New Computations of the Tide-generating Potential

D. E. Cartwright and R. J. Tayler

(Received 1970 November 3)

Summary

A time-harmonic expansion of the gravitational tide potential is computed using an ephemeris of high precision for the Moon and the Sun and the latest I.A.U. astronomical constants. The results, which are computed for three different epochs and by novel methods, are compared with Doodson's classic expansion. The chief differences are due to secular trends in large terms and to revised constants which reduce all the solar terms. A new expansion is also given for the radiational tide potential.

Notation

t Time (E.T. or U.T.) in mean solar days, usually from the epoch 1900 Jan $1 \cdot 0$
f Frequency of general harmonic term in cycles per mean solar day
T Time in Julian centuries of 36525 ephemeris days from the epoch 1900 January 0.5 .
g Gravitational acceleration at Earth's surface
θ, λ Geocentric co-latitude (zero at North Pole) and east longitude of a place on the Earth
$\Theta, \Lambda \quad$ The same quantities for the Moon (' for the Sun)
Π, Π^{\prime} Sine equatorial parallax of the Moon, Sun
$\xi, \xi^{\prime}=\Pi / \Pi, \Pi^{\prime} / \Pi^{\prime}$, where the bar denotes time-average.
$L, L^{\prime} \quad$ Mean longitude of the Moon, Sun
$\beta, \beta^{\prime} \quad$ Latitude of the Moon, Sun
$m, m^{\prime} \quad$ Mean longitude of the Moon's, Sun's perigee
$\Omega \quad$ Mean longitude of the Moon's ascending node
$R^{\prime} \quad$ Radius vector of the Sun in astronomical units
ε Obliquity of the ecliptic
$l, l^{\prime}, F, D \quad$ Principal arguments in Brown's development
a Earth's equatorial radius
$W_{n}^{m} \quad$ Complex spherical harmonic of order m, degree n (equation (10)).
c_{n}^{m} Time dependent coefficient of W_{n}^{m} in gravitational potential
$A_{n} \quad$ See equation (14)
$H_{s}, \theta_{s} \quad$ Amplitude and phase of general harmonic component (equation (13))
$C_{j_{1}, j_{2}}$ Filtered potential centred on tidal Group (j_{1}, j_{2}) (equation (15))
$(P, Q)_{j_{1}, j_{2}, j_{3}}$ Filtered potential at $\frac{1}{18} \mathrm{c}_{1} \mathrm{yr}^{-1}$ resolution (equation (17))
$F_{1},\left(F_{2}, G_{2}\right)$ Filter characteristics associated with last two quantities (equations (16) and (18).

Introduction

A. T. Doodson's (1921) \dagger harmonic expansion has for long been accepted as the most thorough development of the gravitational tidal potential ever carried out. It superseded G. H. Darwin's (1883) expansion, just as E. W. Brown's (1905) lunar theory, which Doodson used, superseded all earlier theories. However, while its principal features have been amply verified by analyses of tidal records as far as their lengths and geophysical noise levels permit, the finer details of Doodson's expansion have probably never been checked by independent calculation. In any case, the widespread revision of astronomical constants (Wilkins 1964, 1965), the introduction of Ephemeris Time (Sadler \& Clemence 1954), and the re-calculation of Brown's coefficients (Eckert, Jones \& Clark 1954), make the present time ripe for fresh calculations of the tidal potential. Such work has now been completed, and the results are presented in this paper.

Paradoxically, our motivation for this work arises not from the requirements of ' harmonic methods' of tidal analysis, but from those of a new method of analysing tidal data which is in principle non-harmonic. Standard 'harmonic methods' demand little accuracy in the harmonic amplitudes of the potential, since they use only the frequencies at which the larger amplitudes appear, and certain details on which to base ' nodal corrections'. \ddagger Indeed, recent efforts to extend such methods by nearly doubling the usual number of arbitrary terms (Zetler \& Cummings 1967; Rossiter \& Lennon 1968) have sought to identify compound frequencies arising from local effects of shallow water rather than neglected terms in the primary potential.

The non-harmonic method is the 'response method' of Munk \& Cartwright (1966)-see also Cartwright (1968) and Cartwright, Munk \& Zetler (1969). Here, the gravitational potential is computed a priori as a time-dependent series of spherical harmonics§,

$$
V(\theta, \lambda, t) / g=\sum_{m} \sum_{n} c_{n}^{m *}(t) W_{n}^{m}(\theta, \lambda)
$$

and the part of a given geophysical tidal variation $\zeta(t)$ which is linearly coherent with the harmonic of order m, degree n is expressed in the form§

$$
\tilde{\zeta}_{n}^{m}(t)=\sum_{s=-s}^{S} R_{n}^{m *}(s) c_{n}^{m}(t-s \tau)
$$

where the arbitrary time lag τ is usually taken as two days. Although direct reference to time harmonics is deliberately avoided, indirect reference is sometimes necessary, as when:
(a) it may be convenient to compute $c_{n}^{m}(t)$ itself, or a filtered part of it, directly from its harmonic expansion;
(b) one wants to generate a tidal prediction by the response method for a regime which is known only by its ' harmonic constants'; or
(c) one wants to compare the results of several 'response analyses' with each other, with existing 'harmonic analyses', and with dynamical theory, for which it is desirable to specify fixed frequencies.
\dagger Reprinted as Doodson (1954); tables also in Neumann \& Pierson (1966).
\ddagger The most thorough use of the potential for harmonic purposes is by Horn (1967).
§ In these two equations, the real part of complex products is understood, with * denoting the conjugate.

Cases (b) and (c), essentially matters of translation, are considered by Zetler, Cartwright \& Munk (1970) and are implicit in Munk, Snodgrass \& Wimbush (1970). At any specified frequency f^{\prime}, one defines the 'admittance' $Z_{n}^{m}\left(f^{\prime}\right)$ of the tidal motion to the spherical harmonic (m, n) of the potential,

$$
Z_{n}^{m}\left(f^{\prime}\right)=\sum_{s=-s}^{S} R_{n}^{m}(s) e^{-2 \pi i s f^{\prime} \tau}
$$

The time harmonic of the motion corresponding to a 'line ' H^{\prime} with frequency f^{\prime} in the potential is then simply $H^{\prime} Z_{n}^{m}\left(f^{\prime}\right)$. Evidently, in any of these applications, the harmonic lines H^{\prime}, at least the larger ones, have to be known with some precision. Similar considerations also apply to the relationship between the precessional nutation of the Earth and the tidal potential, recently expounded by Melchior \& Georis (1968).

Our method of computing the time harmonics of the potential differs considerably from that of Doodson, which was one of massive algebraic expansion from Brown's series. A suite of computer programs for tidal analysis by the 'response method' has been in use and well tested for some years (Cartwright 1967), and this was used to generate time-series of the coefficients for three spans, each a little more than 18 years. The harmonics were extracted from these series by carefully applied filtering techniques. In generating the time-series, special attention was paid to the accuracy of the ephemerides used for both Moon and Sun, which were made comparable with the most modern published ephemerides to six significant figures. To ensure this accuracy, the programs had to incorporate not only a fair length of the revised Brown series, but also various corrections such as those due to the nutation and to the planets, which were ignored by Doodson.

In what follows, we first outline the choice of terms for inclusion in the ephemeris calculations, then after defining the normalization used for the potentials, we describe the filtering processes, and tabulate the results, with comparisons with Doodson's tables. Finally, we add a harmonic expansion of the radiational potential (Munk \& Cartwright 1966) which has not previously been calculated.

Calculation of the ephemeris

Eckert, Jones \& Clark (1954)--hereafter referred to as EJC-re-worked Brown's (1905) theory from its fundamentals by automatic computer. Their resulting tables and corrections have now superseded Brown's (1919) tables, and represent the most precise expression of the Newtonian dynamics of the Earth-Moon-Sun system in existence. However, the accuracy of the EJC tables, about 10^{-7} (rad, or mean parallax), is far greater than is required for the present purpose. Munk \& Cartwright (1966) obtained good tidal analyses using an ephemeris (essentially de Pontécoulant's to 3 rd order), which contains errors of 0.5×10^{-2}, as is to be expected from an expansion containing only 13 harmonic terms \dagger. Longman (1959) and others have worked with a gravitational potential computed from only eight harmonic terms. Our aim has been to remove all doubts associated with such approximations, and in fact to maintain a level of precision rather better than Doodson's. Since a general property of the lunar series seems to be that total errors can amount to about ten times the largest neglected term, our computer program was arranged to include all terms from EJC in longitude and latitude ($\gamma_{1} C$) greater than $0^{\prime \prime} \cdot 190$, in latitude (S and N) greater than $1^{\prime \prime} \cdot 85$, and in sine parallax greater than $0^{\prime \prime} \cdot 0018$. These limits

[^0]entailed a total of 277 harmonic solar perturbations \dagger, many of which of course shared common arguments, and also 15 very small planetary perturbations. Final errors were never found to exceed $1.3 \times 10^{-5} \mathrm{rad}$ or 0.6×10^{-5} mean parallax, and were usually much less (see Table 1).

