, its application
is presented below in several experiments together with the conven-
tional objective functions L2- and L1-norms of the residuals. As a
reminder, the conventional L1-norm seeks to minimize the absolute
value of the residuals instead minimizing the square of the residuals
as in L2-norm (1) and in the gradient computation the sign of the
residuals is propagated backwards in time instead of propagating
the residuals themselves as in L2-norm (8).

For the purpose of examining the shape of the proposed objec-
tive function and its possible behaviour in FWI, firstly, a similar
experiment to Mulder & Plessix’s (2008) is carried out, where one
investigates how the objective function varies with the variation of a
velocity model defined by only two parameters. Then, the proposed
objective function is applied to the inversion of a simple model sim-
ilar to the Camembert model (Gauthier et al. 1986) and the obtained
velocity models are compared with the velocity models obtained by
conventional objective functions. And finally, the proposed objec-
tive function is applied to a more realistic velocity model which
represents a typical P-wave velocity model of the Brazilian pre-salt
field.

3.1 Shape of the objective functions for a velocity model
defined by only two parameters

In order to get an idea of the shape of the proposed objective function
and its behaviour in FWI, a similar experiment to Mulder & Plessix’s
(2008) was carried out. This experiment consists of evaluating how
the value of the objective function varies with the variation of a
simple P-wave velocity model with linearly increasing velocities in
depth (and constant in the horizontal direction) defined by only two
parameters: the P-wave velocity at the surface of the model (i.e.
at zero depth, vi in m s−1) and the velocity gradient in depth (ϕ in
(m s−1) m−1 or s−1), according to the following expression:

velocities(z, x) = vi + ϕ z, (29)

where z and x are the depth and the distance in the horizontal
direction, respectively (both in metres).

The velocities at the top of the model were assumed to vary
between 1750 and 2250 m s−1 (discretized at every 12.5 m s−1) and
the velocity gradients to vary between 0.4 and 0.9 (discretized at
every 0.015 s−1). The velocity models are 17 km long and 3.5 km
deep.

The ‘observed’ seismic data were obtained from a model defined
by a velocity at the top of the model of vi = 2000 m s−1 and by
a velocity gradient of ϕ = 0.7 s−1, which was assumed to be the
true model. The acquisition geometry consisted of only one source
located at the top centre of the model at a distance of x = 8.5 km and
60 m deep and 169 receivers located at the top of the model at 60 m
deep between the distances x = 100 and 16900 m, equally spaced
every 100 m. The seismic source was assumed to be a Ricker wavelet
with a peak frequency of 5.5 Hz and in order to simulate a situation
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44 P.T.C. Carvalho et al.

Figure 6. FWI results obtained by the conventional L2- and L1-norms and proposed objective functions when starting from the homogeneous model of velocity
3000 m s−1 (above) and from the homogeneous model of velocity 2960 m s−1 (middle). And FWI results when starting from the homogeneous model of
velocity 2960 m s−1 and where the ‘observed’ data contain Gaussian noise (SNR of about 7 dB) (below).

Figure 7. Statistics (median and limits of the 95 per cent interval) of global and local bandwidths and lambdas over the FWI corresponding to the source at
950 m deep in the Camembert model when one starts from a homogeneous model of velocity 3000 m s−1.

closer to the real one, frequencies below 3 Hz were removed. The
total recording time was 5 s. In the modelling of the wavefields,
the acoustic approximation is used and as boundary conditions the
unsplit convolutional perfectly matched layers (C-PML) absorbing

boundary condition (Komatitsch & Martin 2007) is used in all the
surroundings of the models to avoid the reflection of the waves at
the limits of the models, except at the top of the models where a
free-surface condition was assumed.
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Figure 8. Common shot gathers corresponding to the source fired at 950 m deep obtained in the true, initial velocity models and in the velocity models
obtained by the conventional L2- and L1-norms and proposed objective functions when starting from the homogeneous model of velocity 3000 m s−1 (above),
from the homogeneous model of velocity 2960 m s−1 (middle) and for the case in which the ‘observed’ data contain noise (SNR of about 7 dB) (below) in the
Camembert model case.
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Figure 9. Traces recorded in the receiver at 950 m depth (due to the source fired at the same depth) obtained in the true, initial velocity models and in the
velocity models obtained by the conventional L2 (above) and L1-norm (middle) and proposed (below) objective functions (left) and its evolution along the
FWI’s iterations (on the right) in the Camembert model case (the light yellow traces correspond to the first iteration, becoming more reddish throughout the
iterations until reaching the red colour in the last iteration).
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Figure 10. Adjoint sources of conventional L2- and L1-norms and proposed objective function for Camembert model when starting from the homogeneous
model of velocity 3000 m s−1 for the source fired at 950 m deep.

