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Summary 

A time-harmonic expansion of the gravitational tide potential is computed 
using an ephemeris of high precision for the Moon and the Sun and the 
latest I.A.U. astronomical constants. The results, which are computed 
for three different epochs and by novel methods, are compared with 
Doodson's classic expansion. The chief differences are due to secular trends 
in large terms and to revised constants which reduce all the solar terms. 
A new expansion is also given for the radiational tide potential. 
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Time (E.T. or U.T.) in mean solar days, usually from the epoch 
1900 Jan 1.0 
Frequency of general harmonic term in cycles per mean solar day 
Time in Julian centuries of 36525 ephemeris days from the epoch 1900 
January 0.5. 
Gravitational acceleration at Earth's surface 
Geocentric co-latitude (zero at North Pole) and east longitude of a 
place on the Earth 
The same quantities for the Moon (' for the Sun) 
Sine equatorial parallax of the Moon, Sun 
= Ti/n, ll'/n', where the bar denotes time-average. 
Mean longitude of the Moon, Sun 
Latitude of the Moon, Sun 
Mean longitude of the Moon's, Sun's perigee 
Mean longitude of the Moon's ascending node 
Radius vector of the Sun in astronomical units 
Obliquity of the ecliptic 
Principal arguments in Brown's development 
Earth's equatorial radius 
Complex spherical harmonic of order m, degree n (equation (10)). 
Time dependent coefficient of Wnm in gravitational potential 
See equation (14) 
Amplitude and phase of general harmonic component (equation (13)) 
Filtered potential centred on tidal Group (jl, j 2 )  (equation (15)) 
Filtered potential at 
Filter characteristics associated with last two quantities (equations 
(16) and (18). 

c yr-I resolution (equation (17)) 
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Introduction 

A. T. Doodson’s (1921)t harmonic expansion has for long been accepted as the 
most thorough development of the gravitational tidal potential ever carried out. It 
superseded G. H. Darwin’s (1883) expansion, just as E. W. Brown’s (1905) lunar 
theory, which Doodson used, superseded all earlier theories. However, while its 
principal features have been amply verified by analyses of tidal records as far as 
their lengths and geophysical noise levels permit, the finer details of Doodson’s 
expansion have probably never been checked by independent calculation. In any 
case, the widespread revision of astronomical constants (Wilkins 1964, 1965), the 
introduction of Ephemeris Time (Sadler & Clemence 1954), and the re-calculation of 
Brown’s coefficients (Eckert, Jones & Clark 1954), make the present time ripe for 
fresh calculations of the tidal potential. Such work has now been completed, and 
the results are presented in this paper. 

Paradoxically, our motivation for this work arises not from the requirements of 
‘ harmonic methods ’ of tidal analysis, but from those of a new method of analysing 
tidal data which is in principle non-harmonic. Standard ‘ harmonic methods ’ 
demand little accuracy in the harmonic amplitudes of the potential, since they use 
only thefrequencies at which the larger amplitudes appear, and certain details on 
which to base ‘ nodal corrections ’.$ Indeed, recent efforts to extend such methods by 
nearly doubling the usual number of arbitrary terms (Zetler & Cummings 1967; 
Rossiter & Lemon 1968) have sought to identify compound frequencies arising from 
local effects of shallow water rather than neglected terms in the primary potential. 

The non-harmonic method is the ‘ response method ’ of Munk & Cartwright 
(1966)-see also Cartwright (1968) and Cartwright, Munk & Zetler (1969). Here, 
the gravitational potential is computed a priori as a time-dependent series of spherical 
harmonics§, 

D. E. Cartwright and R. J. Tayler 

v(e, 1, t)/s = c x c,m*(t> w,m (0,4 
m n  

and the part of a given geophysical tidal variation [ ( t )  which is linearly coherent 
with the harmonic of order m, degree n is expressed in the forms 

where the arbitrary time lag z is usually taken as two days. Although direct reference 
to time harmonics is deliberately avoided, indirect reference is sometimes necessary, 
as when: 

(a) it may be convenient to compute c,”(r) itself, or a filtered part of it, directly 
from its harmonic expansion; 

(b) one wants to generate a tidal prediction by the response method for a regime 
which is known only by its ‘ harmonic constants ’; or 

(c) one wants to compare the results of several ‘ response analyses ’ with each 
other, with existing ‘ harmonic analyses ’, and with dynamical theory, for which it 
is desirable to specify fixed frequencies. 

t Reprinted as Doodson (1954); tables also in Neumann & Pierson (1966). 

$ The most thorough use of the potential for harmonic purposes is by Horn (1967). 

4 In these two equations, the real part of complex products is understood, with * denoting the 
conjugate. 
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New computations of the tide-generating potential 47 

Cases (b) and (c), essentially matters of translation, are considered by Zetler, 
Cartwright & Munk (1970) and are implicit in Munk, Snodgrass & Wimbush (1970). 
At any specified frequency f ', one defines the ' admittance' Z,,"'(f') of the tidal 
motion to the spherical harmonic (m, n)  of the potential, 

The time harmonic of the motion corresponding to a 'line' H' with frequency f' 
in the potential is then simply H' Z,,"'(f'). Evidently, in any of these applications, the 
harmonic lines H', at least the larger ones, have to be known with some precision. 
Similar considerations also apply to the relationship between the precessional 
nutation of the Earth and the tidal potential, recently expounded by Melchior & 
Georis (1 968). 

Our method of computing the time harmonics of the potential differs considerably 
from that of Doodson, which was one of massive algebraic expansion from Brown's 
series. A suite of computer programs for tidal analysis by the ' response method ' 
has been in use and well tested for some years (Cartwright 1967), and this was used 
to generate time-series of the coefficients for three spans, each a little more than 
18 years. The harmonics were extracted from these series by carefully applied filtering 
techniques. In generating the time-series, special attention was paid to the accuracy 
of the ephemerides used for both Moon and Sun, which were made comparable 
with the most modem published ephemerides to six significant figures. To ensure 
this accuracy, the programs had to incorporate not only a fair length of the revised 
Brown series, but also various corrections such as those due to the nutation and to 
the planets, which were ignored by Doodson. 

In what follows, we first outline the choice of terms for inclusion in the ephemeris 
calculations, then after defining the normalization used for the potentials, we describe 
the filtering processes, and tabulate the results, with comparisons with Doodson's 
tables. Finally, we add a harmonic expansion of the radiational potential (Munk & 
Cartwright 1966) which has not previously been calculated. 

Calculation of the ephemeris 

Eckert, Jones & Clark (1954)-hereafter referred to as EJC-re-worked Brown's 
(1905) theory from its fundamentals by automatic computer. Their resulting tables 
and corrections have now superseded Brown's (1919) tables, and represent the most 
precise expression of the Newtonian dynamics of the Earth-Moon-Sun system in 
existence. However, the accuracy of the EJC tables, about lo-' (rad, or mean 
parallax), is far greater than is required for the present purpose. Munk & Cartwright 
(1966) obtained good tidal analyses using an ephemeris (essentially de PontCcoulant's 
to 3rd order), which contains errors of 0.5 x as is to be expected from an 
expansion containing only 13 harmonic terms?. Longman (1959) and others have 
worked with a gravitational potential computed from only eight harmonic terms. 
Our aim has been to remove all doubts associated with such approximations, and in 
fact to maintain a level of precision rather better than Doodson's. Since a general 
property of the lunar series seems to be that total errors can amount to about ten 
times the largest neglected term, our computer program was arranged to include all 
terms from EJC in longitude and latitude (yl C) greater than 0'-190, in latitude 
(S and N) greater than 1".85, and in sine parallax greater than O"4018. These limits 

t The printed formula for the Moon's longitude omitted the Annual Equation, included in the 
calculations. Error curves were calculated by Dr M. J. Krijger of the Hague (private communica- 
tion). 
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48 D. E. Cartwright and R. J. Tayler 

entailed a total of 277 harmonic solar perturbations?, many of which of course 
shared common arguments, and also 15 very small planetary perturbations. Final 
errors were never found to exceed 1.3 x lo-’ rad or 0.6 x lo-’ mean parallax, and 
were usually much less (see Table 1). 

The ‘ fundamental arguments ’, consisting of the mean longitudes of Moon, Sun 
and planets, of the Moon’s and Sun’s perigee and of the Moon’s mean node, were 
computed in terms of ephemeris time T in Julian Centuries from formulae of type. 

e(r) = & + A ,  T + A ,  T Z + A 3  T 3 +  Cc, cos(a,+b, T). (1) 
I I  

The secular arguments A, are as printed in Meeus (1962), in EJC (with other units), 
and in modern editions of the Astronomical Ephemeris. We remark only that the 
constants of the Moon’s mean longitude have been substantially altered to keep in 
line with the new (1954) revisions. The harmonic terms in (1) are long period perturb- 
ations to the Moon’s elements, which we selected from Table I1 of EJC again only 
where c, exceeds O”e19. Twenty such terms were used, the largest by far being two 
terms in the Moon’s node of amplitude 95”.96 and 15”-58 respectively with periods 
close to the nodal period, and the ‘ Great Venus Term ’ in longitude of amplitude 
14“.27 and a period of 271 years. 

The Moon’s true longitude and sine parallax are then computed by adding the 
high frequency perturbations in terms of Brown’s four arguments: 

1 = L -w 
1‘ = L’-w’ 

F = L - 51 
D = L - L‘ 

= Moon’s mean anomaly 
= Sun’s mean anomaly 
= Moon’s mean elongation from the node 
= Moon’s mean elongation from the mean Sun, 

by formulae of type: 
Sin M(r) = C p,, r, cos(in 1 + j ,  I’ + k, F + m, D) 

n 
Sin + pn cos(lunar and planetary arguments). (2) 

In (2), r, and p, are the coefficients of solar and planetary perturbations res- 
pectively, chosen as previously described from Table I11 of EJC, each being associated 
with a set of integers (i,,j,, k,, m,), in our case all between k 6. Sines of arguments 
are used for longitude, cosines for parallax. The p, are multipliers close to unity of 
the form 

pn = e l i n l e ~ l j n l y i ~ n i  

as detailed on p. 344 of EJC. They allow for small differences between actual and 
nominal orbital parameters, chiefly solar eccentricity e‘, corresponding to e’( T)/e‘(O) 
in formula (5).  

The final increment used to obtain the Moon’s true longitude, (referred to the 
true equinox of date) is that due to the Earth‘s nutation. Woolard’s expressions for 
the nutation are tabulated in Sadler & Clemence (1954), from which for the present 
accuracy we have extracted the following increments to longitude L and obliquity E 
(seconds of arc): 

2L (3) 
6L -17.23 sin -1.27 sin +Om21 sin -0.20 sin 
6~ + 9.21 cos +035 cos -0.09 cos 251 +Ow09 cos 

2L‘ - - 

t A few terms with amplitude a little lower than the stated limits were also included where their 
arguments were inevitably used in the longitude, viz. Serial Nos. 676, 753, 872, 912. 
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New computations of the tide-generating potential 49 

The sine parallax is converted to its normalized value t by dividing by 3422"-70, 
which is the nominal mean value of the tables. t is precisely the quantity occurring 
in tidal potential theory, whereas for the construction of astronomical tables it is 
converted to the arct by adding a cubic correction of order Where we require 
the numerical value of mean sine equatorial parallax, we use the 1964 I.A.U. value 
3422"-451, (Wilkins 1965), which again differs from the value 3422".54 at present 
adopted in the Astronomical Ephemeris. 

We compute the Moon's latitude in the formalism adopted by EJC: 

/3 = (l+C)(yl sinS+yz sin3S+N), S = F + 6 F + 6 S  

where F+6F is the true elongation from the node, already described, and 6s and 
N (sines) and y1 C (cosines) are obtained by summing harmonic terms similar to (2), 
though without planetary terms, which are negligible here. We also use 
y1 = 18519".70, y z  = -6Il-24, and ignore a very small term y3. This was the 
formalism used by Brown in his final tables (1919), although Doodson (1921) and 
Meeus (1962) refer to a more explicit form for latitude given in Brown (1905). 

Maintaining the same accuracy in the Sun's ephemeris, we have used Newcomb's 
formulae as in all official work, for convenience as tabulated in Meeus (1962). In 
brief, the ' apparent ' longitude L,' and radius vector R,' (in this case equal to l/t') 
are compounded of the following terms: 

1 .  (4) 
L,' = L' + rLb,df6Lb,,ipse+6L;la,et+6L;U,,r+6L;u, 
Ra' = 1 +GR,,lipse+'R;,ane,+GR;unar 

Here, SL,,, consists of the ' additive ' terms of long period, already referred to in 
formula (l), although considerably smaller than the corresponding lunar terms. 
The next terms in (4) are the classical variations of elliptic motion, with eccentricity 
given by: 

e' = 0.01 675 104 - 0~00004180 T - 0~00oooO126 TZ. 

These are the only terms considered by Doodson, who took e' as a constant at T = 0. 
The planetary terms in (4) are similar in form to those in (2), but are relatively 

more important than in the lunar motion and can amount to as much as 
45 harmonic terms (23 arguments) are included in the computation, principally due 
to Venus and Jupiter, but with some non-negligible amplitudes due to Mars and 
Saturn.#. 