The 'fundamental arguments', consisting of the mean longitudes of Moon, Sun and planets, of the Moon's and Sun's perigee and of the Moon's mean node, were computed in terms of ephemeris time T in Julian Centuries from formulae of type.

$$
\begin{equation*}
\theta(t)=A_{0}+A_{1} T+A_{2} T^{2}+A_{3} T^{3}+\sum_{n} c_{n} \cos \left(a_{n}+b_{n} T\right) \tag{1}
\end{equation*}
$$

The secular arguments A_{r} are as printed in Meeus (1962), in EJC (with other units), and in modern editions of the Astronomical Ephemeris. We remark only that the constants of the Moon's mean longitude have been substantially altered to keep in line with the new (1954) revisions. The harmonic terms in (1) are long period perturbations to the Moon's elements, which we selected from Table II of EJC again only where c_{n} exceeds $0^{\prime \prime} \cdot 19$. Twenty such terms were used, the largest by far being two terms in the Moon's node of amplitude $95^{\prime \prime} .96$ and $15^{\prime \prime} \cdot 58$ respectively with periods close to the nodal period, and the 'Great Venus Term' in longitude of amplitude $14^{\prime \prime} \cdot 27$ and a period of 271 years.

The Moon's true longitude and sine parallax are then computed by adding the high frequency perturbations in terms of Brown's four arguments:

$$
\begin{array}{ll}
l=L-w & \text { = Moon's mean anomaly } \\
l^{\prime}=L^{\prime}-w^{\prime} & =\text { Sun's mean anomaly } \\
F=L-\Omega & =\text { Moon's mean elongation from the node } \\
D=L-L^{\prime} & =\text { Moon's mean elongation from the mean Sun }
\end{array}
$$

by formulae of type:

$$
\begin{align*}
\delta \theta(t)=\sum_{n} \mu_{n} r_{n} \sin _{\cos }\left(i_{n} l+j_{n} l^{\prime}+k_{n} F\right. & \left.+m_{n} D\right) \\
& +\sum_{n} \rho_{n} \frac{\sin }{\cos } \text { (lunar and planetary arguments) } \tag{2}
\end{align*}
$$

In (2), r_{n} and ρ_{n} are the coefficients of solar and planetary perturbations respectively, chosen as previously described from Table III of EJC, each being associated with a set of integers ($i_{n}, j_{n}, k_{n}, m_{n}$), in our case all between ± 6. Sines of arguments are used for longitude, cosines for parallax. The μ_{n} are multipliers close to unity of the form

$$
\mu_{n}=e^{\left|i_{n}\right|} e^{\prime\left|j_{n}\right|} \gamma^{\left|k_{n}\right|}
$$

as detailed on p. 344 of EJC. They allow for small differences between actual and nominal orbital parameters, chiefly solar eccentricity e^{\prime}, corresponding to $e^{\prime}(T) / e^{\prime}(0)$ in formula (5).

The final increment used to obtain the Moon's true longitude, (referred to the true equinox of date) is that due to the Earth's nutation. Woolard's expressions for the nutation are tabulated in Sadler \& Clemence (1954), from which for the present accuracy we have extracted the following increments to longitude L and obliquity ε (seconds of arc):

$$
\begin{align*}
& \delta L=-17.23 \sin \Omega^{-1.27 \sin } 2 L^{\prime}+0.21 \sin 2 \Omega-0.20 \sin 2 L \tag{3}\\
& \delta \varepsilon \\
& +9.21 \cos
\end{align*}+0.55 \cos { }^{-0.09 \cos }+0.09 \cos 2 L
$$

[^1]The sine parallax is converted to its normalized value ξ by dividing by $3422^{\prime \prime} \cdot 70$, which is the nominal mean value of the tables. ξ is precisely the quantity occurring in tidal potential theory, whereas for the construction of astronomical tables it is converted to the arc \dagger by adding a cubic correction of order 10^{-4}. Where we require the numerical value of mean sine equatorial parallax, we use the 1964 I.A.U. value $3422^{\prime \prime} \cdot 451$, (Wilkins 1965), which again differs from the value $3422^{\prime \prime} \cdot 54$ at present adopted in the Astronomical Ephemeris.

We compute the Moon's latitude in the formalism adopted by EJC:

$$
\beta=(1+C)\left(\gamma_{1} \sin S+\gamma_{2} \sin 3 S+N\right), S=F+\delta F+\delta S
$$

where $F+\delta F$ is the true elongation from the node, already described, and δS and N (sines) and $\gamma_{1} C$ (cosines) are obtained by summing harmonic terms similar to (2), though without planetary terms, which are negligible here. We also use $\gamma_{1}=18519^{\prime \prime} \cdot 70, \gamma_{2}=-6^{\prime \prime} \cdot 24$, and ignore a very small term γ_{3}. This was the formalism used by Brown in his final tables (1919), although Doodson (1921) and Meeus (1962) refer to a more explicit form for latitude given in Brown (1905).

Maintaining the same accuracy in the Sun's ephemeris, we have used Newcomb's formulae as in all official work, for convenience as tabulated in Meeus (1962). In brief, the ' apparent' longitude $L_{a}{ }^{\prime}$ and radius vector $R_{a}{ }^{\prime}$ (in this case equal to $1 / \xi$ ') are compounded of the following terms:

$$
\left.\begin{array}{l}
L_{a}^{\prime}=L^{\prime}+\zeta L_{\text {add }}^{\prime}+\delta L_{\text {ellipse }}^{\prime}+\delta L_{\text {planet }}^{\prime}+\delta L_{\text {lunar }}^{\prime}+\delta L_{\text {nut }}^{\prime} \tag{4}\\
R_{a}^{\prime}=1+\delta R_{\text {ellipse }}^{\prime}+\delta R_{\text {planet }}^{\prime}+\delta R_{\text {lunar }}^{\prime}
\end{array}\right\}
$$

Here, $\delta L_{\text {add }}$ consists of the ' additive' terms of long period, already referred to in formula (1), although considerably smaller than the corresponding lunar terms. The next terms in (4) are the classical variations of elliptic motion, with eccentricity given by:

$$
\begin{equation*}
e^{\prime}=0.01675104-0.00004180 T-0.000000126 T^{2} \tag{5}
\end{equation*}
$$

These are the only terms considered by Doodson, who took e^{\prime} as a constant at $T=0$.
The planetary terms in (4) are similar in form to those in (2), but are relatively more important than in the lunar motion and can amount to as much as 10^{-4}. 45 harmonic terms (23 arguments) are included in the computation, principally due to Venus and Jupiter, but with some non-negligible amplitudes due to Mars and Saturn \ddagger.

The lunar terms in (4) express the changes in apparent position of the Sun due to the Earth's reflection of the Moon's orbit about their joint centre of gravity. Following Meeus (1962, p. 31), we use the geometrical formula:

$$
\begin{align*}
& \delta L_{\text {lunar }}^{\prime}=3.12 \times 10^{-5}\left(\xi^{\prime} / \xi\right) \cos \beta \frac{\sin }{\cos }\left(L_{a}-L_{a}^{\prime}\right) \tag{6}\\
& \delta R_{\text {lunar }}^{\prime}=
\end{align*}
$$

to this we finally add the nutational increment to longitude δL from formula (3). These two increments are interesting as being the only means whereby lunar frequencies, (principally modulations of one synodic month and the nodal period) enter the solar tide.

[^2]Normally, the Sun's apparent longitude is allowed a further increment ($-20^{\prime \prime} \cdot 47 / R^{\prime}$) due to the aberration of light, but this is omitted here as inappropriate to calculations of gravity. For consistency in precision, two small planetary terms and a lunar term related to (6) are combined to make a non-zero solar latitude β^{\prime}.

As an overall test of the above procedures, and of the computer logistics, the six lunar and solar elements were compared with corresponding values in the Astronomical Ephemeris every 10 days from 1959 Jan 0 to 1967 Dec 24, and the mean, standard, and maximum errors are given in Table 1. In the comparison due allowance was made for solar aberration and the difference between arc and sine of lunar parallax. Errors in the lunar values are similar to those described by Meeus (1962, pp 47-51) from a much shorter comparison with his tables. Our errors in lunar parallax are significantly smaller; in fact deliberately so, since the tidal potential involves the cube. Meeus's solar elements are nearly perfect, since he includes an extensive range of planetary and nutational terms. Our's have errors comparable with but smaller than our lunar errors as befits the present work. It is difficult to compare with Doodson's level of accuracy, but his errors must certainly be greater in every case.

At this stage, the reader may wonder why we bother to compute the ephemeris at all when it is already available to higher precision in published form. The main reasons are that modern computers can compute faster and more efficiently than they can read data (the calculations above take about 45 s for a year's ephemeris), and that tidal analyses are sometimes required for rather ancient epochs. (As an extreme example, the senior author has recently used this program to analyse tidal observations made by Maskelyne (1762) before he published the first Nautical Almanac.)