Figure 11. Left: true velocity model (typical P-wave velocity model of the Brazilian pre-salt field) and right: initial velocity model.

In Fig. 1, the shape of the conventional objective functions L2-
and L1-norms of the residuals and of the proposed objective func-
tion (and corresponding statistics of the global bandwidths) are
presented. As can be seen, the proposed objective function has a
much smoother and less sinuous shape with fewer and much less
pronounced local minima and also a well defined and more pro-
nounced global minimum than conventional objective functions.
This global minimum, in fact, corresponds to a high negative value
of the objective function since as one moves towards the true ve-
locity model the local bandwidths hj tend to zero (around the zero
residual) leading the proposed objective function to tend to −∞
(eq. 18). Note that, contrary to what happens in conventional objec-
tive functions, in the proposed objective function the global min-
imum is not surrounded by steep hills difficult to cross, although

further away from the global minimum some hills and local minima
still persist, however, they are quite more smoothed or even non-
existent and therefore much easier to overcome. These facts lead us
to believe that our proposal has a better performance in FWI than
the conventional objective functions.

Furthermore, it is also observed that if constant and too small
global bandwidths are assumed [instead of local bandwidths, i.e.
if using eq. (9) with constant global bandwidth instead of eq. (12)
for the PDF estimation], the proposed objective function tends to
become almost flat and with tenuous local minima (Fig. 2). And,
on the contrary, if constant and too high global bandwidths are as-
sumed, the proposed objective function becomes more sinuous and
consequently with more pronounced local minima (Fig. 2). These
facts, corresponding to limit situations, demonstrate the importance
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Figure 12. ‘Observed’ seismogram corresponding to the source fired at distance of 7 km (left) and examples of corresponding seismic traces with and without
noise (right).

Figure 13. True velocity model and FWI results obtained by the conventional L2- and L1-norms and the proposed FWI for the case where the ‘observed’ data
have no noise.

of using ‘optimal’ bandwidths, in particular the use of local band-
widths (which enable a more adequate estimation of the residuals
probability distribution), so that the proposed objective function
is neither too smooth leading to slow convergences to the global

minimum nor too sinuous with more and more pronounced local
minima.

With a view to investigate the influence of noise in the ‘observed’
data on the shape of the objective functions, we repeated the previous
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Figure 14. True velocity model and FWI results obtained by the conventional L2- and L1-norms and the proposed FWI for the noisy data case (SNR of about
7 dB).

experiment but this time with the ‘observed’ data contaminated with
Gaussian noise [with an SNR (signal-to-noise ratio) of 6 dB]. As
expected, the value of the objective functions increased (since now
the residuals have an additional portion which corresponds to the
noise), however, we found that the conventional objective functions
undergo a smaller and more irregular increase (in particular the L2-
norm) than the proposed objective function (Fig. 3). The proposed
objective function becomes smoother (particularly in the vicinity of
the global minimum) both compared to the conventional objective
functions and compared to the situation where the data have no
noise. This reveals that the proposed objective function may not
be as impaired as the conventional objective functions when the
‘observed’ data are noisy, as it tends to be smoother, which may
also mean a smaller number of local minima.

Additionally, to evaluate the influence of a higher frequencies
content on the shape of the objective functions, the same experi-
ment was performed again but now a seismic source with a higher
frequency content was assumed, that is, the seismic source was
assumed to be a Ricker wavelet with a peak frequency of 20 Hz.
The results show that, in general, as the content of higher frequen-
cies increases, the objective functions become steeper, the valleys
become narrower and deeper and consequently the local minima be-
come more difficult to overcome (see particularly the conventional
L2-norm, Fig. 4), however, this is not so intense in the proposed
objective function, which remains smoother than the conventional
objective functions. These facts explain the increase in difficul-
ties in conventional FWI when the content of higher frequencies
increases and also indicating a possible better behaviour of the
proposed objective function than conventional ones under these
conditions.