The lunar terms in (4) express the changes in apparent position of the Sun due 
to the Earth's reflection of the Moon's orbit about their joint centre of gravity. 
Following Meeus (1962, p. 31), we use the geometrical formula: 

(5) 

to this we finally add the nutational increment to longitude 6L from formula (3). 
These two increments are interesting as being the only means whereby lunar fre- 
quencies, (principally modulations of one synodic month and the nodal period) enter 
the solar tide. 

t Meeus and others make the approximation that 3422"-70 is in fact the mean arc, although 
strictly incorrect according to EJC. 

$ Strictly, the planetary effects on tides, though minute, are incomplete, because we have not 
included the direct tidal potential of the planets. The present object is merely to establish an accurate 
ephemeris. 

4 
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50 D. E. Cartwright and R. J. Tayler 

Normally, the Sun’s apparent longitude is allowed a further increment 
(- 20”.47/R’) due to the aberration of light, but this is omitted here as inappropriate 
to calculations of gravity. For consistency in precision, two small planetary terms 
and a lunar term related to (6) are combined to make a non-zero solar latitude B’. 

As an overall test of the above procedures, and of the computer logistics, the 
six lunar and solar elements were compared with corresponding values in the 
Astronomical Ephemeris every 10 days from 1959 Jan 0 to 1967 Dec 24, and the mean, 
standard, and maximum errors are given in Table 1.  In the comparison due allowance 
was made for solar aberration and the difference between arc and sine of lunar 
parallax. Errors in the lunar values are similar to those described by Meeus (1 962, 
pp 47-51) from a much shorter comparison with his tables. Our errors in lunar 
parallax are significantly smaller; in fact deliberately so, since the tidal potential 
involves the cube. Meeus’s solar elements are nearly perfect, since he includes an 
extensive range of planetary and nutational tern=. Our’s have errors comparable with 
but smaller than our lunar errors as befits the present work. It is difficult to compare 
with Doodson’s level of accuracy, but his errors must certainly be greater in every 
case. 

At this stage, the reader may wonder why we bother to compute the ephemeris at 
all when it is already available to higher precision in published form. The main 
reasons are that modern computers can compute faster and more efficiently than 
they can read data (the calculations above take about 45 s for a year’s ephemeris), 
and that tidal analyses are sometimes required for rather ancient epochs. (As an 
extreme example, the senior author has recently used this program to analyse tidal 
observations made by Maskelyne (1762) before he published the first Nautical 
Almanac.) 

Table 1 

Statistics of differences between present computations and published ephemerides, 
1959-1967 

Units Mean S.D. Maximum Dates of maximum 
Normalised 

Moon sine parallax lo-’ 0.20 0.18 -0.56 1966 Aug. 21 
SUn 9 9  lo-” 0.03 0.08 +0.29 1959 June 9, 1962 Nov. 10 
Moon Longitude 0.16 0.31 +1.21 1963Nov.5 

Moon LatitLde ] rad)i(ans [ 0.04 0.19 -0.50 1959 March 31t 
Sun 0.01 0.20 i-0.58 1965 Nov. 24 

SUn ,f (i.e. 2 3  -0.02 0.03 -0.07 1962 July 3 

t $0.50 in Moon’s latitude also occurred on 1961 Aug. 17 and 1965 July 27. 

The final steps taken to produce quantities directly usable for calculations of the 
gravitational potential are as follows. The ecliptic latitudes and longitudes are 
converted to cosines and sines of co-declination 0 (polar angle) and right ascension, 
and the latter transferred to terrestial east longitude A from the Greenwich ephemeris 
meridian by effectively subtracting the ephemeris sidereal time. This involves some 
well-known trigonometrical formulae; also the obliquity of the ecliptic, for which 
we take 

= 8428”*26 - 46”.85 T +& 

and the sidereal time angle (in revolutions) reckoned from the true equinox, namely 

(7) 

t -t 0.27691940 + loO.oO213590 T + 0~00O00108 T z  + (129600)- 6L cos E 
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New computations of the tide-generating potential 51 

where BE and BL are the nutational increments in (3). The lunar parameters 5 ,  
:?: (0, A) are at first computed at Oh and 12h E.T., and the solar parameters t', 
'.?," (0', A') at Oh E.T. only. At a later stage of the computation, these elements are 
interpolated by Everett formulae to a shorter time interval (3 hourly for the present 
purpose) in Universal Time, while A and A' are adjusted from the ephemeris meridian 
to the geographical meridian of Greenwich. These last adjustments use the series of 
measured time differences 

AT = E.T. - U.T. 

published in the Astronomical Ephemeris, and thus involve the known vagaries of 
the Earth's rotation, to produce as realistic values as possible. 

Calculation of the potential 

We consider the gravitational potential on a sphere with the Earth's equatorial 
radius. The adjustment to the actual radius of the geoid is a secondary matter which 
need not concern us here. We have then 

m 
V/g = C K ,  c+' Pn(cos a), K, = a ( M / M , )  IT"" (8) 

n = 2  

where M (or M') is the Moon's (or Sun's) mass, PI its mean sine parallax, and a 
its zenith angle relative to the place on the sphere with co-ordinates (&A). 

The P, are Legendre Polynomials, which can be expanded in terms of the ephemeris 
elements 0, A described in the last section as followst: 

] (9) 
4a 

P,(cosa) = - . Re [ KO*(@, A) W,"(O, 4 + 2  2 W , * ( 0 ,  A) Wc(0, A) 
2n+ 1 m - 1  

where W,"'(B, A) denotes the spherical harmonic 

and 

Using the 1964 I.A.U. constants (Wilkins 1965): 

M / M ,  = 1/81.30, 

pf = 3422".451, 

M'IM, = 332958, 

Pt' = 8".794, 

a = 6378160 metres, so that 

K, = 0.358378 m, K2' = 0.164577- 

K, = 0405946m, K,' = 0400007 my 

t We here follow the procedure and notation of Munk & CartWright (1966), except that our 
5, 0, A are their RIR, Z, L, respectively. 
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52 D. E. Cartwight and R. J. Tayler 

equations (8)-(11) and the computed ephemeris are used quite simply to compute 
the series of time-dependent coefficients cnm(t) in the relation 

n 
V / g  = C C c,,"*(t) Wnm(O, A)  metres 

n = 2 , 3  m = O  

mentioned in the Introduction. We compute only for n = 2 and 3 (Moon) and for 
n = 2 (Sun) because of the ordering of magnitude due to the factor R"'. Corrcs- 
ponding lunar and solar series are added to define the total potential. 

Doodson's development differs from ours in normalization. His G (in which 
p is a misprint for pz)  corresponds to our $gK,  and is taken out as an arbitrary 
factor, so that most of his numerical coefficients are hardly affected by changes in 
basic astronomical constants, but only by the small differences in the ephemeris 
calculations. However, his solar terms, denoted by G,, all contain a factor K2'/K2 
which he took to be 0.46040, whereas the modem constants give 0.45923. His third 
degree terms denoted by G,' (our n = 3) also contain the factor fl which he took 
to be 3422".70, but since these terms never involve more than four significant figures 
this particular error is negligible. Apart from such discrepancies, Table 2 details 
our normalization (equations (10) and (ll)), and the resulting ratio p of Doodson's 
coefficients to corresponding terms in c,,". 

Table 2 

Normalization and ratio p = (Doodson : Cnm) 
ni n e-'"" Wnm(e, A) 
0 2 2/(5/44(3 W S ~  O-$) 
1 2 -1/(5/24~) 3 sin 8 cos 8 
2 2 1/(5/96~) 3 sin2 O 
0 3 d(7/44(+ C O S ~  e-+ cos e) 
1 3 -2/(7/48~) 3 sin 0(5 ws2 0-1) 
2 3 1/(7/480m) 15 sin2 O cos O 
3 3 -1/(7/2880~) 15 sin" 0 

P 
-2.34681 
-1  -43712 

1.43712 
-1 *24182 

1 a65576 
1 -46349 

-1.55227 

Harmonic development and filtering 

wish to express the time series cnm(f) as closely as possible in the form 
With t in Universal Time measured in mean solar days from 1900 Jan 1-0, we 

6 

r = l  
e, = 2 n ~  t+4, = c k p  (27g t++,) (13) 

where, for each s, kl . . . k6 is an array of small integers, and the bracketed arguments 
(defined precisely in Table 3) correspond in a reasonable manner with the following 
concepts in descending order of frequency: 

Doodson Brown 
1 
2 S L Moon's mean longitude 
3 h L' Sun's mean longitude 
4 P W Longitude of Moon's mean perigee 
5 N' -52, Negative longitude of Moon's mean node 
6 Pi W' Longitude of Sun's mean perigee 

7 360" t - D + 180" Time angle in lunar days (fi = 1 - f 2  + f 3 )  
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Classical analysis shows that the cosines in (13) are appropriate to (m+n) even, 
the sines to (m+n) odd. 

It is of course accepted thatf, and 4r will vary on a very long time scale, (as they 
do in Doodson's model), but we also have to make some compromise for the fact 
that many of the amplitudes in the ephemeris calculation were allowed slight secular 
variations. This, together with the planetary terms, the irregular time scale introduced 
by the conversion from E.T. to U.T., and 'numerical noise' due to imperfections in 
computing, make the problem better suited to least-squares estimation than to 
precise algebraic expansion. In fact, we analyse cnm(f) by methods similar to those 
suitable for real geophysical time series of tidal nature with very low background 
noise. 

We first note that the real and imaginary parts of c,"(t) are orthogonal in time, 
(any term H cos wt in the real part occurs as - H  sin of in the imaginary part), so 
we shall consider only the former in what follows. Secondly, since the order m 
separates the spectra into tidal ' Species ' with frequencies centred on m cycles per 
lunar day (k, = m), and the spectral analyses of Munk, Zetler & Groves (1965) 
show that the spectral energy is reduced by at least 10" (amplitude reduced by 10') 
at a separation of lc/ld, therefore we worked (as is very convenient) with the summed 
series 

A,( f )  = Re 2 c,,"'(f), n = 2,3, (14) 
m = O  

and left the filtering process to separate the component parts. 
The next procedure was to apply orthogonal pairs of filters, each designed to pass 

only one tidal 'Group' (k , , k , )  with little amplitude reduction. This operation is 
defined by 

t N  

r = - + N  
Co, o(t-to) = N - '  C. A,(t+rA.t)(l +COS v /N) ,  

Cj,, j z ( t -  t o )  = ~ X P  {2ni(j1f1 +jzfz-jzf3)(t-to))  . 

5 A,(t+rAt)(l +cos nr/N) exp (2niprlN) , (15) 
r = - + N  1 

where 

and 
N = 472, Af = &, (NAt = 59 days) 

p = 57j, +2j2, 

with the following combinations: 

j ,  = 0, j ,  = 1(1)4; 

j ;  = 1,2,jz = -4(1)4; 

j ,  = 3, j ,  = -2(1)2, for n = 3 only. 

The general effect of (1 5) is to multiply the amplitude H ,  of a term with frequency 
f, by the filter characteristic: 

(16) 
sin2 v cos v6 S(nd> 

F 1 ( f , )  = sin (v  + v 6 )  sin (v  - v6)  * s ( ~ s )  
where v = n/N, S(x) = sinxlx, 6 = 59f,-p. The form of F,(f) is plotted in Fig. 1 .  
It is near unity for all relevant frequencies in the Group (k,,k,) = (jl,j2), centred 
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54 D. E. CartWright and R. J. Tayler 

fairly close to k, = - j z .  It greatly attenuates neighbouring Groups and virtually 
eliminates neighbouring Species (different kl). The small interference from neigh- 
bouring Groups will be removed by the next filter characteristic F z ,  (18), whose 
envelope is also shown in Fig. 1. 

The effect of the fiist exponential factor in (15) is to ' heterodyne' by the central 
frequency of the Group, that is to subtract jlfi + j z ( f i - f 3 )  from the frequency of 
all harmonic components. The complex series C,,,j2(r) referred to an arbitrary time 
origin to (defined later), thus contains only very low frequency variations from its 
own Group, and small variations of up to a few cycles per month from the attenuated 
neighbouring Groups. The only precaution needed is to ensure that none of the 
latter frequencies is aliassed ', that is made indistinguishable from very low fre- 
quencies, by too long a sampling interval in t .  A sampling interval of 5 days was 
chosen as satisfactory. As shown in Fig. 1, this produces low frequencies by aliassing ' 
Groups ( j i , j z & 6 ) ,  but the value of F, at 6 - 13 is so small that the effect is well 
below numerical noise level, and in any case the frequencies of the aliassed lines do 
not tally with those of Group (jl,jz). The redundant operations inherent in applying 
the 59-day filter (15) at 5-day intervals were avoided by efficient computer logistics. 