Table 1
Statistics of differences between present computations and published cphemerides, 1959-1967

		Units	Mean	S.D.	Maximum	Dates of maximum
Moon	Normalised sine parallax	10^{-3}	0.20	$0 \cdot 18$	-0.56	1966 Aug. 21
Sun		10^{-5}	0.03	0.08	+0.29	1959 June 9, 1962 Nov. 10
Moon	Longitude	10^{-5}	0.16	0.31	+1.21	1963 Nov. 5
Sun		\times	0.01	$0 \cdot 20$	$+0.58$	1965 Nov. 24
Moon	Latitude	radians	0.04	$0 \cdot 19$	-0.50	1959 March 31 \dagger
Sun	"	(i.e. 2')	-0.02	0.03	-0.07	1962 July 3

$\dagger+0.50$ in Moon's latitude also occurred on 1961 Aug. 17 and 1965 July 27.

The final steps taken to produce quantities directly usable for calculations of the gravitational potential are as follows. The ecliptic latitudes and longitudes are converted to cosines and sines of co-declination Θ (polar angle) and right ascension, and the latter transferred to terrestial east longitude Λ from the Greenwich ephemeris meridian by effectively subtracting the ephemeris sidereal time. This involves some well-known trigonometrical formulae; also the obliquity of the ecliptic, for which we take

$$
\begin{equation*}
\varepsilon=84428^{\prime \prime} \cdot 26-46^{\prime \prime} \cdot 85 T+\delta \varepsilon \tag{7}
\end{equation*}
$$

and the sidereal time angle (in revolutions) reckoned from the true equinox, namely

$$
t+0 \cdot 27691940+100 \cdot 00213590 T+0 \cdot 00000108 T^{2}+(129600)^{-1} \delta L \cos \varepsilon
$$

where $\delta \varepsilon$ and δL are the nutational increments in (3). The lunar parameters ξ, $\sin _{\sin }^{\cos }(\Theta, \Lambda)$ are at first computed at $O h$ and $12 h$ E.T., and the solar parameters ξ^{\prime}, $\sin _{\sin }\left(\Theta^{\prime}, \Lambda^{\prime}\right)$ at $O h$ E.T. only. At a later stage of the computation, these elements are interpolated by Everett formulae to a shorter time interval (3 hourly for the present purpose) in Universal Time, while Λ and Λ^{\prime} are adjusted from the ephemeris meridian to the geographical meridian of Greenwich. These last adjustments use the series of measured time differences

$$
\Delta T=\text { E.T. - U.T. }
$$

published in the Astronomical Ephemeris, and thus involve the known vagaries of the Earth's rotation, to produce as realistic values as possible.

Calculation of the potential

We consider the gravitational potential on a sphere with the Earth's equatorial radius. The adjustment to the actual radius of the geoid is a secondary matter which need not concern us here. We have then

$$
\begin{equation*}
V / g=\sum_{n=2}^{\infty} K_{n} \xi^{n+1} P_{n}(\cos \alpha), \quad K_{n}=a\left(M / M_{\oplus}\right) \Pi^{n+1} \tag{8}
\end{equation*}
$$

where M (or M^{\prime}) is the Moon's (or Sun's) mass, Π its mean sine parallax, and α its zenith angle relative to the place on the sphere with co-ordinates (θ, λ).

The P_{n} are Legendre Polynomials, which can be expanded in terms of the ephemeris elements Θ, Λ described in the last section as follows \dagger :

$$
\begin{equation*}
P_{n}(\cos \alpha)=\frac{4 \pi}{2 n+1} \cdot \operatorname{Re}\left[W_{n}^{0 *}(\Theta, \Lambda) W_{n}^{0}(\theta, \lambda)+2 \sum_{m=1}^{n} W_{n}^{m *}(\Theta, \Lambda) W_{n}^{m}(\theta, \lambda)\right] \tag{9}
\end{equation*}
$$

where $W_{n}{ }^{m}(\theta, \lambda)$ denotes the spherical harmonic

$$
\begin{equation*}
(-1)^{m}\left[\frac{2 n+1}{4 \pi} \cdot \frac{(n-m)!}{(n+m)!}\right]^{\frac{1}{2}} P_{n}^{m}(\cos \theta) e^{i m \lambda} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}^{m}(\mu)=\frac{\left(1-\mu^{2}\right)^{\frac{1}{m}}}{2^{n} \cdot n!} \frac{d^{m+n}}{d \mu^{m+n}}\left[\left(\mu^{2}-1\right)^{n}\right] \tag{11}
\end{equation*}
$$

Using the 1964 I.A.U. constants (Wilkins 1965):

$$
\begin{array}{rlrl}
M / M_{\oplus} & =1 / 81 \cdot 30, & M^{\prime} / M_{\oplus} & =332958, \\
\Pi & =3422^{\prime \prime} \cdot 451, & \Pi^{\prime} & =8^{\prime \prime} \cdot 794, \\
a & =6378160 \text { metres, so that } & \\
K_{2} & =0.358378 \mathrm{~m}, & K_{2}^{\prime} & =0.164577 \mathrm{~m}, \\
K_{3} & =0.005946 \mathrm{~m}, & K_{3}^{\prime} & =0.000007 \mathrm{~m},
\end{array}
$$

\dagger We here follow the procedure and notation of Munk \& Cartwright (1966), except that our ζ, Θ, Λ are their $R / R, Z, L$, respectively.
equations (8)-(11) and the computed ephemeris are used quite simply to compute the series of time-dependent coefficients $c_{n}{ }^{m}(t)$ in the relation

$$
\begin{equation*}
V / g=\sum_{n=2,3} \sum_{m=0}^{n} c_{n}^{m *}(t) W_{n}^{m}(\theta, \lambda) \text { metres } \tag{12}
\end{equation*}
$$

mentioned in the Introduction. We compute only for $n=2$ and 3 (Moon) and for $n=2$ (Sun) because of the ordering of magnitude due to the factor Π^{n+1}. Corresponding lunar and solar series are added to define the total potential.

Doodson's development differs from ours in normalization. His G (in which ρ is a misprint for ρ^{2}) corresponds to our $\frac{3}{4} g K_{2}$ and is taken out as an arbitrary factor, so that most of his numerical coefficients are hardly affected by changes in basic astronomical constants, but only by the small differences in the ephemeris calculations. However, his solar terms, denoted by G_{m}, all contain a factor $K_{2}{ }^{\prime} / K_{2}$ which he took to be 0.46040 , whereas the modern constants give 0.45923 . His third degree terms denoted by $G_{m}{ }^{\prime}$ (our $n=3$) also contain the factor Π which he took to be $3422^{\prime \prime} \cdot 70$, but since these terms never involve more than four significant figures this particular error is negligible. Apart from such discrepancies, Table 2 details our normalization (equations (10) and (11)), and the resulting ratio ρ of Doodson's coefficients to corresponding terms in $c_{n}{ }^{m}$.

Table 2

Normalization and ratio $\rho=\left(\right.$ Doodson $: C_{n}{ }^{m}$)

n	n	$e^{-t m \lambda} W_{n}^{m}(\theta, \lambda)$	$1 / \rho$	ρ
0	2	$\sqrt{ }(5 / 4 \pi)\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right)$	$-\sqrt{ }(9 \pi / 20) K_{2}$	$-2 \cdot 34681$
1	2	$-\sqrt{ }(5 / 24 \pi) 3 \sin \theta \cos \theta$	$-\sqrt{ }(6 \pi / 5) K_{2}$	$-1 \cdot 43712$
2	2	$\sqrt{ }(5 / 96 \pi) 3 \sin { }^{2} \theta$	$\sqrt{ }(6 \pi \pi / 5) K_{2}$	$1 \cdot 43712$
0	3	$\sqrt{ }(7 / 4 \pi)\left(\frac{3}{2} \cos ^{3} \theta-\frac{3}{2} \cos \theta\right)$	$-1 \cdot 11803 \sqrt{ }(9 \pi / 7) K_{2}$	$-1 \cdot 24182$
1	3	$-\sqrt{ }(7 / 48 \pi) \frac{3}{2} \sin ^{2} \theta\left(5 \cos ^{2} \theta-1\right)$	$0 \cdot 72618 \sqrt{ }(12 \pi / 7) K_{2}$	$1 \cdot 65576$
2	3	$\sqrt{ }(7 / 480 \pi) 15 \sin ^{2} \theta \cos \theta$	$2 \cdot 59808 \sqrt{ }(6 \pi / 35) K_{2}$	$1 \cdot 46349$
3	3	$-\sqrt{ }(7 / 2880 \pi) 15 \sin ^{3} \theta$	$-6 \sqrt{ }(\pi / 35) K_{2}$	$-1 \cdot 55227$

Harmonic development and filtering

With t in Universal Time measured in mean solar days from 1900 Jan $1 \cdot 0$, we wish to express the time series $c_{n}^{m}(t)$ as closely as possible in the form

$$
\begin{gather*}
c_{n}^{m}(t)=\sum_{s} H_{s}^{\cos } \theta_{s} \\
\theta_{s}=2 \pi f_{s} t+\phi_{s}=\sum_{r=1}^{6} k_{r}^{(s)}\left(2 \pi f_{r} t+\phi_{r}\right) \tag{13}
\end{gather*}
$$

where, for each $s, k_{1} \ldots k_{6}$ is an array of small integers, and the bracketed arguments (defined precisely in Table 3) correspond in a reasonable manner with the following concepts in descending order of frequency:

Doodson Brown

1	τ	$360^{\circ} t-D+180^{\circ}$	Time angle in lunar days $\left(f_{1}=1-f_{2}+f_{3}\right)$
2	s	L	Moon's mean longitude
3	h	L^{\prime}	Sun's mean longitude
4	p	w	Longitude of Moon's mean perigee
5	N^{\prime}	$-\Omega$	Negative longitude of Moon's mean node
6	p_{1}	w^{\prime}	Longitude of Sun's mean perigee

Classical analysis shows that the cosines in (13) are appropriate to ($m+n$) even, the sines to ($m+n$) odd.