3.2 Camembert model

Also with the aim of evaluating the behaviour of the proposed
objective function in FWI, inversions were performed on a simple
model similar to the Camembert model (Gauthier et al. 1986), a
homogeneous model of 3000 m s−1 with a central circular anomaly
of velocity 3600 m s−1 (Fig. 5). In order to the transition between
the two velocities not to be so abrupt, a slight smoothing was carried
out with a Gaussian filter with a standard deviation of 10 m.

In this experiment, the sources and receivers were placed in two
lateral boreholes. The sources (20 sources) were placed in the well
on the left at distance of x = 20 m and the receivers (39 receivers)
were placed in the well on the right at distance of x = 1970 m. The
sources and receivers were placed from the depth of 50 m to the
depth of 1950 m, however, the sources are spaced every 100 m and
the receivers are spaced 50 m apart. The source was assumed to be
a Ricker wavelet with a peak frequency of 10 Hz and in order to
simulate a situation closer to the real one, the frequencies below
2 Hz were filtered. The acquisition time was 2.0 s.

In the modelling of the wavefields, the acoustic approximation
was used, a 10 m spatial discretization in both vertical and horizontal
direction was considered and the C-PML boundary condition is used
in all the surroundings of the models. In the FWI process, the quasi-
Newton L-BFGS-B method was used as optimization algorithm.

Starting from homogeneous models of velocity 3000 and
2960 m s−1 and using the proposed objective function as well as
the conventional L2- and L1-norms of the residuals, the velocity
models presented in Fig. 6 were obtained. As can be seen in the var-
ious situations, the proposed objective function was able to reach
reliable velocities close to the real velocities, particularly at the
centre of the anomaly. The objective function based on the L1-norm
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Figure 15. Seismograms corresponding to the source fired at distance of 3.4 km obtained in the true model (noiseless data), in the initial model and in the
velocity models obtained by the conventional L2- and L1-norms and proposed FWI.

of the residuals still can identify the circular anomaly when one
starts from an initial velocity model closer to the true model (from
a homogeneous model of velocity 3000 m s−1), but the proposed
objective function can achieve a velocity model closer to the real.
However, when starting from a model further away from the true
model, the conventional L1-norm of the residuals can no longer able
to reach an acceptable velocity model (Fig. 6). Adding some Gaus-
sian noise to the ‘observed’ data, the proposed objective function
continues to be able to identify the anomaly even if starting from a
velocity model that is farther from the true one. This proves that the
our proposal has the potential to overcome more adverse situations
than conventional FWI.

In Fig. 7, as an example, are presented statistics of bandwidths
over the FWI iterations for the source fired at 950 m deep when
one starts from a homogeneous model of velocity 3000 m s−1.
As can be seen, the bandwidths show a decreasing trend over
the FWI iterations, as they are directly proportional to the stan-
dard deviation of the residuals and, therefore, as the FWI con-
verges towards the true model, the residuals tend to become smaller
as well as their standard deviations, and consequently also the
bandwidths.

Analysing the data, it is noted that, in fact, cycle-skipping prob-
lems occur (Fig. 8). The initial models lead to arrival delays of
more than half a period associated with the shortest wavelength
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Figure 16. Evolution of the objective functions value (normalized by its maximum value) over the FWI iterations for the case where the ‘observed’ data have
no noise (on the left) and for the noisy data case (on the right) (the blue vertical axis on the left corresponds to the conventional L2- and L1-norms and the red
vertical axis on the right corresponds to the proposed FWI).

Figure 17. First gradients of the conventional L2- and L1-norms and proposed FWI for the case where the ‘observed’ data are noisy (the minimum and
maximum of the colour scales correspond to the 0.01th and 0.99th quantiles of the components of the gradients, respectively).

(of the ‘observed’ data) in relation to the correct arrival, mak-
ing the conventional objective functions, in particular the L2-norm,
find it difficult to converge to acceptable velocities. Note, for in-
stance, the evolution of the modelled trace along the FWI iterations
in the receiver at 950 m depth for the case of the L2-norm ob-
jective function in Fig. 9 where instead of the velocities increase
so that the modelled trace would get closer to the true trace, the
velocities decreased. Conversely, the proposed objective function
demonstrates in both situations the ability to overcome this diffi-
culty and to converge towards the true trace (and the correct ve-
locities) and furthermore with a more coherent and gradual evolu-
tion over the FWI iterations than conventional objective functions
(Fig. 9).