The next operation was to apply direct Fourier transforms to an 18-year span 

- I  

- 
tm 
-2 -2- 
cn 0 
2 

-3 

0- 

- 

- 

- 4 - 1  I 
I.- 2 I.- I 

I I  
0 90 

I 
I 

- I  ' 1 .' I ' I  

0 

1.0 1 , )  1,2 1.3 1,4 

I I I  I I I I I 
I00 I10 

Cvcles/rnean solor dav 

Fra. 1. The top panel shows the main constituents of the Wzl diurnal tide, with 
Group numbers (kl, kz).  The vertical pecked lines show the ' Nyquist ' frequencies 
of the filtered series C1, l(t) when computed at 5-day intervals, and the horizontal 
lines are the positions of ' aliassed ' Groups. Amplitudes of the aliassed Groups 
are greatly reduced by the filter F l ( f )  acting at its proper (non-aliassed) frequency. 
(Group (1, -9, reduced by more than 6O00, is well below the threshold level.) 
The central portion of F, appropriate to C1, is in the lower panel, as well as the 

envelope of the Fourier filter FZ appropriate to (P, Q)l. I. 0 .  
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New computations of the tide-generating potential 55 

of the Group series Cjl,jz(t’), (t‘ = t - f o ) :  
M 

r = O  
Po, 0 , o  = M - ’  C ” Co, (t’+rAt’) 

M 
Po, o j 3 + i Q 0 ,  o , j 3  = (- 1)jt 2M-’ C ” Co, (t’+rAt’) exp (-2aij, r / M )  

. r = O  

where 
M = 1315, At’ = 5, (MAt’ = 6575 days) 

and C“ represents a summation whose first and last terms are halved. For Group 
(O,O), j, = 1(1)80; otherwise j ,  = -80(1)80. It is now appropriate to state that to 
was chosen as the central time of the 18-year span, (see Table 3), so that all ‘ phases ’ 
0, in (1 3) refer to this time. 

The fdter characteristic of (17) is such that for Group (0,O) 

( p ,  Q)o,  0,  j 3  = C Fi HJFz cos es, Gz sine,), 

where 
c1 = n/M, E = 65751f,-jlfl-j~f~+j~f31 -lj31. 

{ W Z  k GZ)? 3(Fz  -t- F2)L 

For all other Groups, ( F z ,  G2) is replaced by 

(19) 

the (+) signs being taken whenf,-jlfl-jzfz+jzf3 has the same sign as j,, the 
(-) sign when different. The function is always rather similar to its dominant factor 
S(ne), and only its envelope for the case j ,  = 0 is shown in Fig. 1. 

The Fourier harmonics (P, Q),l, ,2, j 3  already give a good first approximation to the 
lines 

F ,  H,(COS o,, sine,), 

as the typical examples in Fig. 2 clearly show. 6575 days being within 16h of 18 
tropical years, unit inaements in k3 correspond fairly precisely with 18 increments 
in j,. Unit increments in k4 (8.85 yr) and k5 (18.61 yr) give increments of 2 and 1 
to j, with somewhat less precision. Non-zero k6 is recognizable from the phase. 
change of some 282” in 46. However, it is possible for two or more distinct lines H,, 
closely spaced in frequency, to be unresolved without further analysis. Careful 
algebraic study shows that close terms from the same spherical harmonic can differ 
in frequency only by 

2f6, (1 cycle/10470 y) 
or 

Doodson’s tables show six such pairs, all in the solar Groups, differing by 2f6t, 
but some others involving amplitudes below the threshold of may have been 
omitted. Another difficulty we have to resolve is that all terms (P, Q) contain small 

df7 =f4-2f5ff6, (1 c/18oy)* (20) 

t The difference f4-2fs also appears, but only between terms from WZm and terms from WSm 
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56 D. E. CartWright and R. J. Tayler 

contributions from lines at more than +$ c y-' separation, through the ' sidebands ' 
of the filter (F, ,  G,). 

Our h a 1  steps for extracting reasonably accurate values from ( P , Q )  were as 
follows : 

1.  For reasons irrelevant to this paper, it was convenient to compute 18-year 
time series of A,(t) and A3(t),  (14) for a recent epoch with central date in 1960. In 
order to search unambiguously for frequency differences Sf, (20), a similar span 
was also computed about 90 years earlier, with central date in 1870. A third convenient 
span, with central date in 1924, was also used. For each span, mean values of 
f, ... f s  and 4, ... dS were computed from values at the start and end times of 
L, E ,  w ,  - 51, w' respectively, using the long period ' additive ' terms (equation (l)), 
and also the appropriate adjustments from Ephemeris Time to Universal Time. 
The precise dates and arguments are listed in Table 3. 

Table 3 

Times (U.T.) and mean arguments for the three 6575 day spans. 

SpanNo. Start time AT End time AT Central time I, (from 1900.0) 

2 1915 May 16.0 (16.4) 1933 May 22.0 (23.6) 1924 May 21.5 8906.5 
3 1951 May 23.0 (29.7) 1969 May 23.0 (40.0) 1960 May 22.5 22056.5 

1 1861 Sep 21.0 (3.1) 1879 Sep 22.0 (-7.7) 1870 Sep 19.5 - 10693.5 

r = 2  r = 3  r = 4  r = 5  r = 6  
0.03660 11013 0.00273 79093 0*00030 94562 0.00014 70943 0.00000 01307 

25 92 54 41 08 
23 92 48 40 08 

f*( 3 

135O.22275 180O.16879 223O.08434 254".58011 280"*71758 
272O.60245 058"-85684 246O.60455 212O.47704 281".64011 
022".22101 060". 1 1923 271 a .56503 188O.82048 282O.25919 

' Start ' and ' End ' correspond to the terms r = 0, M, in equation (17) 
Figures in brackets at AT = ET-UT in seconds 

For each period,fi= l-fz+f3, 4, = 180°-4z+43 

2. The 'sideband' noise level for each Group j,,j,, (see Fig. 2), was greatly 
reduced by assuming the indisputable k, values for the frequencies of the major 
lines in the Group, (and in some cases for adjacent Groups j 1 , j 2 * 1  also) and 
subtracting their sidebands according to the filter functions 17, 18 and 19. 

3. Each (P, Q) j , , j 2 ,  j 3  whose amplitude stood well clear of the reduced noise 
level was tested for all possible combinations of three lines H ,  with frequencies f, 
determined by the scheme: 

k ,  = j,, k ,  = j,, k ,  = k3'-j2; 

(k4, k5)  = (k4', k5'), or (k4'+ 1 ,  kt5 -2)' or (k4'- 1 ,  k, '+2);  

k ,  = 0 or & I ,  or in certain cases +2; 
where 

k,' is the nearest integer to j3/18, 

kql is the integral part of (j3 - k,')/2, 
and 

k5' = j ,  - k3' - 2k,'. 
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The test consisted in determining a triplet Hs to minimize 

u = < [ ( C F , H , C O ~ ~ , - P ) ~ + ( C G ~ H ~  ~in4,-Q)~]> 
S S (21) 

where c > denotes an ensemble average over the harmonics from the three 18-year 
periods. The appropriate combination was then easily picked out by the smallness 
of its umin (independently of the choice made at step 2), and in most cases indicated 
a single large H, and two other negligibly small amplitudes. Where two comparable 
amplitudes appeared, their frequencies were always separated by the ‘ permissible ’ 
values 2f6 or &, (20). 

4. The solutions from step 3 were used to subtract sidebands of higher accuracy 
from the original (P,Q) values and thus to iterate step 2. The sequence 2-3 was 
repeated until stable values of H ,  and a generally low amplitude level (< at 
non-contributing (P, Q) was obtained. Three iterations were usually sufficient. 

The solutions from (21), converted to true amplitudes H, by dividing by the broad 
filter function F,, (16), agreed roughly with Doodson’s values, (with some differences 
discussed in the next section) and included several reliable amplitudes below Doodson’s 
threshold of However, we noticed that the residual variances vmh associated 
with the largest lines such as M,, K,, and the constant term, were substantially 
greater than with small lines. Examination showed this to be d m  to discernible 
secular trends in the amplitudes themselves, resulting from the relative changes of 
5 x per century in solar per century in mean obliquity e, (7) and 25 x 
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eccentricity e’ (5). Since the above procedure established that there were never 
more than two lines contributing significantly to any (P,Q) after removal of side- 
bands, it was possible to evaluate H, separately from each 18-year period, so we 
thought it wiser to present the amplitudes from all three epochs, rather than the 
ensemble averages derived from (21). These show the magnitude of the secular 
trends, allowing interpolation or extrapolation to other epochs, as well as confirming 
the stability of our method of evaluation. 

Finally, for direct comparison with Doodson’s coefficients, a fourth value was 
calculated specifically for the epoch 1900.0 by the least-squares interpolation: 

D. E. Cartwright and R. J. Tayler 

H,(u) = 0.55048, (- 10693.5) +0*3066H, (8906.5) +0.1430H, (22056.5) (22) 

and converted to Doodson’s scaling by the factors p given in Table 2. All values 
above a threshold of 4.5 x lo-’ in Doodson’s scale are tabulated in Tables 4 and 5. 

Comments on Tables 4 and 5 
Table 4(a), (b) and (c) list the terms derived from the spherical harmonics of 

2nd degree, contributing to tides of Species 0 (low frequency), 1 (diurnal), and 2 
(semi-diurnal), respectively. We have headed these ‘ principal terms ’, because they 
include the largest amplitudes, although many of their terms are less than the largest 
terms in the 3rd degree harmonics. Table 5(a), (b), (c) and (d) list the terms from 
the spherical harmonics of 3rd degree (Doodson’s G’) ,which contribute to the same 
tidal species as in Table 4, and also to Species 3 (ter-diurnal). 

In each table, the first columns contain the six integers k, defining the argument 
(equation (13)), and the amplitudes H, derived from the three epochs to defined in 
Table 3. The six integers separated by a central dot repeat th.e k, in Doodson’s 
notation, whereby all except k, are increased by 5 to avoid minus signs, and the 
number 10, where it appears, is denoted by X. The columns headed 1900.0 contain 
the amplitudes interpolated between the three given amplitudes by equation (22) 
and converted to Doodson’s scaling, and the last columns contain Doodson’s 
coefficients for comparison. Doodson (1921, 1954) also lists some coefficients > 
in Groups for which k2 = & 5 and 6. We have not computed these because experience 
has shown that their contributions to tidal records are invariably below noise level. 

Secular trends, mentioned in the last section, are seen clearly only in amplitudes 
greater than 0.01. Below this level, variations of 1 or 2 in the last digit may be taken 
as a measure of the extent of inaccuracy, possibly due to the omission of a small line 
here and there. 

Comparisons with Doodson’s values are generally very good, with a few minor 
exceptions, discussed below. They certainly confirm that he omitted no major term 
and made no mistakes in sign. The most consistent differences occur in the larger 
solar terms, because of the inaccuracy in Doodson’s conversion factor K2‘/K2,  
mentioned earlier. If, for example, one re-adjusts his coefficient for S2 (2 2 - 2 0 0 0) 
to the modem constants, one gets 0.42250, which is much closer to our figure. 
However, differences up to seven in the last decimal occur in purely lunar terms, 
and these must be attributable to our improved ephemeris and possibly more accurate 
method of calculation. This also explains why we obtain several lines with amplitude 
just above Doodson’s threshold of 0.00010; they were probably just below it in his 
calculations. 
On the other hand, the effects of some of our more obvious improvements in the 

ephemeris are hardly detectable to the present accuracy. The largest planetary terms 
in the Sun’s orbit should produce anomalous lines modulating the strong solar lines 
at harmonic separations of j ,  = 11.3, 16.5, 22.5 and 33*Oc/18y, but these were 
not identifiable. Similarly, the effect of the Earth‘s lunar motion on the Sun’s 
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apparent position modulates the strong solar lines by one cycle per synodic month 
(0 1 - 1 0 0 0), producing differences from Doodson’s figures at that frequency and at 
(lOlOOO), (12-lOOO), (21-lOO0)and (23-3000). In fact, thedifferencesat 
these lines are mostly about 2 units, which is not remarkable, and the last is below both 
threshold levels. However, such small terms, of which there is a considerable number, 
can accumulate in the time domain to give occasionally much larger increments. 

Four terms in Table 4 deserve some comment. Our amplitude at (2 2 2 0 0 0) agrees 
with the corrected figure in Doodson (1954), but not with that printed in 1921. 
The two small lines at (0 0 2 0 0-2) and (1 1 -2 0 0 2) differ from Doodson’s by more 
than usual. He lists them as pure solar terms, and these can be checked to have 
in his scale the respective amplitudes: 

0.46 e” (3 -9 sin2 E )  = 0-00030 

-0.46 e z  (z sin E cos E )  = -0.O0011 

as in his table. We had to derive both terms by separation from considerably larger 
terms at a frequency interval of 2f6, but this procedure does not appear to incur 
any special errors, and there are similar cases which give the expected results. We 
can only suggest that there may be lunar terms at the same frequencies which were 
overlooked or did not appear in Doodson’s expansion. 

Our line at (2-2 0 0 0 1) is the only one in Table 4 which is well above Doodson’s 
threshold but is not included in his tables. In fact, this set of k, can arise by expansion 
only from rather obscure combinations of arguments. However, a term of the given 
amplitude is undoubtedly present, and it cannot be accounted for any any other 
combination, aliassed or otherwise. (Fig. 2, lower panel, j ,  = -36, gives no in- 
dication of its presence, but it becomes obvious after the first removal of sidebands). 
Its constancy over the three epochs adds confidence. 