It is of course accepted that f_{r} and ϕ_{r} will vary on a very long time scale, (as they do in Doodson's model), but we also have to make some compromise for the fact that many of the amplitudes in the ephemeris calculation were allowed slight secular variations. This, together with the planetary terms, the irregular time scale introduced by the conversion from E.T. to U.T., and 'numerical noise' due to imperfections in computing, make the problem better suited to least-squares estimation than to precise algebraic expansion. In fact, we analyse $c_{n}{ }^{m}(t)$ by methods similar to those suitable for real geophysical time series of tidal nature with very low background noise.

We first note that the real and imaginary parts of $c_{n}{ }^{m}(t)$ are orthogonal in time, (any term $H \cos \omega t$ in the real part occurs as $-H \sin \omega t$ in the imaginary part), so we shall consider only the former in what follows. Secondly, since the order m separates the spectra into tidal 'Species' with frequencies centred on m cycles per lunar day ($k_{1}=m$), and the spectral analyses of Munk, Zetler \& Groves (1965) show that the spectral energy is reduced by at least 10^{10} (amplitude reduced by 10^{5}) at a separation of $1 c / l d$, therefore we worked (as is very convenient) with the summed series

$$
\begin{equation*}
A_{n}(t)=\operatorname{Re} \sum_{m=0}^{n} c_{n}^{m}(t), \quad n=2,3, \tag{14}
\end{equation*}
$$

and left the filtering process to separate the component parts.
The next procedure was to apply orthogonal pairs of filters, each designed to pass only one tidal 'Group' (k_{1}, k_{2}) with little amplitude reduction. This operation is defined by

$$
C_{0,0}\left(t-t_{0}\right)=N^{-1} \sum_{r=-\frac{1}{2} N}^{\frac{+N}{N}} A_{n}(t+r \Delta t)(1+\cos \pi r / N),
$$

$C_{j_{1}, j_{2}}\left(t-t_{0}\right)=\exp \left\{2 \pi i\left(j_{1} f_{1}+j_{2} f_{2}-j_{2} f_{3}\right)\left(t-t_{0}\right)\right\}$.

$$
\begin{equation*}
\left[2 N^{-1} \sum_{r=-\frac{1}{2} N}^{+N} A_{n}(t+r \Delta t)(1+\cos \pi r / N) \exp (2 \pi i p r / N)\right], \tag{15}
\end{equation*}
$$

where

$$
N=472, \Delta t=\frac{1}{8},(N \Delta t=59 \text { days })
$$

and

$$
p=57 j_{1}+2 j_{2},
$$

with the following combinations:

$$
\begin{aligned}
& j_{1}=0, j_{2}=1(1) 4 \\
& j_{1}=1,2, j_{2}=-4(1) 4 \\
& j_{1}=3, j_{2}=-2(1) 2, \text { for } n=3 \text { only. }
\end{aligned}
$$

The general effect of (15) is to multiply the amplitude H_{s} of a term with frequency f_{s} by the filter characteristic:

$$
\begin{equation*}
F_{1}\left(f_{s}\right)=\frac{\sin ^{2} v \cos v \delta}{\sin (v+v \delta) \sin (v-v \delta)} \cdot \frac{S(\pi \delta)}{S(v \delta)} \tag{16}
\end{equation*}
$$

where $v=\pi / N, S(x)=\sin x / x, \delta=59 f_{s}-p$. The form of $F_{1}(f)$ is plotted in Fig. 1 . It is near unity for all relevant frequencies in the Group (k_{1}, k_{2}) $=\left(j_{1}, j_{2}\right)$, centred
fairly close to $k_{3}=-j_{2}$. It greatly attenuates neighbouring Groups and virtually eliminates neighbouring Species (different k_{1}). The small interference from neighbouring Groups will be removed by the next filter characteristic F_{2}, (18), whose envelope is also shown in Fig. 1.

The effect of the first exponential factor in (15) is to 'heterodyne' by the central frequency of the Group, that is to subtract $j_{1} f_{1}+j_{2}\left(f_{2}-f_{3}\right)$ from the frequency of all harmonic components. The complex series $C_{j_{1}, J_{2}}(t)$ referred to an arbitrary time origin t_{0} (defined later), thus contains only very low frequency variations from its own Group, and small variations of up to a few cycles per month from the attenuated neighbouring Groups. The only precaution needed is to ensure that none of the latter frequencies is 'aliassed', that is made indistinguishable from very low frequencies, by too long a sampling interval in t. A sampling interval of 5 days was chosen as satisfactory. As shown in Fig. 1, this produces low frequencies by ' aliassing' Groups ($j_{1}, j_{2} \pm 6$), but the value of F_{1} at $\delta \sim 13$ is so small that the effect is well below numerical noise level, and in any case the frequencies of the aliassed lines do not tally with those of Group (j_{1}, j_{2}). The redundant operations inherent in applying the 59 -day filter (15) at 5 -day intervals were avoided by efficient computer logistics.

The next operation was to apply direct Fourier transforms to an 18 -year span

Fig. 1. The top panel shows the main constituents of the $W_{2}{ }^{1}$ diurnal tide, with Group numbers (k_{1}, k_{2}). The vertical pecked lines show the 'Nyquist ' frequencies of the filtered series $C_{1,1}(t)$ when computed at 5 -day intervals, and the horizontal lines are the positions of ' aliassed ' Groups. Amplitudes of the aliassed Groups are greatly reduced by the filter $F_{1}(f)$ acting at its proper (non-aliassed) frequency. (Group ($1,-5$), reduced by more than 6000 , is well below the threshold level.) The central portion of F_{1} appropriate to $C_{1,1}$, is in the lower panel, as well as the envelope of the Fourier filter F_{2} appropriate to $(P, Q)_{1,1,0}$.
of the Group series $C_{j_{1}, j_{2}}\left(t^{\prime}\right),\left(t^{\prime}=t-t_{0}\right)$:

$$
\begin{gather*}
P_{0,0,0}=M^{-1} \sum_{r=0}^{M}{ }^{\prime \prime} C_{0,0}\left(t^{\prime}+r \Delta t^{\prime}\right) \\
P_{0,0 j_{3}}+i Q_{0,0, j_{3}}=(-1)^{j_{t}} 2 M^{-1} \sum_{r=0}^{M}{ }^{\prime \prime} C_{0,0}\left(t^{\prime}+r \Delta t^{\prime}\right) \exp \left(-2 \pi i j_{3} r / M\right) \\
P_{j_{1}, j_{2}, j_{3}}+i Q_{j_{1}, j_{2}, j_{3}}=(-1)^{j_{3}} M^{-1} \sum_{r=0}^{M}{ }^{\prime \prime} C_{j_{1}, j_{2}}\left(t^{\prime}+r \Delta t^{\prime}\right) \exp \left(-2 i j_{3} r / M\right) \tag{17}
\end{gather*}
$$

where

$$
M=1315, \Delta t^{\prime}=5,\left(M \Delta t^{\prime}=6575 \text { days }\right)
$$

and $\Sigma^{\prime \prime}$ represents a summation whose first and last terms are halved. For Group $(0,0), j_{3}=1(1) 80$; otherwise $j_{3}=-80(1) 80$. It is now appropriate to state that t_{0} was chosen as the central time of the 18 -year span, (see Table 3), so that all 'phases' θ_{s} in (13) refer to this time.

The filter characteristic of (17) is such that for Group $(0,0)$

$$
\begin{gather*}
(P, Q)_{0,0, J_{3}}=\sum_{s} F_{1} H_{s}\left(F_{2} \cos \theta_{s}, G_{2} \sin \theta_{s}\right), \\
\left(F_{2}, G_{2}\right)=\left\{\frac{\sin 2 \mu\left(\left|j_{3}\right|+\varepsilon\right)}{\sin \mu\left(2\left|j_{3}\right|+\varepsilon\right)}, \frac{\sin 2 \mu\left|j_{3}\right|}{\sin \mu\left(2\left|j_{3}\right|+\varepsilon\right)}\right\} \frac{S(\pi \varepsilon)}{S(\mu \varepsilon)}, \tag{18}
\end{gather*}
$$

where

$$
\mu=\pi / M, \varepsilon=6575\left|f_{s}-j_{1} f_{1}-j_{2} f_{2}+j_{2} f_{3}\right|-\left|j_{3}\right| .
$$

For all other Groups, (F_{2}, G_{2}) is replaced by

$$
\begin{equation*}
\left\{\frac{1}{2}\left(F_{2} \pm G_{2}\right), \frac{1}{2}\left(F_{2} \pm F_{2}\right)\right\} \tag{19}
\end{equation*}
$$

the $(+)$ signs being taken when $f_{s}-j_{1} f_{1}-j_{2} f_{2}+j_{2} f_{3}$ has the same sign as j_{3}, the $(-)$ sign when different. The function is always rather similar to its dominant factor $S(\pi \varepsilon)$, and only its envelope for the case $j_{3}=0$ is shown in Fig. 1.