Also analysing the adjoint sources, it is found that the adjoint
sources corresponding to the proposed objective function have sim-
ilarities with the L1-norm adjoint sources, however, they are more

regular (continuous), they are not limited to only values of −1 and 1
and have a higher content of lower frequencies, which are important
to overcome cycle-skipping situations (Fig. 10).

3.3 Typical P-wave velocity model of the Brazilian pre-salt
field

In order to demonstrate the potentialities of our proposal in a more
realistic case, we applied it to a typical P-wave velocity model of
the Brazilian pre-salt field (Fig. 11). The model consists of a layer
of water of about 2 km followed by post-salt marine shales, salt, pre-
salt reservoir and bed rock. The acquisition geometry considered
was an ocean bottom node (OBN) where the receivers (35 receivers)
are at the bottom of the sea between the depths of 1920 and 1950 m
and between the horizontal distances 100 m and 13.7 km, equally
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Figure 18. Histograms of the residuals corresponding to the velocity models obtained by the conventional L2- and L1-norm and proposed FWI (above) and its
magnification (below) for the sources fired at 2, 5, 8 and 11 km. (The true residuals in this synthetic case study correspond to the difference between the data
obtained in the true model (noiseless data) and the noisy data: �d = dobs

noiseless − dobs
noisy).

Figure 19. Probability distributions of the residuals (estimated by the KDE technique) corresponding to the velocity models obtained by the conventional L2-
and L1-norms and proposed FWI (above) and its magnification (below) for the sources fired at 2, 5, 8 and 11 km.

spaced every 400 m. 69 sources were fired at a depth of 10 m
between the distances 200 m and 13.8 km every 200 m. The seismic
source was assumed to be a Ricker wavelet with a peak frequency
of 5 Hz and in order to simulate a situation closer to the real, low
frequencies below 1.5 Hz were filtered out. The total recording time
is set to 10 s.

The ‘observed’ data have been generated synthetically from the
true velocity model shown in Fig. 11 and were subsequently con-
taminated with Gaussian noise, and with the noise being amplified
5 times in 20 per cent of the seismic traces (randomly selected
according to a uniform distribution) to simulate the presence of
spikes (outliers), resulting in an ‘observed’ data with a median

SNR of about 7 dB. Fig. 12 shows an example of a shot gather
and seismic traces. In the generation of the ‘observed’ data as
well as in the FWI process, the acoustic approximation was used.
The velocity models were spatially discretized every 20 m, both
in the vertical and horizontal directions, and as boundary condi-
tions the C-PML absorbing boundary condition was used in all the
surroundings of the models (since, in this case, no free-surface is
assumed).

Starting from the initial model shown in Fig. 11 (at the right)
(which corresponds to a smoothing of the true model by a Gaussian
filter of a standard deviation of 400 m in the vertical direction and
800 m in the horizontal direction), the velocity models in Figs 13

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/1/35/6412526 by guest on 24 April 2024



FWI based on the residuals’ non-parametric PD 53

Figure 20. Differences between the seismograms corresponding to the velocity models obtained by the conventional and proposed objective functions and the
seismograms corresponding to the true model (noiseless data) for the sources fired at 2, 5, 8 and 11 km.

and 14 were obtained by applying the proposed and conventional
objective functions L2- and L1-norms of the residuals for the case
where the ‘observed’ data have no noise and for the noisy data case,
respectively.

In the FWI, the true velocities up to the depth of 1800 m were
assumed to be known, where the water layer with a P-wave veloc-
ity of about 1500 m s−1 is located. The Laplace smoothing filter
(Trinh et al. 2017) was also applied to the gradients of the objective
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functions as a form of regularization. Regarding the optimization
algorithm, the quasi-Newton L-BFGS-B method was used.