The largest differences from Doodson occur in the 3rd degree term of Group 
(1,2), Table 5(b). He shows an amplitude of -0.00089 at (1 2-2 2 1 0) where we have 
nothing, while we obtain -0.00098 at (1 2 0 0 1 0) where he shows nothing. Our 
results here are indisputable, and it seems probable that Doodson made a slip in 
adding some of his argument-numbers. 

and 

0 0 0 0 0 0  
0 0 0 0 1 0  
0 0 0 0 2 0  
0 0 0 2 1 0  
0 0 1 0-1-1 
0 0 1 0 0 -1  
0 0 1 0 0 1  
0 0 1 0 1-1 
0 0 2-2-1 0 
0 0 2-2 0 0 
0 0 2 0 0 0  
0 0 2 0 0-2 
0 0 2 0 1 0  
0 0 2 0 2 0  
0 0 3 0 0-1 
0 0 3 0 1-1 
0 d 4 0 0-2 

Table (4a) 

Low-Frequency tides-Principal terms 
1 2 3 1900.0 

GROUP 090 

-0.31447 -0 -  31 452 
0 .02794  0.02793 

-0.00027 -0.00028 
o .oooo4  o.oono4 
-0. no004 -0 .oooo 4 
-0.00493 -0.00493 

0.00027 0.00026 
0.00004 0.00004 
0.00002 0.00002 

-0.00031 -0.000 31 
-0 .O 3097 -0 -0  309 5 
-0.00006 -0.00006 

0.00075 0.00077 
0.00019 0.00017 
-0.00 1 8 2  -0 -00 18  1 

0 .00004  0.00003 
-0.00007 -0.00007 

-0 - 3  1 4 5 6  
0.02793 

-0.00027 
0 .00004  

-0.00004 
-0.00492 

0.00026 
0.00005 
0.00002 

-0.00031 
-0.03095 
-0.000(r8 

0.00077 
0.00017 

-0 .00181  
0.00003 

-0.00007 

055.555 
055.565 
055.575 
055.765 
056 .544  
056.554 
056.556 
056 .564  
057.345 
057.355 
057.555 
057.553 
057 - 5 6 5  
057.575 
058.554 
058.564 
059.553 

0.7 3807 
-0.06556 

0.OOOb.t 
-0 .OOOO9 

0.00009 
0.01156 

-0.00063 
-0.00010 
-0.00005 

0.00073 
0.07266 
0.00015 

-0.00178 
-0.00042 

0.00426 
-0.00008 

0.00017 

0.73869 
-0 -06552  

0.00064 

0.01160 
-0.00061 

0 -00073  
0.07299 
0 .00030t 

-0.00181 
-0.00040 

0.00427 

0.00017 
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Table ( 4 4  continued 

GROUP 091 

0 1-3 1-1 1 
0 1-3 1 0 1 
0 1-3 1 1 1 
0 1-2-1-2 0 
0 1-2-1-1 0 
0 1-2 1-1 0 
0 1-2 1 0 0 
0 1-2 1 1 0 
0 1-1-1-1 1 
0 1-1-1 0 1 
0 1-1-1 1 1 
0 1-1 0 0 0 
0 1-1 1 0-1 
0 1 0-1-2 0 
0 1 0-1.-1 0 
0 1 0 - 1  0 0 
0 1 0 - 1  1 0 
0 1 0 1 0 0  
0 1 0 1 1 0  
0 1 0 1 2 0  
0 1 1-1 0-1 
0 1 2-1 0 0 
0 1 2 - 1  1 0  
0 1 2-1 2 0 
0 1 3-1 0-1 

0 2-4 2 0 0 
0 2-3 0 0 1 
0 2-3 0 1 1 
0 2-2 0-1 0 
0 2-2 0 0 0 
0 2-2 0 1 0 
0 2-2 2 0 0 
0 2-1-2 0 1 
0 2-1-1 0 0 
0 2-1 0 0-1 
0 2-1 0 0 1 
0 2-1 0 1 1 
0 2 0-2-1 0 
0 2 0-2 0 0 
0 2 0-2 1 0 
0 2 0 0 0 0  
0 2 0 0 1 0  
0 2 0 0 2 0  
0 2 0 0 3 0  
0 2 1-2 0-1 
0 2 1 0 0-1 
0 2 1 0 1-1 
0 2 2-2 0 0 
0 2 2-2 1 0 
0 2 2 0 2 0  

0.00002 0.00003 0.00002 
-0.00029 -0.00028 -0.00029 

0.00002 ' 0.00002 0.00002 
0.00003 0.00003 0.00003 
0.00007 0.00007 0.00007 
0.00048 0.00048 0.00048 

-0.00673 -0.00673 -0.00673 
0.00043 0.00043 0.00043 
0.00002 0.00002 0.00002 

-0.00022 -0.00021 -0.00021 
0.00003 0.00002 0.00500 
0.00019 0.00020 0.00020 
0.00005 0.00005 0.00005 

-0.00003 -0.00003 -0.00003 
0.00231 0.00231 0.00231 

-0.03517 -0.03518 -0.03 510 
0.00228 0.00228 0.00228 
0.00188 0.00188 0.00189 
0.00076 0.00077 0.00077 
0.00021 0.00021 0.00021 
0.00018 0.00018 0.00018 
0.00050 0.00049 0.00049 
0.00026 0.00025 0.00024 
0.00005 0.00005 0.00004 
0.00002 0.00003 0.00003 

GROUP 092 

-0 .000 11 -0.0001 1 -0.00011 
-0 -000 38 -0.000 38 -0.0003 8 

0.00003 0.00002 0.00002 
-0.00042 -0 -00042 -0.00042 
-0.00582 -0.00582 -0.00582 

0.00037 0.00037 0'.00037 
0.00004 0.00004 0.00004 

-0.00004 -0.00004 -0.00004 
0.00003 0.00003 0.00003 
0.00007 0.00007 0.00007 

-0.00004 -0.00004 -0.00004 
0.00015 0.00015 0.00015 

-0.00288 -0.00288 -0.00288 
0.00018 0.00019 0.00019 

-0 -06669 -0 -0 6664 -0.06662 
-0.02763 -0.02762 6 . 0 2 7 6 2  
-0 -002 58 -0 -002 58 -0.002 58 

0.00007 0.00005 0.00007 
0.00003 0.00003 0.00003 
0.000.23 0.00023 0.00023 
0.00006 0.00006 0.00006 
0.00020 0.00020 0.00020 
0.00008 0.00008 0.00008 
0.00003 0.00003 0.00003 

-0t00020 -0.00020 -0.00020 

062.646 
062 -656 
062.666 
063.435 
063.445 
063 -645 
063.655 
063 -665 
064.446 
064.456 
064.466 
064.555 
064.654 
065.435 
065.445 

065.465 
065.655 
065.665 

066.454 
067.455 
067 -465 
061.475 

065.455 

065.675 

068.454 

071.755 
072.556 
072 -566 
073.545 
073.555 
073.565 

074.356 
074.455 

073 a755 

074.554 
074.556 
074.566 

075.3 55 
075.365 
07 5 555 

075.345 

075.565 
075.575 
075.585 

076.554 
076.564 
077.355 
077.365 
077.51 5 

016 a 3  54 

-0.00005 

-0.00005 
-0.00006 
-0.00016 -0.00016 
-0 -00 11 3 -0 -00 113 

0.01579 0.01578 
-0.00101 -0.00103 
-0.00005 

0.00050 0.00051 
-0.00005 
-0.00046 -0 -00044 
-0.00011 -0.00010 
0.00007 

-0.06542 -0.00542 
0.08255 0.08254 

-0.00535 -0.00535 
-0 -00441 -0 e00442 
-0.00180 -0.00179 

-0.00043 -0.00043 
-0 e00 1 16  -0 -00 1 16 
-0.00059 -be00058 
-0.00011 
-0.00006 

0.00061 0.00061 

-0 -00049 -0 -00047 

0.00026 0.00026 
0.00090 0.00091 

-0.00006 
0 -00098 0.00098 
0.01366 0.01370 

-0 .o0087 -0 .oooaa 
-0.00009 

0.00009 
-0.00007 
-0.00016 -0.00017 

0.00046 0.00048 
0.00010 0.00012 

-0.00036 -0.00036 
0 -00676 0 .00611 

-0.00044 -0.00044 
0.15645 0.15642 
0.06482 0.06481 
0 600605 0 -00607 

-0.00014 -0.00013 
-0.00007 
-0.00054 -0.00054 
-0.00014 -0.00014 
-0.00047 -0.00047 
-0.00018 -0.00019 
-0.000 0 6 
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0 3-5 1 0 1 
0 3-4 1 0 0 
0 3-3-1 0 1 
0 3-3 1 0 1 
0 3-3 1 1 1 
0 3-2-1-1 0 
0 3-2-1 0 0 
0 3-2-1 1 0 
0 3-2 1 0 0 
0 3-2 1 1 0 
0 3-2 1 2 0 
0 3-1-1 0 1 
0 3-1-1 1 1 
0 3-1 0 0 0 
0 3-1 0 1 0 
0 3-1 1 0-1  
0 3 0-3 0 0 
0 3 0-3 1-1 
0 3 0-3 1 1 
0 3 0-1 0 0 
0 3 0-1 1 0 
0 3 0-1 2 0 
0 3 0 1 2 0  
0 3 0 1 3 0  
0 3 1-1 0-1 
0 3 1-1.1-1 

0 4-4 0 0 0 
0 4 i 4  2 0 0 
0 4-4 2 1 0 
0 4-3 0 0 1 
0 4-3 0 1 1 
0 4-2-2 0 0 
0 4-2 0 0 0 
0 4-2 0 1 0 
0 4-2 0 2 0 
0 4-1-2 0 1 
0 4-1 0 0-1 
0 4 0-2 0 0 
0 4 0-2 1 0 
0 4 0-2 2 0 

New computatioos of the tide-generating potential 

Table (4a) continued 

GROUP 013 

-0.00002 -0.00002 -0.00002 
-0.00017 -0.00017 -0.00017 
-0 000 0 7 -0.00 00 7 -0 0 000 7 
-0.00012 -0.00011 -0.00012 
-0.0000 5 -0.0000 4 -0.0000 4 
-0 .0OOOY -0.000 10 -0.000 10  
-0 . 00 0 9 1 -0 -00 0 9 '1 -0 . 0 0 0 9 1 

0.00006 0.00006 0.00006 
-0.002 42 -0 .OO 2 42 -0.002 42 
-0.00100 -0.00100 -0.00100 
-0.00009 -0.00009 -0.00009 
-0.00013 -0.00013 -0.00013 
-0.00004 -0.00004 -0.00004 

0.00007 0.00007 0.00006 
0.00003 0.00003 0.00003 

-0 -0 002 3 
0.00002 0.00002 0.00003 

0.00004 0.00004 0.00004 
-0.000 2 3 -0 -000 2 3 

0.00004 0.00004 0.00004 
-0 - 0  1277 -0 0 12 7 5  -0.01 27 5 
-0.00 528 -0.00 52 8 -0 - 00 52 8 
-0 .OOO 48 -0.OOC49 -0.0005 1 

0.00005 0.00005 0.*00005 
0.00002 0.00002 0.00002 
0.00011 0.00011 0.00011 
0.00004 0.00004 0.00004 

GROUP 0 1 4  

-0.00008 -0.00008 -0.00008 
-0.00006 -0.00006 -0.00006 
-0.00002 -0.00003 -0.00002 
-0 a0001 4 -0 - 0 0 0 1 4  -0.0001 4 
-0,0000 5 -0 .OOOO 6 -0.0000 6 
-0.00010 -0.00010 -0.0001 1 
-0.00206 -0.00206 -0.00205 
-0.00085 -0.00085 -0.00085 
-0.00008 -0.00008 -0.00008 
-0.00003 -0.00003 -0.00003 

0.00003 0.00003 0.00003 
-0 -00 169  -0 moo1 69 -0.00 169  
-0.00070 -0.00070 -0.00070 
- 0 i 0 0 0 0 6  -0 ~ 0 0 0 0 6  -0.00006 

080.656 
081.655 
082.456 

082.666 
083.445 
OR3.455 
083.465 
083 -655  
083 -665 
OR3 -675  
084.456 
084.466 
084.555 
084.565 
084.654 
085.255 

0A5.266 

085.465 
085.475 
085.675 
085.685 
086.454 
086.464 

082.656 

085.264 

O R  5 -455 

091 - 5 5 5  
091.755 

092.556 
092.566 
093.355 
093.555 
093.565 
093.575 

094.554 
095.355 
095.365 
095.375 

091.765 

094.356 

0.00005 
0.00041 
0.000 16 
0.00027 
0.00.0 1 1 
0.00022 
0.00213 

-0.00014 
0 e00569 
0 a00235 
0 .ooo 2 1 
0 e00031 
0.00010 

-0.00016 
-0.00007 
-0.00005 

0.00054 
-0.00009 
-0.00008 

0.02995 
0.01240 
0 e00114 

-0.000 1 1  
-0 e00005 
-0.00025 
-0 e00009 

61 

0.00018 
0 .00015 
0.00006 
0.00033 
0 -000 13  
0.00024 
0.00483 
0.00200 
0.00018 
0.00007 
-0.00007 

0.00396 
0.00 164  
0 *00016  

0.00042 
0.00016 
0 -00026 
0.00011 
0.00022 
0.00217 

-0.00014 
0.00569 
0 -00236 
0.00021 
0 -00028 
0.0001 0 

-0.00016 

0.00054 

0 e02995 
0.01241 
0.00117 

-0.000 12  ' 