The Fourier harmonics $(P, Q)_{j_{1}, j_{2}, j_{3}}$ already give a good first approximation to the lines

$$
F_{1} H_{s}\left(\cos \theta_{s}, \sin \theta_{s}\right),
$$

as the typical examples in Fig. 2 clearly show. 6575 days being within 16 h of 18 tropical years, unit increments in k_{3} correspond fairly precisely with 18 increments in j_{3}. Unit increments in $k_{4}(8.85 \mathrm{yr})$ and $k_{5}(18.61 \mathrm{yr})$ give increments of 2 and 1 to j_{3} with somewhat less precision. Non-zero k_{6} is recognizable from the phase change of some 282° in ϕ_{6}. However, it is possible for two or more distinct lines H_{s}, closely spaced in frequency, to be unresolved without further analysis. Careful algebraic study shows that close terms from the same spherical harmonic can differ in frequency only by

$$
2 f_{6},(1 \text { cycle } / 10470 \mathrm{y})
$$

or

$$
\begin{equation*}
\delta f_{7}=f_{4}-2 f_{5} \pm f_{6},(1 \mathrm{c} / 180 \mathrm{y}) . \tag{20}
\end{equation*}
$$

Doodson's tables show six such pairs, all in the solar Groups, differing by $2 f_{6} \dagger$, but some others involving amplitudes below the threshold of 10^{-4} may have been omitted. Another difficulty we have to resolve is that all terms (P, Q) contain small

[^3]contributions from lines at more than $\frac{1}{18} \mathbf{c y}{ }^{-1}$ separation, through the 'sidebands' of the filter (F_{2}, G_{2}).

Our final steps for extracting reasonably accurate values from (P, Q) were as follows:

1. For reasons irrelevant to this paper, it was convenient to compute 18 -year time series of $A_{2}(t)$ and $A_{3}(t)$, (14) for a recent epoch with central date in 1960 . In order to search unambiguously for frequency differences $\delta f_{7}(20)$, a similar span was also computed about 90 years earlier, with central date in 1870. A third convenient span, with central date in 1924, was also used. For each span, mean values of $f_{2} \ldots f_{6}$ and $\phi_{2} \ldots \phi_{6}$ were computed from values at the start and end times of $L, L^{\prime}, w,-\Omega, w^{\prime}$ respectively, using the long period ' additive' terms (equation (1)), and also the appropriate adjustments from Ephemeris Time to Universal Time. The precise dates and arguments are listed in Table 3.

Table 3
Times (U.T.) and mean arguments for the three 6575 day spans.

Span No.	Start time $\quad \Delta T$	End tim	$\Delta T \quad$ Central time		t_{0} (from 1900.0)
1	1861 Sep $21 \cdot 0$ (3-1)	1879 Sep $22 \cdot 0(-7 \cdot 7)$		1870 Sep $19 \cdot 5$	-10693.5
2	1915 May 16.0 (16.4)) 1933 May $22 \cdot 0(23 \cdot 6) \quad 192$		1924 May $21 \cdot 5$	$8906 \cdot 5$
3	1951 May $23 \cdot 0$ (29.7)) 1969 May $23 \cdot 0(40 \cdot 0) 19$		0 May $22 \cdot 5$	$22056 \cdot 5$
	$r=2$	$r=3$	$r=4$	$r=5$	$r=6$
1	$0 \cdot 03660110130$	0.0027379093	$0 \cdot 0003094562$	$0 \cdot 0001470943$	$0 \cdot 0000001307$
$f_{r}\{2$	25	92	54	41	08
3	23	92	48	40	08
1	$135^{\circ} \cdot 22275$	$180^{\circ} \cdot 16879$	$223^{\circ} \cdot 08434$	$254{ }^{\circ} 58011$	$280^{\circ} \cdot 71758$
$\phi_{r}\{2$	$272^{\circ} \cdot 60245$	$058{ }^{\circ} \cdot 85684$	$246^{\circ} \cdot 60455$	$212^{\circ} \cdot 47704$	$281^{\circ} \cdot 64011$
3	$022^{\circ} \cdot 22101$	$060^{\circ} \cdot 11923$	$271{ }^{\circ} \cdot 56503$	$188^{\circ} \cdot 82048$	$282^{\circ} \cdot 25919$

'Start' and 'End' correspond to the terms $r=0, \mathrm{M}$, in equation (17)
Figures in brackets at $\Delta T=$ ET-UT in seconds
For each period, $f_{1}=1-f_{2}+f_{3}, \phi_{1}=180^{\circ}-\phi_{2}+\phi_{3}$
2. The 'sideband' noise level for each Group j_{1}, j_{2}, (see Fig. 2), was greatly reduced by assuming the indisputable k_{r} values for the frequencies of the major lines in the Group, (and in some cases for adjacent Groups $j_{1}, j_{2} \pm 1$ also) and subtracting their sidebands according to the filter functions 17,18 and 19.
3. Each $(P, Q)_{j_{1}, j_{2}, j_{3}}$ whose amplitude stood well clear of the reduced noise level was tested for all possible combinations of three lines H_{s} with frequencies f_{s} determined by the scheme:

$$
\begin{gathered}
k_{1}=j_{1}, k_{2}=j_{2}, k_{3}=k_{3}^{\prime}-j_{2} ; \\
\left(k_{4}, k_{5}\right)=\left(k_{4}^{\prime}, k_{5}^{\prime}\right), \text { or }\left(k_{4}^{\prime}+1, k^{\prime}-2\right), \text { or }\left(k_{4}^{\prime}-1, k_{5}^{\prime}+2\right) ; \\
k_{6}=0 \text { or } \pm 1, \text { or in certain cases } \pm 2
\end{gathered}
$$

where

$$
\begin{gathered}
k_{3}^{\prime} \text { is the nearest integer to } j_{3} / 18 \\
k_{4}^{\prime} \text { is the integral part of }\left(j_{3}-k_{3}^{\prime}\right) / 2
\end{gathered}
$$

and

$$
k_{5}^{\prime}=j_{3}-k_{3}^{\prime}-2 k_{4}^{\prime} .
$$

Fig. 2. Two groups, $(1,1)$ and $(2,-2)$ of 'untreated' Fourier harmonics, $\log _{10}|P+i Q|$, plotted against j_{3}. Suffixed letters above strong lines are the conventional Darwin symbols. Harmonics marked (a) correspond to lines H_{s} below Doodson's threshold level, but included in present tables. Harmonics marked (b) are negative anomalies which become positive when the ' sidebands' are subtracted. The sideband subtraction process reduces the background level to below -5 on the above scale.

The test consisted in determining a triplet H_{s} to minimize

$$
\begin{equation*}
v=\left\langle\left[\left(\sum_{s} F_{2} H_{s} \cos \phi_{s}-P\right)^{2}+\left(\sum_{s} G_{2} H_{s} \sin \phi_{s}-Q\right)^{2}\right]\right\rangle \tag{21}
\end{equation*}
$$

where $<>$ denotes an ensemble average over the harmonics from the three 18 -year periods. The appropriate combination was then easily picked out by the smallness of its $v_{\text {min }}$ (independently of the choice made at step 2), and in most cases indicated a single large H_{s} and two other negligibly small amplitudes. Where two comparable amplitudes appeared, their frequencies were always separated by the 'permissible' values $2 f_{6}$ or δf_{7}, (20).
4. The solutions from step 3 were used to subtract sidebands of higher accuracy from the original (P, Q) values and thus to iterate step 2 . The sequence 2-3 was repeated until stable values of H_{s} and a generally low amplitude level $\left(<10^{-6}\right)$ at non-contributing (P, Q) was obtained. Three iterations were usually sufficient.

The solutions from (21), converted to true amplitudes H_{s} by dividing by the broad filter function F_{1}, (16), agreed roughly with Doodson's values, (with some differences discussed in the next section) and included several reliable amplitudes below Doodson's threshold of 10^{-4}. However, we noticed that the residual variances $v_{m i n}$ associated with the largest lines such as M_{2}, K_{1}, and the constant term, were substantially greater than with small lines. Examination showed this to be due to discernible secular trends in the amplitudes themselves, resulting from the relative changes of 5×10^{-4} per century in mean obliquity ε, (7) and 25×10^{-4} per century in solar
eccentricity e^{\prime} (5). Since the above procedure established that there were never more than two lines contributing significantly to any (P, Q) after removal of sidebands, it was possible to evaluate H_{s} separately from each 18 -year period, so we thought it wiser to present the amplitudes from all three epochs, rather than the ensemble averages derived from (21). These show the magnitude of the secular trends, allowing interpolation or extrapolation to other epochs, as well as confirming the stability of our method of evaluation.

Finally, for direct comparison with Doodson's coefficients, a fourth value was calculated specifically for the epoch 1900.0 by the least-squares interpolation:

$$
\begin{equation*}
H_{s}(o)=0 \cdot 5504 H_{s}(-10693 \cdot 5)+0 \cdot 3066 H_{s}(8906 \cdot 5)+0 \cdot 1430 H_{s}(22056 \cdot 5) \tag{22}
\end{equation*}
$$

and converted to Doodson's scaling by the factors ρ given in Table 2. All values above a threshold of 4.5×10^{-5} in Doodson's scale are tabulated in Tables 4 and 5.