As can be seen, our proposal was able to achieve a velocity model
closer to the real subsurface than the conventional objective func-
tions (Figs 13 and 14). Apart from the fact that our proposal being
able to identify the main interfaces between the different geological
structures, it was also able to find velocities of the geological layers
closer to the real ones. In the case where the ‘observed’ data are
noisy, the velocity model reconstructed by the proposed FWI has,
however, some artefacts (Fig. 14) but these are the result of the
high level of noise in the ‘observed’ data. Note, for instance, the
shot gather corresponding to the source fired at distance 3.4 km in
Fig. 15, the proposed objective function was able to more reliably
recover the reflections that occurred at the top of the salt structure
as well as the diving waves.

Regarding the evolution of the objective function value over the
FWI iterations, it is found that the proposed objective function
presents a more irregular behaviour than the conventional L2- and
L1-norm objective functions. Although, like conventional objec-
tive functions, the proposed objective function also presents a first
stretch of faster convergence, unlike the conventional ones, it later
presents several other stretches with different convergence rates
(Fig. 16). It should also be noted that the proposed objective function
initially (in the first stretch) tends to present a slower convergence
than the conventional ones, although in the following stretches it
acquires higher convergence rates and can reach and surpass con-
ventional ones (Fig. 16, on the right). This is in agreement with the
shape of the proposed objective function obtained in the previous
experiment in Section 3.1, which has a smaller slope in the regions
farthest from the global minimum, and only in the vicinity of the
global minimum it become steeper (Fig. 1), which mean, there-
fore, a slower convergence when the model is still far from the true
model. Note also, for instance, the case of the Camembert model
when starting from the homogeneous model of velocity 3000 m s−1,
where the conventional L1-norm showed a faster convergence than
the proposed objective function, quickly approaching in relatively
few iterations of the true seismic trace (Fig. 9a). These facts may
thus indicate that the proposed objective function may exhibit a
slower initial convergence than the conventional ones, in particular
if the initial model is still far from the real one. It should also be
noted that in this synthetic example of the Brazilian pre-salt field in
which the observed data does not contain noise, the behaviour of the
proposed objective function was already quite different (Fig. 16, on
the left). Although it also had a faster convergence in the first stretch
and a slower convergence in the following stretches, it always had a
much faster convergence than the conventional objective functions
(Fig. 16 on the left, note that the right and left vertical axes have
different scales) and furthermore, unlike the conventional ones, it
did not show a tendency to stabilize its value. However, it must be
stressed that these cases in which the observed data are noise-free
and the modelling corresponds exactly to the real wave propagation
in the medium are actually quite rare.

In Fig. 17, the first gradients of the conventional and the proposed
FWI are also presented. As can be seen, the main interfaces are much
sharper and better defined in the first gradient of the proposed FWI
than in the first gradients of the conventional FWI. The L2 gradient
is essentially dominated by updates closer to the surface and where
the deeper layers are almost imperceptible (Fig. 17, at top left). In
the L1 gradient, although the geological layers are already much
more visible, this gradient continues to be dominated by shallow
updates as the L2 gradient (Fig. 17, at top right). In contrast, in the
proposed FWI gradient, the magnitude of the gradient components

is already more uniform throughout the model, also leading to a
greater emphasis on deeper geological structures (Fig. 17, below).

Finally, it should be noted that our proposal, as expected, makes
it possible to reach probability distribution of the residuals closest
to the true probability distributions (which in the present case are
known because it is a synthetic case, Figs 18 and 19), which means,
therefore, that our proposal was able to achieve the modelled data
closest to the ‘true observed’ data (noiseless data) than conventional
objective functions L2- and L1-norms of the residuals (as can be seen
from Fig. 20).

It is also noteworthy that, in terms of computational cost, the
proposed objective function does not represent a significant compu-
tational cost when compared to the conventional FWI. For instance,
in this more realistic example, where the velocity model has a spa-
tial discretization of 701 points in the horizontal direction and 351
points in depth and temporal discretization of 10001 points per seis-
mic trace, in our implementation where we performed a resampling
according to Nyquist sampling theorem for a more efficient compu-
tation of the gradient (e.g. Yang et al. 2016), the proposed objective
function only has a computational cost of about 5 per cent higher
than the conventional FWI (L2-norm).