-0 00026 

0.00020 
0 -000 14 

0 -00032 
0.00013 
0 e00025 
0 0047 8 
0.00200 
0 000 1 9  

0 -00396 
0.00 165 
0 *00016 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/23/1/45/618969 by guest on 23 April 2024



62 

1-4 0 3-1 0 
1-4 0 3 0 0 
1-4 1 1 0 1 
1-4  2 1-1 0 
1-4 2 1 0 0 
1-'t 3 1 0-1 
1-4 4-1-1 0 
1-4 4-1 0 0 
1-4 5-1 0 -1  

1-3-1 2 0 1 
1-3 0 0-2 0 
1-3 0 2-2 0 
1-3 0 2-1 0 
1-3 0 2 0 0 
1-3 1 0 0 1 
1-3 1 1 0 0 
1-3 1 2 0 -1  
1-3 2 0-2 0 
1-3 2 0-1 0 
1-3  2 0 0 0 
1-3 2 2 0 0 
1-3 3 0-1-1 
1-3 3 0 0-1 
1-3 4-2-1 0 
1-3 4-2 0 0 

1-3 4 0 1 0 
1 - 3 . 4  a o o 

1-2-2 1-2 0 
1-2-2 3 0 0 
1-2-1 1-1 1 
1-7-1 1 0 1 
I-.? 0-1-3 0. 
1-2 0-1-2 0 
1-2 0 1-2 0 
1-2 0 0 0 1 
1-2 0 1-1 0 
1-2 0 1 0 0 
1-2 0 3 0 0 
1-2 1-1 0 1 
1-2 1 0-1 0 
1-2 1 0 0 0 
1-2 1 1-1-1 
1-2 1 1 0-1 
1-2 2-1-2 0 
1-2 2-1-1 0 

1-2 2 1 0  0 
1-2 2 1 1 0 
1-2 3-1-1-1 
1-2 3-1 0-1 
1-2 3 1 0-1 
1-2 4-1 0 0 
1-2 4-1 1 0 

1-2 2-1 0 0 

D. E. Cartwight and H. J. Tayler 

Table (4b) 

Diurnal tides-Principal terms 

1 2 3 

G R O U P  19-4 

-0 -000 1 4 -0 000 14 -0.000 14 
-0.000 7 4 -0.00 0 7 5 -0 - 0  007 5 

0.00004 0.00004 0.00003 
-0.00036 -0 -00037 -0.00036 
-0 -00193  -0 -00193  -0. ~13193 
-0.000 15 -0.0001 5 -0 eO0015 
-0.00007 -0.00007 -0.00007 
-0.00037 -0.00037 -0.00037 
-0.00004 -0.00004 -0.00004 

G R O U P  19-3 

0.00009 0.00009 0.00009 
0.00004 0 .00004  0.00003 
0.00005 0.00004 0.00003 

-0 -00 12 5 -0 00  12  5 
-0.0 0 6 6 4 .  -0.00 66 3 

0.00011 0.00012 0.00011 
0.00007 0.00007 0.00006 

-0.000 1 1 -0 .000 1 0  -0.000 1 1 
0.00005 0.00005 0.00005 

-0.00 151' -0 -00 1 5 1  -0.001 50 
-0.00001 -0.00R01 -0.00800 

0.00007 0.00007 0.00006 
-0.00009 -0.00010 -0.00010 
-0.000 54  -0 -00 0 5 4 -0.0 00 5 5 
-0.00004 -0.00005 -0.00004 
-0 -0002  5 -0 -0002 5 -0 0 0 0 2 4  

0.00007 0.00008 0.00007 
-0.00003 -0.00003 -0.00004 

-0 00 12 5 
-0.00 66 4 

G R O U P  19-2 

0.00004 0.00004 0.00004 
0.00016 0.00016 0.00016 
0.00007 0.00007 0.00007 

0 . O O O O 4  0.00004 0.00004 
0.00042 0.00042 0.00042 

0.00019 0.00019 0.00019 
0.00029 0.00029 0.00029 

-0.00005 -0.00004 -0.00004 
-0 -0094b  -0 -00946  -0.00946 

0.00014 0.00014 0.00014 
-0.05020 -0.05019 -0.05018 

0.00010 0.00009 0.00009 
0.00005 0.00005 0.00005 
0.00027 0.00027 0.00027 

-0.00008 -0.00008 -0.00007 
-0 000 46 -0 -0 0 0 4 6 -0 -0 0 0 46 

0.00006 0.00005 0*00005 
-0.00180 -0.00180 -0.00180 
-0.00954 -0.00953 -0 *00953  

0.00055 0.00055 0.00055 
-0.000 17 -0 000 17 -0.0001 7 
-0.00008 -0.00008 -0.00008 
-0.000 44 -0 -00044  -0.00044 

0.00004 0.00004 0.00004 
0.00012 0.00012 0.00012 

-0.00003 -0 0000 3 '-0 .OOOO 3 

1900.0 

115.845 
115.855 
116.656 

117.655 
118.654 
119  -445  
119.455 
11) .454 

117.645 

124.756 
125.535 
125.735 
125.745 
12 5 -755 
126.556 
126.655 
126.754 
127.535 
127.545 
127.555 
127.755 
120.544 
128.554 
129.345 
129.355 
129.555 
129.565 

133.635 
133 -855  
134.646 
,134.656 
13 5.425 
135.435 
135.635 

13 5.645 
135.655 

136.456 
136.545 
136.555 
136.644 

137.435 

137.455 

137.665 

135.556 

135.855 

136.654 

137.445 

137.655 

138.444 
138.454 
138.654 

139  0465  
13.9 .4 5 5 

0.00021 0.00021 
0.00107 0.00108 

-0.00005 
0.00052 0.00053 
0 -00278 0.00278 
0.00021 0.00021 
0.00010 0.00010 
0.00054 0.00054 
0.00006 

-0.00013 
-0.00006 
-0 .OD006 

0.00180 
0 -00954 

-0.000 16 
-0.00010 

0.00015 
-0 .DO007 

0.00217 
0 .01151 

-0.00009 
0.00014 
0.00078 
0.00006 
0.00035 

-0.00010' 
0.00005 

-0 e00013 

0.00 180 
0 e00955 

-0,000 16 
-0 .ooo 11 

0.000 15 

0.00218 
0.01153 

0.00014 
0.0007 9 

0.00035 

-0 .OOOQ6 
-0.00023 -0.00023 
-0.00010 
-0.00061 -0.00061 
-0.00005 
-0 .ooo 28 -0.00028 
-0 e00041 -0'.00042 

0.00006 
0 -01359 0.01360 
0.07214 0.07216 

-0.00020 -0 e00019 
-0.00014 -0.00013 

-0.00039 -0.00039 
0.00011 0.00011 
0.00066 0.00068 

-0.00007 

-0.00008 
0.00258 0.00258 
0 -01370 0 -01371 
-0.00079 -0,00078 

0.00024 0 moo024 
0.00012 0.00011 
0 e00063 0,.00064 

-0.00006 
-0 a00017 -0 .00014 

0.00005 
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1-1-2 0-2 0 
1-1-2 2-1 0 
1-1-2 2 0 0 
1-1.-1 0-1 1 
1-1-1 0 0 1 
1-1-1 1 0 0 
1-1 0 0-2 0 
1-1 0 0-1 0 
1-1 0 0 0 0 
1-1 0 2 0 0 
1-1 0 2 1 0  
1-1 1 0-1-1 

1-1 2-2 0 0 
1-1 2 0-1 0 
1-1 2 0 0 0 
1-1 2 0 1 0 
1-1 2 0 2 0 
1-1 3 0 0-1 
1-1 4-2 0 0 

1-1 1 o 0-r 

1 0-3 1 0 1 
1 0-2 1-1 0 
1 0-2 1 0 '0 
1 0 - 1  0 0 0 
1 0-1 1 0 1 
1 0 0-1-2 0 
1 0 0-1-1 0 
1 0 0-1 0 0 
1 0 0 1-1 0 
1 0 0 1 0 0  
1 0 0 1 1 0  
1 0 0 1 2 0  
1 0 1 0 0 0  
1 0  i 10-1 
1 0 2-1-1 0 
1 0 2-1 0 0 
1 0 2-1 1 0  
1 0 3-1 0-1 
1 0 3-1 .l-1 

1 1-4 0 0 2 
1 1-3 0-1 1 
1 1-3 0 0 1 
1 1-2 0-2 0 
1 1-2 0-1 0 
1 1-2 0 0 0 
1 1-2 0 0 2 
1 1-2 2 0 0 
1 1-2 2 1 0 
1 1-1 0 0-1 
1 1-1 0 0 1 
1 1-1 0 1 1 
1 1 0-2-1 0 
1 1 0 0-2 0 
1 1 0 0-1 0 
1 1 0 0 0 0  
1 1 0 0 1 0  
1 1 0 0 2 0  
1 1 1 0 0-1 
1 1 1 0 1-1 
1 1 2-2 0 0 
1 1 2-2 1 0 
1 1 2 0 0-2 
1 1 2 0 0 0  

1 1 2 0 2 0  
1 1 3 0 0-1 

1 1  2 0 1 .0  

New computations of the tide-generating potential 

Table (4b) continued 
GROUP 19-1 

0.00011 0.00011 0.00011 
0.00014 0.00014 0.00014 
0.00079 0.00079 0.00079 
0.00011 0.00011 0.00011 
0.00091 0.00090 OeOOO90 

-0.00004 -0.00004 -0.00004 
0.00152 0.00153 0.00153 

-0 -04943  -0 -0 4944 -0.04944 
-0 2 6 2 2 9 -0.2 6 2 2 3 -0 - 2  62 1 9 

0.00169 0.00169 0.00169 
0.00027 0.00028 0.00028 

-0.00008 -0.00008 -0.00008 
-0 00076 -0.00 0 7 6 -0.0 007 6 

0.00015 0.00015 0.00015 
-0.00010 -0.00010 -0.00010 

0.00343 0.00342 0.00342 
-0 000 7 4 -0.00 0 7 5 -0 0 007 5 
-0.0000 5 -0.0000 5 -0.0000 5 

0.00022 0.00023 0.00023 
0.00006 0.00006 0.00006 

GROUP 1.0 

0.00009 0.00009 0.00009 
0.00044 0.00044 0.00044 
0.00193 0.00193 0.00193 

-0.00004 -0.00004 -0.00004 
-0.00010 -0.00010 -0.00010 
-0.00012 -0.00012 -0.00012 

0.00137 0.00137 0.00137 
0.00742 0.00742 0.00742 

-0.00060 -0.00060 -0.00060 
0.02062 0.02062 0.02061 
0.00413 0.00414 0.00414 

-0.00011 -0.00012 -0.00011 
-0.00011 -0 . O O O l l  -0.00011. 

0.00013 0.00013 0.00013 
-0.00011 -0.00011 -0.00011 

0.00394 0.00394 0.00394 
0.00087 0.00087 0.00087 
0.00017 0.00017 0.00017 
0.00004 0.00004 0.00004 

GROUP 191  

-0.000 29 -0 e000.2 9 --0 0 002 0 
0.00006 0.00006 0.00006 

-0.007 16 -0.00 7 1  5 -0 .'007 1 4  
-0.00010 '-0 .ooo 10 -0.00010 

0.00137 0.00137 0.00137 
-0.12211 -0.12207 -0.12205 

0.00002 0.00003 0.00003 
0.00019 0.00018 0.00018 
0.00004 0.00004 0.00004 
0.00103 0.00102 0.00103 
0.00290 0.00289 0.00289 

-0.00007 -0.00008 -0.00008 
0.00007 0.00007 0.00007 
0.00005 0.00005 0.00005 

-0.00 7 3 2 -0 00 7 30 -0 -0 07 30 
0.36890 0.36882 0.36876 
0.050no 0.050oi  0.050oi 

-0.noio8 -0.ooi08 -0.00108 
0.00294 0.00293 0.00293 
0.00005 0.00005 0.00005 
0.00018 0.00018 0.00018 
0.00006 0.00006 0.00006 
0.00006 0.00007 0.00008 
0.00525 0.00525 0.00525 

-0.00020 -0.00020 -0.00020 
-0.000 10 -0 .ooo 10 -0.000 10 
0.00031 0.00031 0.00031 

143.53 5 
143 -745  
143.755 
144.546 
144.556 
144.655 
145.53 5 
145.545 
145.555 
145.755 
145.765 
146.544 
146.554 
147.355 
147.545 
147.555 
147.565 
147.575 
148.554 
149.355 

152.656 
153 -645  
153.655 
154.555 
154.656 
155.435 
155.445 
155.455 
155.645 
155.655 
155.665 
155.675 
156 -555 
156.654 
157.445 
,157.455 
157 a465 
158.454 
158 a464 

161.557 
162.546 
162 -556 
163.535 
163.545 
163.555 

163.755 
163.765 
164.554 
164.556 
164.566 

165.535 
165.545 
165.555 
165.565 

166.554 
1 66.564 
167.355 
167.365 
167.553 
167.555 
167.565 
167.575 
168.554 

163.557 

165 a345 

165.575 

63 

-0.00016 -0.00017 
-0.00020 -0.00020 
-0.00113 -0.00113 
-0 a00016 -0.00015 
-0.00 1 3 0. -0.00 1 3 0 