Comments on Tables 4 and 5

Table 4(a), (b) and (c) list the terms derived from the spherical harmonics of 2nd degree, contributing to tides of Species 0 (low frequency), 1 (diurnal), and 2 (semi-diurnal), respectively. We have headed these ' principal terms', because they include the largest amplitudes, although many of their terms are less than the largest terms in the 3rd degree harmonics. Table 5(a), (b), (c) and (d) list the terms from the spherical harmonics of 3rd degree (Doodson's G^{\prime}), which contribute to the same tidal species as in Table 4, and also to Species 3 (ter-diurnal).

In each table, the first columns contain the six integers k_{r} defining the argument (equation (13)), and the amplitudes H_{s} derived from the three epochs t_{0} defined in Table 3. The six integers separated by a central dot repeat the k_{r} in Doodson's notation, whereby all except k_{1} are increased by 5 to avoid minus signs, and the number 10, where it appears, is denoted by X. The columns headed 1900.0 contain the amplitudes interpolated between the three given amplitudes by equation (22) and converted to Doodson's scaling, and the last columns contain Doodson's coefficients for comparison. Doodson $(1921,1954)$ also lists some coefficients $>10^{\mathbf{- 4}}$ in Groups for which $k_{2}= \pm 5$ and 6 . We have not computed these because experience has shown that their contributions to tidal records are invariably below noise level.

Secular trends, mentioned in the last section, are seen clearly only in amplitudes greater than $0 \cdot 01$. Below this level, variations of 1 or 2 in the last digit may be taken as a measure of the extent of inaccuracy, possibly due to the omission of a small line here and there.

Comparisons with Doodson's values are generally very good, with a few minor exceptions, discussed below. They certainly confirm that he omitted no major term and made no mistakes in sign. The most consistent differences occur in the larger solar terms, because of the inaccuracy in Doodson's conversion factor $K_{2}{ }^{\prime} / K_{2}$, mentioned earlier. If, for example, one re-adjusts his coefficient for $S_{2}(22-2000)$ to the modern constants, one gets 0.42250 , which is much closer to our figure. However, differences up to seven in the last decimal occur in purely lunar terms, and these must be attributable to our improved ephemeris and possibly more accurate method of calculation. This also explains why we obtain several lines with amplitude just above Doodson's threshold of 0.00010 ; they were probably just below it in his calculations.

On the other hand, the effects of some of our more obvious improvements in the ephemeris are hardly detectable to the present accuracy. The largest planetary terms in the Sun's orbit should produce anomalous lines modulating the strong solar lines at harmonic separations of $j_{3}=11 \cdot 3,16 \cdot 5,22.5$ and $33 \cdot 0 \mathrm{c} / 18 \mathrm{y}$, but these were not identifiable. Similarly, the effect of the Earth's lunar motion on the Sun's
apparent position modulates the strong solar lines by one cycle per synodic month ($01-1000$), producing differences from Doodson's figures at that frequency and at (101000), (12-1000), (21-1000) and (23-3000). In fact, the differences at these lines are mostly about 2 units, which is not remarkable, and the last is below both threshold levels. However, such small terms, of which there is a considerable number, can accumulate in the time domain to give occasionally much larger increments.

Four terms in Table 4 deserve some comment. Our amplitude at (222000) agrees with the corrected figure in Doodson (1954), but not with that printed in 1921. The two small lines at ($00200-2$) and (11-2002) differ from Doodson's by more than usual. He lists them as pure solar terms, and these can be checked to have in his scale the respective amplitudes:

$$
0.46 e^{\prime 2}\left(3-\frac{9}{2} \sin ^{2} \varepsilon\right)=0.00030
$$

and

$$
-0.46 e^{\prime 2}\left(\frac{9}{4} \sin \varepsilon \cos \varepsilon\right)=-0.00011
$$

as in his table. We had to derive both terms by separation from considerably larger terms at a frequency interval of $2 f_{6}$, but this procedure does not appear to incur any special errors, and there are similar cases which give the expected results. We can only suggest that there may be lunar terms at the same frequencies which were overlooked or did not appear in Doodson's expansion.

Our line at (2-20001) is the only one in Table 4 which is well above Doodson's threshold but is not included in his tables. In fact, this set of k_{r} can arise by expansion only from rather obscure combinations of arguments. However, a term of the given amplitude is undoubtedly present, and it cannot be accounted for any any other combination, aliassed or otherwise. (Fig. 2, lower panel, $j_{3}=-36$, gives no indication of its presence, but it becomes obvious after the first removal of sidebands). Its constancy over the three epochs adds confidence.

The largest differences from Doodson occur in the 3rd degree term of Group (1, 2), Table 5(b). He shows an amplitude of -0.00089 at (12-2210) where we have nothing, while we obtain -0.00098 at (120010) where he shows nothing. Our results here are indisputable, and it seems probable that Doodson made a slip in adding some of his argument-numbers.

Table (4a)
Low-Frequency tides-Principal terms

1	2	3	$1900 \cdot 0$

GROUP 0,0

0	0	0	0	0	0	-0.31447	-0.31452	-0.31456	055.555	0.73807	0.73869
0	0	0	0	1	0	0.02794	0.02793	0.02793	055.565	-0.06556	-0.06552
0	0	0	0	2	0	-0.00027	-0.00028	-0.00027	055.575	0.00064	0.00064
0	0	0	2	1	0	0.00004	0.00004	0.00004	055.765	-0.00009	
0	0	1	0	-1	-1	-0.00004	-0.00004	-0.00004	056.544	0.00009	
0	0	1	0	0	-1	-0.00493	-0.00493	-0.00492	056.554	0.01156	0.01160
0	0	1	0	0	1	0.00027	0.00026	0.00026	056.556	-0.00063	-0.00061
0	0	1	0	1	-1	0.00004	0.00004	0.00005	056.564	-0.00010	
0	0	2	$-2-1$	0	0.00002	0.00002	0.00002	057.345	-0.00005		
0	0	2	-2	0	0	-0.00031	-0.00031	-0.00031	057.355	0.00073	0.00073
0	0	2	0	0	0	-0.03097	-0.03095	-0.03095	057.555	0.07266	0.07299
0	0	2	0	0	-2	-0.00006	-0.00006	-0.00008	057.553	0.00015	$0.00030 t$
0	0	2	0	1	0	0.00075	0.00077	0.00077	057.565	-0.00178	-0.00181
0	0	2	0	2	0	0.00019	0.00017	0.00017	057.575	-0.00042	-0.00040
0	0	3	0	$0-1$	-0.00182	-0.00181	-0.00181	058.554	0.00426	0.00427	
0	0	3	0	$1-1$	0.00004	0.00003	0.00003	058.564	-0.00008		
0	0	4	0	$0-2$	-0.00007	-0.00007	-0.00007	059.553	0.00017	0.00017	

Table (4a) continued

ROUP 0,1

0	$1-3$	$1-1$	1		
0	$1-3$	1	0	1	
0	$1-3$	1	1	1	
0	$1-2-1$	-2	0		
0	$1-2-1$	$1-1$	0		
0	$1-2$	$1-1$	0		
0	$1-2$	1	0	0	
0	$1-2$	1	1	0	
0	$1-1$	-1	-1	1	
0	$1-1$	-1	0	1	
0	$1-1$	-1	1	1	
0	$1-1$	0	0	0	
0	$1-1$	1	0	-1	
0	1	$0-1-2$	0		
0	1	$0-1$	-1	0	
0	1	$0-1$	0	0	
0	1	$0-1$	1	0	
0	1	0	1	0	0
0	1	0	1	1	0
0	1	0	1	2	0
0	1	$1-1$	0	-1	
0	1	$2-1$	0	0	
0	1	$2-1$	1	0	
0	1	$2-1$	2	0	
0	1	$3-1$	0	-1	

0.00002	0.00003	0.00002
-0.00029	-0.00028	-0.00029
0.00002	0.00002	0.00002
0.00003	0.00003	0.00003
0.00007	0.00007	0.00007
0.00048	0.00048	0.00048
-0.00673	-0.00673	-0.00673
0.00043	0.00043	0.00043
0.00002	0.00002	0.00002
-0.00022	-0.00021	-0.00021
0.00003	0.00002	0.00000
0.00019	0.00020	0.00020
0.00005	0.00005	0.00005
-0.00003	-0.00003	-0.00003
0.00231	0.00231	0.00231
-0.03517	-0.03518	-0.03518
0.00228	0.00228	0.00228
0.00188	0.00188	0.00189
0.00076	0.00077	0.00077
0.00021	0.00021	0.00021
0.00018	0.00018	0.00018
0.00050	0.00049	0.00049
0.00026	0.00025	0.00024
0.00005	0.00005	0.00004
0.00002	0.00003	0.00003