4 C O N C LU S I O N S

In contrast to previous works in the literature, in this work, a specific
probability distribution for the residuals is not imposed, but instead,
it is proposed to use the non-parametric KDE technique to explore
the probability distribution that may be most suitable. And, thus,
to avoid that FWI is forced to converge to an incorrect probability
distribution different from the true probability distribution of the
residuals and consequently preventing FWI from reaching biased
subsurface models.

As the results obtained in our experiments demonstrate, our pro-
posal has a greater potential to overcome adverse situations, such
as, for instance, situations where the initial model is far away from
the real subsurface and the observed data contain a relevant noise
level and, consequently, to achieve subsurface models closer to the
real ones. This greater potential can also be justified by its smoother
shape and with fewer and less pronounced local minima than con-
ventional objective functions.
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Full-waveform inversion based on kaniadakis statistics, Phys. Rev. E,
101(5), 053311. https://doi.org/10.1103/PhysRevE.101.053311.

da Silva, S.L.E.F., Costa, C.A.N., Carvalho, P.T.C., de Araújo, J.M., Lu-
cena, L. & Corso, G., 2020b. Robust full-waveform inversion using
q-statistics, Phys. A, 548, 124473. https://doi.org/10.1016/j.physa.2020.
124473.

Fan, J. & Yao, Q., 2003. Nonlinear Time Series: Nonparametric and Para-
metric Methods, Springer, New York.

Fei, Y., Rong, G., Wang, B. & Wang, W., 2014. Parallel L-BFGS-B algorithm
on GPU, Comput. Graph., 40, 1–9.

Fichtner, A., 2011. Full Seismic Waveform Modelling and Inversion,
Springer-Verlag.

Gauthier, O., Virieux, J. & Tarantola, A., 1986. Two-dimensional nonlinear
inversion of seismic waveforms: numerical results, Geophysics, 51, 1387–
1403.

Guitton, A. & Symes, W.W., 2003. Robust inversion of seismic data using
the huber norm, Geophysics, 68, 1310–1319.

Hansen, B.E., 2009. Lecture Notes on Nonparametrics, University of Wis-
consin.

Hart, J., 1997. Nonparametric Smoothing and Lack-of-Fit Tests, Springer-
Verlag, New York.

Huber, P.J., 1973. Robust regression: asymptotics, conjectures, and monte
carlo, Ann. Stat., 1, 799–821.

Kaniadakis, G., 2001. Non-linear kinetics underlying generalized statistics,
Phys. A, 296, 405–425.

Komatitsch, D. & Martin, R., 2007. An unsplit convolutional perfectly
matched layer improved at grazing incidence for the seismic wave equa-
tion, Geophysics, 72(5), 155–167.

Lailly, P., 1983. The seismic inverse problem as a sequence of before stack
migration, in Bednar, J.B., ed. Conference on Inverse Scattering: Theory
and Application, pp. 206–220, SIAM.

Li, Q. & Racine, J., 2007. Nonparametric Econometrics: Theory and Prac-
tice, Princeton University Press, Princeton, NJ.

Li, Y.E. & Demanet, L., 2016. Full-waveform inversion with extrapolated
low-frequency data, Geophysics, 81(6), R339–R348.

Liu, D.C. & Nocedal, J., 1989. On the limited memory BFGS method for
large scale optimization, Math Program: Ser. A and B, 45, 503–528.

Métivier, L., Brossier, R., Mérigot, Q., Oudet, E. & Virieux, J., 2016. Measur-
ing the misfit between seismogramsusing an optimal transport distance:
application to full waveform inversion, Geophys. J. Int., 205(1), 345–377.

Mulder, W. & Plessix, R.E., 2008. Exploring some issues in acoustic full
waveform inversion, Geophys. Prospect., 56, 827–841.

Parzen, E., 1962. On estimation of a probability density function and mode,
Ann. Math. Stat., 33(3), 1065–1076.

Plessix, R., 2006. A review of the adjoint-state method for computing the
gradient of a functional with geophysical applications, Geophys. J. Int.,
167(2), 495–503.

Rosenblatt, M., 1956. Remarks on some nonparametric estimates of a density
function, Ann. Math. Stat., 27(13), 832–837.

Scott, D.W., 1992. Multivariate Density Estimation : Theory, Practice, and
Visualization, Wiley, New York.

Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis,
Chapman & Hall, London.

Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic
approximation, Geophysics, 49(8), 1259–1266.