-0.00220 -0.00218 
0 -07 105 0 -07 105 
0.37690 0.37689 

-0 -00243 -0 -00243 
-0.00039 -0.00040 

0.00012 0.00012 
0.00109 0.00115 

-0.00021 -0.00021 
0.00014 0.00014 

-0 -00492 -0 -00491 
0.00107 0.00107 
0.00007 

-0.00032 -0.00033 

0.00006 

-0.00009 

-0.00013 -0.00014 
-0 -00063 -0.00063 
-0.00278 -0.00278 

0.00006 
0.00015 0.00015 

-0.00197 -0.00197 
o .ooni8 o .oooi7 

-0 a 0  1066 -0 -0 1065 
0.00086 0.00085 

-0.02963 -0 -02964 
-0.00594 -0.00594 

0.00016 0.00017 
0.00016 0.00016 

-0.00018' -0.00018 
0.00016 0.00016 

-0 -00567 -0 -00566 
-0.00125 -0.00124 
-0.00024 -0 e00024 
-0.00006 

0.00042 
-0.00008 

0.01028 
0.00014 

-0 .OO 197 
0.17546 

-0.00004 
-0 -00027 
-0.00005 
-0 .OO 147 
-0.00416 
0.00011 

-0.000 10 
-0.00007 
0.0 1051 

-0.53009 
-0.07186 

0 -00156 
-0.00422 
-0.00008 
-0.00026 
-0.00008 
-0.00010 
-0 -00755 

0.00029 
0.09014 

-0.00044 

0.00042 

0.01029 

-0.00 199 
0 -000 14 

0.17584 
-0.0001 It 
-0 -00026 

-0 .OO 147 
-0 e0042 3 

0.01050 
-0 -53050 
-0 -07 182 

0.00154 
-0.0042 3 

-0,00026 

-0 .00011 
-0 -00756 

0.00029 
0,00014 

-0.0004G 
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64 D. E. Cartwright and R. J. Tayler 

Table (4b) continued 

GROUP 192 

0.00017 0.00017 0.00017 
0.00003 0.00003 0.00003 
0.00012 0.00012 0.00012 

-0 - 000 13 -0.00 0 1 3 -0.000 13 
0.00394 0.00394 0.00394 
0.00078 0.00078 0.00078 
0.00013 0.00013 0.00012 
-0 .ooo 12 -0.000 11 -0 .ooo 11 
-0.00061 -0.00060 -0.00060 
0.02062 0.02062 0.02061 
0.00409 0.00409 0.00409 

-0.000 10 -0.00 00 9 -0 0 0007 
-0 -000 32 -0.000 32 -0.00032 
-0.00020 -0.00020 -0.00020 
-0.00012 -0.00012 -0.00012 
-0.00010 -0.00010 -0.00010 
-0.00008 -0.00008 -0.00008 
-0.00007 -0.00006 -p.00006 

GROUP 193 

1 2-3 1 0 1 
1 2-3 1 1 1 
1 2-2-1-1 0 
1 2-2 1-1 0 
1 2-2 1 0 0 
1 2-2 1 1 0 
1 2-1-1 0 1 
1 2-1 0 0 0 
1 2 0-1-1 0 
1 2 0-1 0 0 

1 ? 0-1 2 0 
1 2 0 1 0 0  
1 2 0 1 1 0  
1 2 0 1 2 0  
1 2 1-1 0-1 
1 2 2-1 0 0 
1 2 2-1 1 0 

1 2'0-1 1 a 

1 3-4 2 0 0 
1 3-3 0 0 1 
1 3-3 0 1 1 
1 3-2 0-1 0 
1 3-2 0 0 0 
.l 3-2 0 1 0 
1 3-1 0 0-1 
1 3 0-2-1 0 
1 3 0-2 0 0 
1 3 0-2 1 0 
1 3 0 0 0 0  
1 3 0 0 1 0  
1 3 0 0 2 0  
1 3 0 0 3 0  
1 3 1 .o 0-1 

1 4-4 1 0 0 
1 4-3-1 0 1 
1 4-2-1 0 0 
1 4-2-1 1 0 
1 4-2 1 0 0 
1 4-2 1 1 0 

1 4 0-3 0 0 
1 4 3-1 0 0 
1 4 0-1 1 0 
1 4 0-1 2 0 

1 4-2 1 2 o 

0.00006 
0.00023 
0.0000 4 
0 .ooo 1 I 
0 -00 343 
0.00067 
-0.00007 
-0.00004 
0.00169 
0.00033 

0.00723 
0.00151 
0.00010 
-0.00004 

0.01130 

0.00011 
0.00004 
0.0 (10 5 5 
0 .ooo 1 1  
0 - 0 0 0  41 
0.00026 
0.0000 5 
0.00013 
0,00216 

0 .00029 
0.00139 

0.00007 
0.00023 
0 .OOOO 4 
0 .ooo 11 
0 -00 343 
0.00067 

-0.00004 
0 .OO 169 

-0.00007 

0.000 33 
0.0 1129 
0.00723 
0.00 151 
0 .ooo 10 
-0.00004 

0.00006 
0.00023 
0.00005 
0.00011 
0.00342 
0.00067 
-0.00007 
-0.00004 
0 e00169 
0.00033 
0.01129 
0.00723 
0.00152 
0.00010 

-0.00004 

GROUP 194 

0 .ooo 11 
0.00004 
0.00055 
0.00011 
0 -00041 
0.00026 
0 .OOOO 5 
0.00013 
0 -00 21 6 
0.0013E 
0.00029 

0;oOoll 
0.00004 
0.00055 
0.00011 
0.00041 
0.00026 
0.00005 
0.00014 
0.00216 
0.00138 
0 e00029 

172.656 
172.666 
173.445 
173.645 
173.655 
173.665 
174.456 
174.555 
175.445 
175.455 
175.465 
175.475 
175.655 
175.665 
175.675 
176.4% 
177.455 
177 -465 

181.755 
182..556 
182.566 
183.545 
183.555 

184.554 
18 5.345 
185.355 
185.365 
185.555 
185.565 
185.575 
18 5.585 

183.565 

186.554 

191.655 
192.456 
193.455 

193.655 

193.675 

195.455 

193.465 

193.665 

195.255 

195.465 
195.475 

-0 e00024 -0.00024 
-0.00005 
-0 - 0 0 0  17 -0 -000 17 
0.00018 0.00018 

-0 -00567 -0 -00566 
-0 .oo 112 -0.0011 2 
-0.00018 -0.00018 
0.00017 0.00016 
0.00087 0.00087 
-0.029h3 -0.02964 
-0.00587 -0 -00587 
0.00014 0.00013 
0.00046 0 -00046 
0.00029 0.00029 
0.00017 0.00017 
0.00015 0.00015 
0.00012 0.00012 
0.00009 

-0.00009 
-0 -00033 
-0.00006 
-0.00016 
-0.0049 3 
-0 -00097 
0.00010 
0.00006 
-0.00243 
-0.00040 
-0.01623 
-0 -01039 
-0.002 17 
-0.00014 
0.00006 

-0.000 15 
-0.00006 
-0.00079 
-0.00016 
-0.00059 
-0 -00038 
-0.00007 
-0 -000 19 
-0.0031 1 
-0 .OO 199 
-0.000 4 2 

-0 e00032 

-0.00016 
-0.00492 
-0.00096 

-0.00240 
-0.00048 
-0.0 162 3 
-0.01039 
-0.00218 
-0 a00014 

-0.000 15 

-0.00078 
-0 -000 15 
-0 e00059 
-0 -00038 

-0 .OOO 19 
-0.0031 1 
-0 e00199 
-0.00042 
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2-4 0 4 0 0 
2-4 2 2 0 0 
2-4 3 2 0-1 
2-4 4 0 0 0 
2-4 5 0 0 -1  

2-3 0 1 0 1 
2-3 0 3-1 0 
2-3 0 3 0 0 
2-3 1 1 0 1 
2-3 1 3 0-1 
2-3 2 1-1 0 
273 2 1 0 0 
2-3 3 1 0-1 
2-3 4-1-1 0 
2-3 4-1 0 0 
2-3 5-1 0-1 

2-2-2 4 0 0 
2-2-1 2 0 1 
2-2 0 0-2 0 
2-2 0 0 -1  1 
2-2 0 0 0 1 
2-2 0 2-1 0 
2-2 0 2 0 0 
2-2 1 0 0 1 
2-2 1 1 0 0 
2-2 1 2 . 0 - 1  
2-2 2 0 -1  0 
2-2 2 . ’ 0  0 0 
2-2 3-1 0 0 
2-2 3 0-1-1 
2-2 3 0 0-1 
2-2 4-2 0 0 
2-2 4 0 0-2 
2-2 5-2 0-1 

2-1-2 1-2 0 
2-1-2 3 0 0 
2-1-1 1-1 1 
2-1-1 1 0 1 
2-1 9-1-2 0 
2-1 0 1-2 0 
2-1 3 0 0 1 
2-1 0 1-1 0 
2-1 0 1 0 0 
2-1 1-1 0 1 
2-1 1 0 0 0 
2-1 1 1-1-1 
2-1 1 1 0-1 
2-1 2-1-1 0 
2-1 2-1 0 0 
2-1 2 1 0  0 
2-1 2 1 1 0 
2-1 3-1-1-1 
2-1 3-1 0-1 

New computations of the tide-generating potential 

Table 4(c) 

Semi-diurnal tides-Principal terms 
1 2 3 

GROUP 2 , -4  

0.00018 0.00019 0.00019 

0.00006 0.00006 0.00006 
0.00077 0.00077 0.00077 

0.00048 0.00048 0.00040 
0.00006 0.00006 0.00006 

GROUP 29-3 

0.00006 0.00006 
-0.00007 -0.00007 

0.00180 0.00180 
-0.00009 -0.00009 

0.00004 0.00004 
-0.000 17 -0 .oo 0 1 7 

0.00466 0 -00465 
0.00035 0.00035 

-0.00003 -0.00003 
0.00090 0.00090 
0.00010 0.00010 

0.00006 
-0.00007 

0.00180 
-0.00009 

0.00004 
-0.00018 

0.00465 
0.00036 

-0.00003 
0.00090 
0.00010 

GROUP 2 ~ - 2  

-0.00006 -0.00006 

-0.00010 -0.00010 
0.00004 0.00005 

-0 -000 59 -0.00060 

- 0 ~ 0 0 0 2 2  -0.00022 

0.00012 0.00012 

0.01599 0.01599 
-0.00027 -0.00028 
-0.000 17 -0 .000 17 

-0.00072 -0.00072 
0.00025 0.00025 

0.01930 0.01930 
-0 -0000 4 -0.0000 5 
-0.00005 -0.00005 

0.00131 0.00130 
0.00059 0.00059 
0.00005 0.00005 
0.00005 0.00005 

-0.00006 
-0.00022 
-0.00009 

0.00005 
0.00012 

-0.00060 
0.01 599 

-0.00027 
-0.00017 

0.00025 
-0.00072 

0.01929 
-0.00004 
-0 .00005 

0.001 31 
0 e00059 
0.00005 
0.00005 

-0.00010 
-0.00039 

0.00003 
-0.00 102 
-0.00047 

0.00006 
0 .000 10 
-0 -00452 

0.12094 
-0.00023 
-0.00065 
-0.00004 

0.0011 3 
-0.00006 

0.02297 
0.00010 

-0.00008 
-0.0000 4 
0 .OO 1 0 6  

GROUP 29-1 

-0.00010 -0.00010 
-0.00039 -0.00039 
0.000@3 0.00003 

-0.00102 -0.00102 
-0.00046 -0.00047 

0.00006 0.00007 
0.00009 0.00010 

-0,00451 -0.00451 

-I).OOO22 -0.00023 
-0 -00065 -0.00066 
-0.00004 -0.00004 

0.12094 0.12095 

0.00113 0.00113 
-0.0008 6 -0.00006 

0.02297 0.02297 
0.00010 0.00010 

-0.00008 -0.00000 
-0.00004 -0.00004 

0.00106 0.00106 

1900.0 

2 1  5 -955 
217.755 

219.555 
218.754 

21X.554 

225.656 
225.845 
22 5.855 

2 2 6  -8 54  
226.656 

227.645 
227.655 
226.654 
229.445 
229.455 
22X-454  

‘233.955 
234.756 
23 5.535 
235 -546  
23 5.556 
235.745 
235.755 

236.655 
236.1 5 4  
2 3 1  -545 
237.555 
238 -455 
230.544 
238.554 

236.556 

239.355 
239.553 
23X a354 

243.635 
243 -855  
244.646 
244.656 

245.635 

245.645 
245.655 

245.435 

245.556 

246.456 
246.555 
246.644 
246.654 
247.445 
247.455 
247.655 
247.665 
240.444 
240 - 4 5 4  
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0.00027 0.00027 
0.00111 0.00111 
0.00009 
0.00069 0.00069 
0.00009 