062.646	-0.00005	
062.656	0.00067	0.00067
062.666	-0.00005	
063.435	-0.00006	
063.445	-0.00016	-0.00016
063.645	-0.00113	-0.00113
063.655	0.01579	0.01578
063.665	-0.00101	-0.00103
064.446	-0.00005	
064.456	0.00050	0.00051
064.466	-0.00005	
064.555	-0.00046	-0.00044
064.654	-0.00011	-0.00010
065.435	0.00007	
065.445	-0.00542	-0.00542
065.455	0.08255	0.08254
065.465	-0.00535	-0.00535
065.655	-0.00441	-0.00442
065.665	-0.00180	-0.00179
065.675	-0.00049	-0.00047
066.454	-0.00043	-0.00043
067.455	-0.00116	-0.00116
067.465	-0.00059	-0.00058
067.475	-0.00011	
068.454	-0.00006	

GROUP 0,2

2-4 20	-0.00011	-0.	
2-3 0001	-0.00038	-0.00038	-0.00038
2-3 0	0.00003	0.00002	0.00002
2-2 0-1 0	-0.00042	-0.00042	-0.00042
$2-2000$	-0.00582	-0.00582	-0.00582
2-2 0110	0.00037	0.00037	0.00037
2-2 200	0.00004	0.00004	0.00004
2-1-2 01	-0.00004	-0.00004	-0.00004
2-1-1 00	0.00003	0.00003	0.00003
2-1 0 0-1	0.00007	0.00007	0.00007
0 2-1 001	-0.00020	-0.00020	20
2-1 011	-0.00004	-0.00004	0.00004
$20-2-10$	0.00015	0.00015	0.00015
$20-200$	-0.00288	-0.00288	-0.00288
$20-210$	0.00018	0.00019	0.00019
020000	-0.06669	-0.06664	-0.06662
20010	-0.02763	-0.02762	-0.02762
020020	-0.00258	-0.00258	-0.00258
020030	0.00007	0.00005	0.00007
2 1-2 0-1	0.00003	0.00003	0.00003
210001	0.00023	0.00023	0.00023
$2101-1$	0.00096	0.00006	0.00006
2 2-2 00	0.00020	0.00020	0.00020
2 2-2 10	0.00008	0.00008	0.00008

071.755
072.55
072.566
073.545
073.555
073.565
073.755
074.356
074.45
074.55
074.556
074.566
075.345
075.355
075.365
075.555
075.565
075.575
075.585
076.354
076.554
076.564
077.355
077.365
077.575

0.00026	0.00026
0.00090	0.00091
-0.00006	
0.00098	0.00098
0.01366	0.01370
-0.00087	-0.00088
-0.00009	
0.00009	
-0.00007	
-0.00016	-0.00017
0.00046	0.00048
0.00010	0.00012
-0.00036	-0.00036
0.00676	0.00677
-0.00044	-0.00044
0.15645	0.15642
0.06482	0.06481
0.00605	0.00607
-0.00014	-0.00013
-0.00007	
-0.00054	-0.00054
-0.00014	-0.00014
-0.00047	-0.00047
-0.00018	-0.00019
-0.00006	

Table (4a) continued
GR OUP 0,3

0	$3-5$	1	0	1	
0	$3-4$	1	0	0	
0	$3-3-1$	0	1		
0	$3-3$	1	0	1	
0	$3-3$	1	1	1	
0	$3-2-1$	-1	0		
0	$3-2$	-1	0	0	
0	$3-2-1$	1	0		
0	$3-2$	1	0	0	
0	$3-2$	1	1	0	
0	$3-2$	1	2	0	
0	$3-1$	-1	0	1	
0	$3-1$	-1	1	1	
0	$3-1$	0	0	0	
0	$3-1$	0	1	0	
0	$3-1$	1	0	-1	
0	3	$0-3$	0	0	
0	3	$0-3$	1	-1	
0	3	0	-3	1	1
0	3	0	-1	0	0
0	3	$0-1$	1	0	
0	3	0	-1	2	0
0	3	0	1	2	0
0	3	0	1	3	0
0	3	1	-1	0	-1
0	3	1	-1	1	1

-0.00002	-0.00002	-0.00002
-0.00017	-0.00017	-0.00017
-0.00007	-0.00007	-0.00007
-0.00012	-0.00011	-0.00012
-0.00005	-0.00004	-0.00004
-0.00009	-0.00010	-0.00010
-0.00091	-0.00091	-0.00091
0.00006	0.00006	0.00006
-0.00242	-0.00242	-0.00242
-0.00100	-0.00100	-0.00100
-0.00009	-0.00009	-0.00009
-0.00013	-0.00013	-0.00013
-0.00004	-0.00004	-0.00004
0.00007	0.00007	0.00006
0.00003	0.00003	0.00003
0.00002	0.00002	0.00003
-0.00023	-0.00023	-0.00023
0.00004	0.00004	0.00004
0.00004	0.00004	0.00004
-0.01277	-0.01275	-0.01275
-0.00528	-0.00528	-0.00528
-0.00048	-0.00049	-0.00051
0.00005	0.00005	0.00005
0.00002	0.00002	0.00002
0.00011	0.00011	0.00011
0.00004	0.00004	0.00004

080.656	0.00005	
081.655	0.00041	0.00042
082.456	0.00016	0.00016
082.656	0.00027	0.00026
082.666	0.00 .011	0.00011
083.445	0.00022	0.00022
083.455	0.00213	0.00217
083.465	-0.00014	-0.00014
083.655	0.00569	0.00569
083.665	0.00235	0.00236
083.675	0.00021	0.00021
084.456	0.00031	0.00028
084.466	0.00010	0.00010
084.555	-0.00016	-0.00016
084.565	-0.00007	
084.654	-0.00005	
085.255	0.00054	0.00054
085.264	-0.00009	
085.266	-0.00008	
095.455	0.02995	0.02995
085.465	0.01240	0.01241
085.475	0.00114	0.00117
085.675	-0.00011	-0.00012
085.685	-0.00005	
086.454	-0.00025	-0.00026
086.464	-0.00009	

GROUP 0,4

| 0 | $4-4$ | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $4-4$ | 2 | 0 | 0 |
| 0 | $4-4$ | 2 | 1 | 0 |
| 0 | $4-3$ | 0 | 0 | 1 |
| 0 | $4-3$ | 0 | 1 | 1 |
| 0 | $4-2-2$ | 0 | 0 | |
| 0 | $4-2$ | 0 | 0 | 0 |
| 0 | $4-2$ | 0 | 1 | 0 |
| 0 | $4-2$ | 0 | 2 | 0 |
| 0 | $4-1$ | -2 | 0 | 1 |
| 0 | $4-1$ | 0 | 0 | -1 |
| 0 | 4 | $0-2$ | 0 | 0 |
| 0 | 4 | $0-2$ | 1 | 0 |
| 0 | 4 | $0-2$ | 2 | 0 |

-0.00008	-0.00008	-0.00008
-0.00006	-0.00006	-0.00006
-0.00002	-0.00003	-0.00002
-0.00014	-0.00014	-0.00014
-0.00005	-0.00006	-0.00006
-0.00010	-0.00010	-0.00011
-0.00206	-0.00206	-0.00205
-0.00085	-0.00085	-0.00085
-0.00008	-0.00008	-0.00008
-0.00003	-0.00003	-0.00003
0.00003	0.00003	0.00003
-0.00169	-0.00169	-0.00169
~ 0.00070	-0.00070	-0.00070
-0.00006	-0.00006	-0.00006

091.555	0.00018	0.00020
091.755	0.00015	0.00014
091.765	0.00006	
092.556	0.00033	0.00032
092.566	0.00013	0.00013
093.355	0.00024	0.00025
093.555	0.00483	0.00478
093.565	0.00200	0.00200
093.575	0.00018	0.00019
094.356	0.00007	
094.554	-0.00007	
095.355	0.00396	0.00396
095.365	0.00164	0.00165
095.375	0.00016	0.00016

Table (4b)

Diurnal tides-Principal terms

1	2	3	$1900 \cdot 0$

GR OUP 1,-4

$1-4$	0	$3-1$	0	
$1-4$	0	3	0	0
$1-4$	1	1	0	1
$1-4$	2	1	-1	0
$1-4$	2	1	0	0
$1-4$	3	1	0	-1
$1-4$	4	-1	-1	0
$1-4$	4	-1	0	0
$1-4$	5	-1	0	-1

-0.00014	-0.00014	-0.00014
-0.00074	-0.00075	-0.00075
0.00004	0.00004	0.00003
-0.00036	-0.00037	-0.00036
-0.00193	-0.00193	-0.00193
-0.00015	-0.00015	-0.00015
-0.00007	-0.00007	-0.00007
-0.00037	-0.00037	-0.00037
-0.00004	-0.00004	-0.00004