Tarantola, A., 1987. Inverse Problem Theory: Methods for Data Fitting and
Model Parameter Estimation, Elsevier Scientific Publ. Co., Inc.

Tarantola, A., 2005. Inverse Problem Theory and Methods for Model Pa-
rameter Estimation, SIAM.

Tejero, C.E.J., Dagnino, D., Sallarès, V. & Ranero, C.R., 2015. Comparative
study of objective functions to overcome noise and bandwidth limitations
in full waveform inversion, Geophys. J. Int., 203(1), 632–645.

Trinh, P.T., Brossier, R., Métivier, L., Virieux, J. & Wellington, P., 2017.
Bessel smoothing filter for spectral-element mesh, Geophys. J. Int.,
209(3), 1489–1512.

Tsallis, C., 1988. Possible generalization of Boltzmann-Gibbs statistics, J.
Stat. Phys., 52, 479–487.

Van Kerm, P., 2003. Adaptive kernel density estimation, Stata J., 3, 148–156.
Virieux, J. & Operto, S., 2009. An overview of full-waveform inversion in

exploration geophysics, Geophysics, 74(6), WCC1–WCC26.
Virieux, J., Asnaashari, A., Brossier, R., Métivier, L., Ribodetti, A. & Zhou,

W., 2014. 6. an introduction to full waveform inversion, in Encyclope-
dia of Exploration Geophysics, pp. R1–1-R1-40, Society of Exploration
Geophysicists.

Xue, Z., Alger, N. & Fomel, S., 2016. Full-waveform inversion using
smoothing kernels, in SEG Technical Program Expanded Abstracts 2016,
pp. 1358–1363. Society of Exploration Geophysicists.

Yang, P., Gao, J. & Wang, B., 2015. A graphics processing unit imple-
mentation of time-domain full-waveform inversion, Geophysics, 80(3),
F31–F39.

Yang, P., Brossier, R. & Virieux, J., 2016. Wavefield reconstruction by inter-
polating significantly decimated boundaries, Geophysics, 81(5), T197–
T209.

Yuan, S. & Wang, S., 2013. Full waveform inversion using non-smooth data
fidelity and non-smooth regularization, Can. J. Explor. Geophys., 38(1),
4–11.

Zhu, C., Byrd, R., Lu, P. & Nocedal, J., 1997. L-BFGS-B: Algorithm 778:
L-BFGS-B, FORTRAN routines for large scale bound constrained opti-
mization, ACM T. Math. Softw., 23(4), 550–560.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/1/35/6412526 by guest on 24 April 2024

http://dx.doi.org/10.1214/aos/1176345986
http://dx.doi.org/10.1190/1.1443015
http://dx.doi.org/10.1190/1.3215771
http://dx.doi.org/10.1190/1.3379323
http://dx.doi.org/10.1190/1.1444219
http://dx.doi.org/10.1190/1.1443880
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1080/24709360.2017.1396742
http://dx.doi.org/10.1111/j.1365-246X.1988.tb03433.x
http://dx.doi.org/10.1190/1.1442864
http://dx.doi.org/10.1103/PhysRevE.101.053311
https://doi.org/10.1103/PhysRevE.101.053311
http://dx.doi.org/10.1016/j.physa.2020.124473
https://doi.org/10.1016/j.physa.2020.124473
http://dx.doi.org/10.1190/1.1442188
http://dx.doi.org/10.1190/1.1598124
http://dx.doi.org/10.1214/aos/1176342503
http://dx.doi.org/10.1016/S0378-4371(01)00184-4
http://dx.doi.org/10.1190/1.2757586
http://dx.doi.org/10.1190/geo2016-0038.1
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1093/gji/ggw014
http://dx.doi.org/10.1111/j.1365-2478.2008.00708.x
http://dx.doi.org/10.1214/aoms/1177704472
http://dx.doi.org/10.1111/j.1365-246X.2006.02978.x
http://dx.doi.org/10.1214/aoms/1177728190
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1093/gji/ggv288
http://dx.doi.org/10.1093/gji/ggx103
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1177/1536867X0300300204
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/geo2014-0283.1
http://dx.doi.org/10.1190/geo2015-0711.1
http://dx.doi.org/10.1145/279232.279236