0.00009 
-0.00010 

0.00258 0.00259 
-0.00013 -0.00012 

0.00006 
-0.00025 -0.00025 

0.00669 0.00671 
0.00051 0.00054 

0.00129 0.00130 
-0.00005 

0 *00015  0 e00015 

-0.00009 
-0.00032 -0.00031 
-0.00014 -0.00014 

t 0.00007 
0.00017 

-0.00086 -0.00086 
0 -02298 0.02301 

-0.00039 -0.00040 
-0.00024 -0.00025 

0.00036 0.00036 

0.02774 0.02774 
-0 -00 104 -0 .OO 104 

-0.00006 
-0.00007 

0.00180 0.00189 
0.00085 0.00085 
0 e00007 
0.00007 

-0.00015 -0.00015 
-0.00056 -0,00056 

-0.00147 -0.00147 
-0.00067 -0.00063 

0.00005 

0.00009 
0.00014 0.00014 

-0.00649 -0.00648 
0.17350 0.17387 

-0.00094 -0.00094 
-0.00005 

-0.00032 -0.00033 

0 moo163 0 e00163 
-0.00123 -0.00123 

0.03301 0.03303 
0.00014 0.00017 

-0.00012 -0.00012 
-0.00006 
0 e00153 0 eOOP53 
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Table (4c) continued 
GROUP 2tO 

2 0-3 2 0 1 
2 0-2 0-2 0 
2 0-2 2-1 0 
2 0-2 2 0 0 
2 0-1 0-1 1 
2 3-1 0 0 1 
2 0-1 1 0 0 
2. 0 0 0-2 0 
2 0 0 0-1 0 
2 0 0 0 0 0 
2 0 0 2 0 0  
2 0 0 2 1 0  
2 0 1 0-1-1 
2 0 1 0 0-1 
2 0 2-2 0 0 
2 0 2 0 0 0  
2 0 2 0 1 0  
2 0 2 0 2 0  
2 0 3 0 0-1 

2 1-3 1 0 1 
2 1-2 1-1 0 
2 1-2 1 0 0 
2 1-1-1 0 1 
2 1-1 0 0 0 
2 1 0-1-1 0 
2 1 0-1 0 0 
2 1 0 1-1 0 
2 1 0 1 0 0  
2 i 0 1 1 0  
i 1 1 0 1 2 0  
2 1 2-1 0 0 
2 1 2-1 1 0 
2 1 2-1 2 0 

2 2-4 0 0 2 
2 z-3 0 0 1 
2 2-2 0-1 0 
2 2-2 0 0 0 
2 2-2 2 0 0 
2 2-1 0 0-1 
2 2-1 0 0 1 
2 2-1 0 1 1 
2 2 0 0-1 0 
2 2 0 0 0 0  
2 2 0 0 1 0  
2 2 0 0 2 0  
2 2 1 0 0-1 
2 2 2 0 0 0  

2 3-3 1 0 1 
2 3-2-1-1 0 
2 3-2-1 0 0 
2 3-2 1 0 0 
2 3-2 1 1 0 
2 3-2 1 2 0 
2 3 0-1-1 0 
2 3 0-1 0 0 
2 3 0-1 1 0 
2 3 0-1 2 0 
2 3 0 1 0 0  

-0.00008 -0.00008 -0.00008 
-0.00027 -0.00027 -0.00028 
0.00007 0.00007 0.00007 

-0.00190 -0.00190 -0.00190 
0.00005 0.00005 0.00005 

-0.00 2 18 -0 400 2 18 -0.002 18 
0.00010 0.00009 0.00009 
0.00033 0.00033 0.00034 

-0 .O 2 3 61 -0.023 56 -0.02357 
0.63184 0.63187 0.63189 
0.00036 0.00037 0.00037 
0.00013 0.00014 0.00013 

-0.00004 -0.00004 -0.00004 
0.00193 0.00192 0.00192 

-0 a00036 -0.00036 -0.00036 
0.00072 0.00072 o.00072 

-0 -00036 -0 -00035 -0.00035 
0.00012 0.00012 0.00012 
0.00005 0.00005 0.00005 

-0.00022 
0.00021 
-0.00466 
-0.00007 
0.00011 
0.00065 
-0.01787 
-0.00009 
0.00447 
0.00197 
0.00028 

0.00041 
0.00085 

0.00003 

0.00070 
0 -0 1724 
0 e00067 
0.29397 

-0.00 2 47 
0.00063 
-0.00004 

0.0800 1 
0.02383 
0.002 59 
0.00063 
0.00053 

0.00004 

-0.00103 

0.00004 
0.00006 
0.00005 
0.00085 
0.00037 
0.00004 

-0.00009 
0 -00446 
0 .OO 194 
0.00021 
-0.00003 

GROUP 211 

-0.00022 
0.00021 
-0 .OO 466 
-0.00007 
0.00011 
0.00066 
-0 -0 178 6 
-0.00009 
0.00446 
0 -00197 
0.00027 
0.00085 
0.00041 
0.00004 

-0.00023 
0.00021 

-0.00466 
-0.00007 
0.00011 
0.00065 

-0 e01787 
-0.00008 
0.00446 
0.00197 
0.00028 
0.00086 
0.00042 
0.00005 

GROUP 292 

0 r00070 
0 .O 1722 

0.29399 

-0 -00 257 

0.00066 

0.00004 

0.00062 
-0 .OOOO 4 
-0.00102 
0.07997 
0.02383 
0.00259 
0.000 63 
0.00053 

0. @0070 
0 -01720 
0. 00066 
0.29400 
0.00004 

-0 00246 
0.00062 

-0.00004 
-0.001 03 
0.07993 
0.02382 
0.00259 
0 00063 
0.00053 

GROUP 2r3 

0 .OOOO 4 
0.00006 
0 .OOOO 4 

0.00037 
0.00004 
-0.00008 
0.00447 
0.00194 
0.00022 
-0 e00003 

0.00085 

0 m00004 
0.00006 
0.00004 
0.00085 
0.00037 
0.00004 

-0.00008 
0.00446 
0 -00194 
0.00021 

-0.00003 

252.756 
253.535 
253 -745 
253 a755 
254.546 
254,556 
254.655 

255.545 
255.555 

255.535 

255.755 

2 56.544 
2 56.554 

2 57.555 
257.565 
257.575 
258.554 

2 55 0765 

257.355 

262.656 
2 63.645 
263.655 
2 64.456 
264.555 
265.445 

265.645 
265.655 
265.665 
2 65.675 
267.455 
267.465 

265.455, 

267.475 

271.557 
272.556 
273.545 
273.555 

274.554 
274.556 
274.566 
215.545 
275.555 
275.565 
275.575 
27 b 554 
277 -555 

273.755 

282.656 
283.445 
203 -455 

283 -665 

285.445 
285.455 
205.465 
285.475 
285.655 

283.655 

283.675 

-0.00011 -0.00011 
-0 -000 39 -0 e00040 

-0 00027 3 
0.00010 
-0 -0027 3 
0.00007 

-0.00313 -0.00314 
0.00014 0 o00014 

-0 -03390 -0 a03386 
0.00047 0.00047 

0.90805 0.90812 
0.00052 0,00053 
0.00019 0.00019 

-0.00006 
6.00277 0.00276 

-0.00052 -0.00052 
0.00104 0.00107 

-0 -00051 -0 -00051 
0.00017 0.00018 
0.00007 

-0*00032 
0.00030 
-0,00669 
-0.00010 
0.00015 
0.00094 
-0 -0 2567 
-0.00012 
0.00642 
0.00283 
0.00040 
0.00122 
0.00059 
0.00006 

0.00101 
0.02476 
0,00095 

0.00006 
0.42248 

-0 -00 3 5 5 
0 e00090 
-0 0000 5 
-0 -00147 
0.11495 
0 e03424 

0.0009 1 
0.00372 

0.00076 

-0 e00013 
0 e00024 
-0.00670 
-0.00010 
0.00017 
0 e00095 
-0.0 2567 
-0.00012 
0.00643 
0 e00283 
0.00040 
0.00123 
0.00059 

0.00101 
0.02479 
0 e00094 
0.42358 

-0.00 354 
0 e00092 

-0 e00147 
0.11506 

0.00372 

0 0007 at 

0 e03423 

0.00092 

0.00005 
0.00008 
0.00006 
0.00123 0.00123 
0.00053 0.00054 

-0.00012 -0.00012 
0 e00642 0 -00643 
0.00279 0.00200 
0 a00031 0 .00030 

0 .00006 

-0.0000 5 
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2 4-4 0 0-1 
2 4-3 0 0 1 
2 4-2 0 0 0 
2 4-2 0 1 0 
2 4-2 0 2 0 
2 4 0-2 0 0 
2 4 0-2 1 0 
2 4 0 0 0 0  
2 4 0 0 1 0  
2 4 0 0 2 0  
2 4 0 0 3 0  

e o o i o o  
0 0 2-1 0 0 

0 1-2 0 0 0 
0 1 0 0-1 0 
0 1 0 0 0 0  
0 1 0 0 1 0  
0 1 0 0 2 0  

0 2-2 1 0 0 
0 2 0-1 0 0 
0 .2 0-1 1 0 

0 3-2 0 0 0 
0 3 0-2 0 0 
0 3 0 0 0 0  
0 3 0 0 1 0  
0 3 0 0 2 0  

0 4 0-1 0 0 
0 4 0-1 1 0 

N e w  computations of the tide-generating potential 

Table (4c) continued 

0.00006 
0.00005 
0.00074 
0.00032 
0.00003 
0.00036 
0.00016 
0.00118 
0.00102 
0.00033 
0 .oooo 5 

+S# 

GROUP 294 

0.00006 
0 .OOOO 5 
0.00074 
0.00032 
0.00003 
0.00036 
0.00016 
0.00117 
0.00102 
0.00033 
0.00005 

be comment  in 

0. OOOOLj  
0.00005 
0.00073 
0.00031 
0.00003 
0 .OCO36 
0.00016 
0.00117 
0.00102 
0 -00033 
0.00005 

text 

291 -554 
292.556 
293.555 
293.565 
293.575 
295.355 
295.365 
295.555 
295 -565 
295.575 
295.585 

Table 5(a) 

Lo w-frequency tides-3rd-degree terms 
1 2 3 

GROUP 0.0 

-0.00020. -0.00020 -0.00021 
-0 e00004 -0.00004 -0.00004 

GROUP 091 

0.00004 0.00004 0.00004 
0.00019 0.00020 0.00019 

-0 -00 375 -0.00375 -0.0037 5 
-0.000 59 -0.000 59 -0 000 59 
0.00005 0.00005 0.00005 

GROUP 092 

-0.00012 -0.00012 -0.000t2 
-0.00061 -0.00061 -0.00061 
-0.000 10 -0 .ooo 10 -0.00010 

GROUP 0 9 3  

-0.00010 -0.00010 -0.00010 
-0.0000 7 -0.00 00 7 -0.0 0007 
-0 -000 3 1 '-0.000 30 -0.0003 0 
-0 000 19 -0 -00 0 19 -0.000 19 
-0.00004 -0.00004 -0.00004 

GROUP 094 

-0.00008 -0.00008 -0.00008 
-0.00005 4.00005 -0000005 

1900.0 

055.655 
057.455 

063.555 

065.555 
065.565 
065.575 

065.545 

073.655 
075.455 
075.465 

083 -555 
085.355 
085.555 

085;575 
085.565 

095 -455 
095 m465 

67 

0.00008 
0.00007 
0.00106 0.00107 
0.00046 0.00046 
0.00005 
0.00052 0.00053 
0 -00023 0.00023 
0.00169 0.00168 
0 -00146 0.00146 
0.00047 0.00047 
0.00007 

0.00025 0.00026 
0 e00005 

-0 e00005 
-0.00024 -0.00024 
0 e00466 0.00466 
0.00074 0.00073 

-0.00006 

0.00015 0 e00015 
0.00076 0.00076 
0.00012 0.00012 

0.00013 0.00013 
0.00009 
0 e00038 0.00038 
0.00023 0.00024 
0 000005 

0.00010 0.00011 
0.00006 
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Table (5b) 

1-4 0 2 0 0 
1-4 2 0 0 0 

1-3 0 1-1 0 
1-3 0 1 0 0 
1-3 2-1 0 0 

1-2 0 0-2 0 
1-2 0 0-1 0 
1-2 0 0 0 0 

1-2 2 0 0 0 
l-? 0 2 0 0 

1-1 0-1 0 .o 
1-1 0 1-1 0 
1-1 0 1 0 0 
1-1 0 1 1 0 
1-1 2-1 0 0 

1 0 0 0-1 0 
l O O O Q 0  
1 0 0 0 1 0  

1 1-2 1 0 0 
1 1 0-1-1 0 
1 1 0-1 0 0 
1 1 0-1 1 0 
1 1 0 1 0 0  
1 1 0 1 1 0  

1 2-2 0 0 0 
1 2 0 0-1 0 

1 2 0 0 1 0  
1 2 0 0 2 0  

i 2 o o o o  

1 3-2 1 0 0 
1 3 0-1 0 0 
1 3 0-1 1 0 

1 4-2 0 0 0 
1 4 0 0 0 0  
1 4 0 0 1 0  

Diurnal tides-3rd-degree terms 

1 2 3 

GROUP 19-4 

-0.00006 -0.00006 '0.00006 
-0.00006 -0.00006 -0.00006 

GROUP 19-3 

-0.00014 -0.00014 -0.00014 
-0.00035 -0.00035 -0.00035 
-0.00007 -0.00007 -0.00007 

GROUP 19-2 

-0.00004 -0.00004 -0.00004 
-0 .OOO 5 1 -0.000 50 -0.0005O 
-0.00128 -0.00128 -0.00128 
-0.00008 -0.00008 -0.00008 
-0.00011 -0.00011 -0.00011 

GROUP 1 9 - 1  

0.00007 0.00007 0.00007 
0.00010 0.00010 0.00010 

-0.00065 -0.00065 -0.00065 
0.00009 0.00008 0.00009 

-0 .OOO 13 -0.0001 3 -0 00001 3 

GROUP 1 9 0  

0.00059 0.00059 0.00059 
-0.00399 -0.00399 -0.00399 

0.00052 0.00052 0.00052 

GROUP 191 

-Q.D0004 -0.00004 -0.00004 
0.00003 0.00003 0.00003 

0.00003 0.00003 0.60003 
-0.00008 -Q.OOOOB -0.00008 
-0.00003 -0.00003 -0.00003 

-0.00022 -0.00022 -0.00022 

GROUP 192  

-0.00005 -0.00005 -0.00005 
0.00005 0.00005 0.00005 

-0.00146 -0.00146 -0.00146 
-0.00059 -0.00059 -0.00059 
-0.00005 -0.00005 -0.00005 

GROUP 193 

-0.00005 -0.00005 -0.00005 
-0 -00024 -0 -00024 -0.00024 
-0.00010 -0.00010 -0.00010 

GROUP 1 9 4  

-0 0000 4 -0 .OOOO 4 -0 00004 
-0 -00006 -0.00005 -0.00005 
-0 00005 -0 .OOOO 5 -0.00005 

1900.0 

115.755 
117.555 

125 0645 
125.655 
127 -455 

135.535 
135.545 
135.555 
135.755 
137.555 

145 455 
145.645 
145.655 
145.665 
147.455 

155.545 
1551555 
155 0565 

I63 0655 
165,445 
165.455 
165.465 
165.655 
165.665 

173.555 
175.545 
175.555 
175,565 
x75 . 575 

183.655 
185.4'55 
185.465 

193 -555 
195.555 
195 0565 

-0.00010 -0.00010 
-0.00010 -0.00010 

-0.00023 -0.00023 
4..00058 -0 e00058 
~ 0 . 0 0 0 1 1  -0.00011 

-0 000007 
-0.00083 -0 e00084 
-0.00211 -0.00211 
-0.00013 -0.00013 
-0.000 18 -0.00018 

0.00012 0.00012 
0 e00016 0 e00016 

-0.00108 -0.00108 
0.00014 0.00014 

-0.00021 -0.00021 

0.00098 0.00098 
-0.00660 -0-09661 

0.00086 0.00086 

-0.00007 
0 .00005 

-0.00036 -0..00036 
0.00005 

-0.00013 -0.00013 
"0 .00005 

-0.00008 
0.00008 

-0 -00242 -0 A0241 

-0.00008 
-0 00098 (-0.0008 9)' 

-0 00008 
-0 000039 -0 .00040 
-0.00016 -0.00016 

-0.00007 
-0.00009 
-0.00008 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/23/1/45/618969 by guest on 23 April 2024



New computations of the tide-generating potential 69 

Table 5(c) 

2-4 2 1 0 0 

2-3 0 2 0 0 
2-3 2 0-1 0 
2-3 2 0 0 0 

2-2 0 1-1 0 
2-2 0 1 0 0 
2-2 2-1-1 0 
2-2 2-1 0 0 

2-1 0 0-2 0 
2-1 0 0-1 0 
2-1 0 0 0 0 
2-1 0 2 0 0 
2-1 2 0 0 0 

2 0-2 1 0 0 
2 0 0-1-1 0 
2 0 0-1 0 0 
2 0 0 1-1 0 
2 0 0 1 0 0  
2 0 0 1 1 0  
2 0 2-1 0 0 

2 1 0 0-1 0 
2 1 0 0 0 0  
2 1 0 0 1 0  

2 2-2 1 0 0 
2 2 0-1 0 0 
2 2 0-1 1 0 

2 3-2 0 0 0 
2 3 0 0 0 0  
2 3 0 0 1 0  
2 3 0 0 2 0  

2 4 0 -1  0 0 

Semi-diurnal tides-3rd-degree terms 
1 2. 3 1900.0 

GROUP 29-4 

- 0 i 0 0 0 0 6  -0.00006 -0..00006 217.655 

GROUP 29-3 

-0.00018 -0.00018 -0.00018 225.755 
-0.00003 -0.00003 -0 e00003 227.545 
-0.00019 -0.00018 -0.00018 227.555 

GROUP 2 9 - 2  

-0.00018 -0.00018 -0.00018 235.645 
-0.00 107 -0 -00 10 7 -0 -0 0.1 07 235.655 
-0.00003 -0.00003 -0.00003 237.445 
-0.00020 -0.00020 -0.00020 237.455 

GROUP 29-1 

0.00003 0.00004 0.00003 245.53 5 
-0 -00066  -0 000 66 -0.00066 245.545 
-0 -00309 -0 e00389 -0.00389 245.555 

0.00007 0.00007 0.00007 245.755 
0.00010 0.00010 0.00010 247.555 

GROUP 210 
0.00005 0.00005 0.00005 253.655 
0.00004 0.00004 0.00004 2 55.445 
0.00022 0.00022 0.00022 255.455 

0.00059 0.00059 0.00059 255.655 
-0.00003 -0.00003 -0.00003 255.645 

0.00011 0.00011 0.00011 2 55 a665 
0.00011 0.00011 0.00011 257 -455 

GROUP 2 t 1  
-0.00021 -0.00021 -0.00021 265.545 

0.00359 0.00359 0600359  265.555 
0.00068 0.00068 0.00068 265.565 

GROUP 292 

0.00004 0.00004 0.00004 273 -655  

0.00004 0.00004 0.00004 275,465 
0 * 0 0 0 1 9  0 * 0 0 0 1 9  0.00019 275.455 

GROUP 2 t 3  

0.00004 0.00004 0.00004 283 -555  

0.00021 0 * 0 0 0 2 1  0.00021 285.565 
Om00004 0.00004 0.00004 285.575 

0.00033 0.00033 0.00033 285.555 

GROUP 2 9 4  

0.00005 0.00005 0*00005  295.455 

-0.00008 

-0 eOOO27 -0.00027 
-0.00005 
-0 e00027 -0 *00027 

-0.00027 -0 -00027 
-0 a 0 0  156  -0.00 156 
-0.00005 
-0 .OOO 29 -0.00029 

0.00005 
-0.00097 -0.00091 
-0.00569 -0.00569 
0.00010 0.00011 
0.00014 0.00015 

0.00008 
0.00005 
0 -00032 0 -00032 

0 a00086 0 -00086 
0.00016 0.00016 
0 e00017 0 e00017 

-0 e O O O O 5  

-0.00031 -0.00031 
0 -00525 0 -00525 
0.00099 0.00099 

0.00005 
0.00028 0 e00029 
0.00005 

0.00006 
0 -00048 0 -00048 
0.00031 O.OO031 
0 e00006 

0.00008 
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Table 5(d) 

3-2 0 2 0 0 
3-2 2 0 0 0 

3-1 0 1-1 0 
3-1 0 1 0 0 
3-1 2-1 0 0 

3 0-2 2 0 0 
3 0 0 0-1 0 
3 0 0 0 0 0  

3 1-2 1 0 0 
3 1 0-1 0 0 
3 1 0 1 0 0  
3 1 0 1 1 0  

3 2 0 0-1 0 
3 2 0 0 0 0  
3 2 0 0 1 0  
3 2 0 0 2 0  

Ter-diurnal tides-3rd-degree terms 

1 2 3 1900.0 

GROUP 39-2 

0.00036 0~00037 0.00037 
'0.00037 0.00037 0.00037 

GROUP 39-1 

-0.00012 -0.00017_ -0.00012 
0.00210 0.00210 0.00210 
0.00039 0.00039 0.00039 

GROUP 310 
-0.00005 -0.00005 -0.00005 
-0.000 43 -0.000 43 -0.00043 
0.00765 0.00765 0.00765 

GROUP 3 1 1  

-0.00011 -0.00011 -0.00011 
-0.00043 -0.00043 -0.00043 
0.00016 0.00016 0.00016 
0.00007 0.00007 0.00007 

GROUP 3 9 2  

-0.00004 -0.00004 -0.00004 
0.00100 0.00100 0.00100 
0.00044 0.00044 0.00043 
0.00005 0.00005 0.00005 

'See comment in text 

335 -7 55 -0 e00057 -0 00056 
337.555 -0 e00057 -0 e00057 

345.645 0 e00018 0.00018 
345.655 -0.00326 -0.00326 
347.455 -0.00061 -0.00061 

353.755 0.00007 
355.545 0.00067 0.00066 
355.555 -0.01188 -0.01188 

363.655 o.00017 o.oooi7 
365.455 0 e00067 0.00067 
365.655 -0.00025 -0.00025 
365.665 -0.00011 -0.00011 

375.545 0.00006 
375.555 -0.00155 -0.00155 
375.565 -0.00068 -0 e00068 
375.575 -0.00007 
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Expansion of the radiational potential 

The radiational potential was introduced by W. H. Munk to account for motions 
of tidal nature which are caused directly or indirectly by the Sun’s radiation. Such 
motions dominate the atmospheric tides, and they are also detectable in the ocean. 
Since response-type analyses often include coefficients of the radiational potential, 
it is desirable to know their harmonic amplitudes to add to the gravitational tides. 

If a is the Sun’s zenith angle at the place ( & A )  the potential is defined in the 
present notation as 

Y = SY cosa for 0 < tl < 3. (day), 

0 otherwise (night). 
or 

where S is the solar constant, taken as the unit. Expansion in Legendre polynomials, 
ignoring the parallax ll’ in comparison with unity, gives 

Y = s~(~+~P, (cosa)+&P,(cos  a)-&P,(cos a)+ ...). (24) 

P ,  does not appear because odd order terms other than P ,  contain the factor n’. 
The series (24) differs from the gravitational formula (8) mainly in the appearance of 
P , ,  which is due to the day-night asymmetry of (23), and in the different powers of 
ct, whch alters the fine structure in the tidal Groups. 

The harmonics of 1st degree arising from P ,  contain strong lines at the seasonal 
annual Sa and daily S ,  frequencies, which do not strictly appear in the gravitational 
expansion, although it has some close minor terms depending on the solar anomaly 
(non zero k6). The harmonics of 2nd degree occupy the same frequencies as the 
corresponding solar gravitational terms but can be distinguished in long quiet records 
by the absence of lunar effects. Cartwright (1966) found the radiational content of 
S ,  of several records of sea level to average 18 per cent of the gravitational content. 

The time harmonics from P ,  and P,,  listed in Table 6, were derived from (24) by 
algebraic expansion, which is fairly easy in the case of the Sun, using equations (9), 
(10) and (1 l), and the relations (for j3’ = 0): 

cos 0’ = sin (L’ + 6 E )  sin &, 

cos A’ sin 0’ = cos z’ cos (L’+6E)+ sin z‘ sin (L’ +6E)  cos E 

6L’ = 2e‘ sin 1’ + 0(d2),  

5’ = 1 + e’ cos Z’ + O(e’,). 

Since there is no call for great accuracy here, only the first power of e’ was retained 
in the expansions, and the numerical values of e‘ and E were taken at the epoch 
1950.0 (equations (5) and (7) with T = 0.5). Omission of terms in er2 limits the 
accuracy to about +_0.0020. All coefficients in Table 6 were confirmed to this 
accuracy by comparison with spectral analyses of 3-year time series. 

The possible relevance of P4 in (24) to the radiational tide has not been ascertained. 

t G. W. Groves and H. G. Loomis (unpublished MS) have experimented with a radiational 
function Q Iz. 
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Table 6 

Radiational potential 

1 2 3 1900.0 

1ST DEGREE GROUP 090 2ND DEGREE 

0 0 0 0 0 0  

0 0 1 0 0-1 

0 0 1 0 0 1  

0 0 2 0 0 0  

0 0 3 0 0-1 

0 0 0 0 0 1 -0.00341 

0 0 1 0  0 0 0.40694 

0 0 2 0 0-1 0.01022 

0 0 3 0 0-2 0.00024 

1ST DEGREE GROUP 1 9 1  2ND DEGREE 

1 1-3 0 0 1 
1 1-2 0 0 0 

1 1-1 0 0-1 

1 1-1 0 0 1 

1 1-2 0 0 1 -0.03482 

1 1-1 0 0 0 -1.38710 

1 1 0 0 0-1 0.01161 

1 1 0 0 0 1 0.00050 
1 1 0 0 0 0  

1 1 1 0 0-1 
1 1 1 0 0 0 -0.05969 

1 1 2 0 0-1 -0.00150 
1 1 1 0 0 1  

1 1 2 0 0 0  
1 1 3 0 0 -1  

GROUP 2.2 2ND DEGREE 

2 2-3 0 0 1 
2 2-2 0 0 0 
2 2-1 0 0-1 
2 2-1 0 0 1 
2 2 0 0 0 0  
2 2 1 0 0-1 
2 2 2 0 0 0  

-0.18894 

-0.0031 6 

0.00148 

-0.05079 

-0.00246 

0 .@0967 
0.23140 

-0.00501 

-0.00185 

-0.22 1 4 4  

-0.00185 

0.00025 

-0.00996 
-0.00042 

0.02333 
0.55741 

-0.01400 
0.00040 
0.04000 

0.00103 
0 e00040 
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