GROUP 1,-3

$1-3$	-1	2	0	1
$1-3$	0	0	-2	0
$1-3$	0	2	-2	0
$1-3$	0	2	-1	0
$1-3$	0	2	0	0
$1-3$	1	0	0	1
$1-3$	1	1	0	0
$1-3$	1	2	0	-1
$1-3$	2	0	-2	0
$1-3$	2	0	-1	0
$1-3$	2	0	0	0
$1-3$	2	2	0	0
$1-3$	3	0	-1	-1
$1-3$	3	0	0	-1
$1-3$	4	-2	-1	0
$1-3$	4	-2	0	0
$1-3$	4	0	0	0
$1-3$	4	0	1	0

$$
\begin{array}{rrr}
0.00009 & 0.00009 & 0.00009 \\
0.00004 & 0.00004 & 0.00003 \\
0.00005 & 0.00004 & 0.00003 \\
-0.00125 & -0.00125 & -0.00125 \\
-0.00664 & -0.00664 & -0.00663 \\
0.00011 & 0.00012 & 0.00011 \\
0.00007 & 0.00007 & 0.00006 \\
-0.00011 & -0.00010 & -0.00011 \\
0.00005 & 0.00005 & 0.00005 \\
-0.00151 & -0.00151 & -0.00150 \\
-0.00801 & -0.00801 & -0.00800 \\
0.00007 & 0.00007 & 0.00006 \\
-0.00009 & -0.00010 & -0.00010 \\
-0.00054 & -0.00054 & -0.00055 \\
-0.00004 & -0.00005 & -0.00004 \\
-0.00025 & -0.00025 & -0.00024 \\
0.00007 & 0.00008 & 0.00007 \\
-0.00003 & -0.00003 & -0.00004
\end{array}
$$

GROUP 1,-2

$1-2-2$	$1-2$	0		
$1-2-2$	3	0	0	
$1-2-1$	$1-1$	1		
$1-2-2$	1	0	1	
$1-3$	0	-1	-3	0
$1-2$	0	$-1-2$	0	
$1-2$	0	$1-2$	0	
$1-2$	0	0	0	1
$1-2$	0	$1-1$	0	
$1-2$	0	1	0	0
$1-2$	0	3	0	0
$1-2$	$1-1$	0	1	
$1-2$	1	0	-1	0
$1-2$	1	0	0	0
$1-2$	1	1	-1	-1
$1-2$	1	1	0	-1
$1-2$	2	$-1-2$	0	
$1-2$	$2-1$	$1-1$	0	
$1-2$	$2-1$	0	0	
$1-2$	2	1	0	0
$1-2$	2	1	1	0
$1-2$	$3-1$	-1	-1	
$1-2$	$3-1$	0	-1	
$1-2$	3	1	$0-1$	
$1-2$	$4-1$	0	0	
$1-2$	$4-1$	1	0	

115.845 115.85 116.65 117.645 117.655 118.654 119.445 119.455 11). 454

0.00021	0.00021
0.00107	0.00108
-0.00005	
0.00052	0.00053
0.00278	0.00278
0.00021	0.00021
0.00010	0.00010
0.00054	0.00054
0.00006	

124.756	-0.00013	-0.00013
125.535	-0.00006	
125.735	-0.00006	
125.745	0.00180	0.00180
125.755	0.00954	0.00955
126.556	-0.00016	-0.00016
126.655	-0.00010	-0.00011
126.754	0.00015	0.00015
127.535	-0.00007	
127.545	0.00217	0.00218
127.555	0.01151	0.01153
127.755	-0.00009	
128.544	0.00014	0.00014
128.554	0.00078	0.00079
129.345	0.00006	
129.355	0.00035	0.00035
129.555	-0.00010	
129.565	0.00005	

0.00004	0.00004	0.00004
0.00016	0.00016	0.00016
0.00007	0.00007	0.00007
0.00042	0.00042	0.00042
0.00004	0.00004	0.00004
0.00019	0.00019	0.00019
0.00029	0.00029	0.00029
-0.00005	-0.00004	-0.00004
-0.00946	-0.00946	-0.00946
-0.05020	-0.05019	-0.05018
0.00014	0.00014	0.00014
0.00010	0.00009	0.00009
0.00005	0.00005	0.00005
0.00027	0.00027	0.00027
-0.00008	-0.00008	-0.00007
-0.00046	-0.00046	-0.00046
0.00006	0.00005	0.00005
-0.00180	-0.00180	-0.00180
-0.00954	-0.00953	-0.00953
0.00055	0.00055	0.00055
-0.00017	-0.00017	-0.00017
-0.00008	-0.00008	-0.00008
-0.00044	-0.00044	-0.00044
0.00004	0.00004	0.00004
0.00012	0.00012	0.00012
-0.00003	-0.00003	-0.00003

133.635	-0.00006	
133.855	-0.00023	-0.00023
134.646	-0.00010	
134.656	-0.00061	-0.00061
135.425	-0.00005	
135.435	-0.00028	-0.00028
135.635	-0.00041	-0.00042
135.556	0.00006	
135.645	0.01359	0.01360
135.655	0.07214	0.07216
135.855	-0.00020	-0.00019
136.456	-0.00014	-0.00013
136.545	-0.00007	
136.555	-0.00039	-0.00039
136.644	0.00011	0.00011
136.654	0.00066	0.00068
137.435	-0.00008	
137.445	0.00258	0.00258
137.455	0.01370	0.01371
137.655	-0.00079	-0.00078
137.665	0.00024	0.00024
138.444	0.00012	0.00011
138.454	0.00063	0.00064
138.654	-0.00006	
13.455	-0.00017	-0.00014
139.465	0.00005	

Table (4b) continued

GROUP I,-1

$1-1-2$	$0-2$	0		
$1-1-2$	$2-1$	0		
$1-1-2$	2	0	0	
$1-1-1$	0	-1	1	
$1-1-1$	0	0	1	
$1-1-1$	1	0	0	
$1-1$	0	$0-2$	0	
$1-1$	0	$0-1$	0	
$1-1$	0	0	0	0
$1-1$	0	2	0	0
$1-1$	0	2	1	0
$1-1$	1	0	-1	-1
$1-1$	1	0	0	-1
$1-1$	$2-2$	0	0	
$1-1$	2	0	-1	0
$1-1$	2	0	0	0
$1-1$	2	0	1	0
$1-1$	2	0	2	0
$1-1$	3	0	0	-1
$1-1$	$4-2$	0	0	

$$
\begin{array}{rrr}
0.00011 & 0.00011 & 0.00011 \\
0.00014 & 0.00014 & 0.00014 \\
0.00079 & 0.00079 & 0.00079 \\
0.00011 & 0.00011 & 0.00011 \\
0.00091 & 0.00090 & 0.00090 \\
-0.00004 & -0.00004 & -0.00004 \\
0.00152 & 0.00153 & 0.00153 \\
-0.04943 & -0.04944 & -0.04944 \\
-0.26229 & -0.26223 & -0.26219 \\
0.00169 & 0.00169 & 0.00169 \\
0.00027 & 0.00028 & 0.00028 \\
-0.00008 & -0.00008 & -0.00008 \\
-0.00076 & -0.00076 & -0.00076 \\
0.00015 & 0.00015 & 0.00015 \\
-0.00010 & -0.00010 & -0.00010 \\
0.00343 & 0.00342 & 0.00342 \\
-0.00074 & -0.00075 & -0.00075 \\
-0.00005 & -0.00005 & -0.00005 \\
0.00022 & 0.00023 & 0.00023 \\
0.00006 & 0.00006 & 0.00006
\end{array}
$$

143.535 143.745 143.755 144.546 144.556 144.655 145.535 145.545 145.555 145.755 145.765 146.544 146.554 147.355 147.545 147.555 147.565 147.575 148.554 149.355

-0.00016	-0.00017
-0.00020	-0.00020
-0.00113	-0.00113
-0.00016	-0.00015
-0.00130	-0.00130
0.00006	
-0.00220	-0.00218
0.07105	0.07105
0.37690	0.37689
-0.00243	-0.00243
-0.00039	-0.00040
0.00012	0.00012
0.00109	0.00115
-0.00021	-0.00021
0.00014	0.00014
-0.00492	-0.00491
0.00107	0.00107
0.00007	
-0.00032	-0.00033
-0.00009	

$11-4002$
1 1-3 0-1 1
$1 \begin{array}{lllll}1-3 & 0 & 0 & 1\end{array}$
1 1-2 0-2 0
$\begin{array}{lllll}1 & 1-2 & 0-1 & 0\end{array}$
$1 \begin{array}{lllll}1-2 & 0 & 0 & 0\end{array}$
1 1-2 002
1 1-2 200
1 1-2 210
1 1-1 $000-1$
1 1-1 001
$1 \begin{array}{lllll}1-1 & 0 & 1 & 1\end{array}$
1 1 0-2-1 0
1100020
$11000-10$
110000
110010
110020
$11100-1$
1110101
$1212-200$
$\begin{array}{lllll}1 & 1 & 2-2 & 1 & 0\end{array}$
1120002
112000
112010
112020
1130001

GROUP 1,0

$$
\begin{array}{rrr}
0.00009 & 0.00009 & 0.00009 \\
0.00044 & 0.00044 & 0.00044 \\
0.00193 & 0.00193 & 0.00193 \\
-0.00004 & -0.00004 & -0.00004 \\
-0.00010 & -0.00010 & -0.00010 \\
-0.00012 & -0.00012 & -0.00012 \\
0.00137 & 0.00137 & 0.00137 \\
0.00742 & 0.00742 & 0.00742 \\
-0.00060 & -0.00060 & -0.00060 \\
0.02062 & 0.02062 & 0.02061 \\
0.00413 & 0.00414 & 0.00414 \\
-0.00011 & -0.00012 & -0.00011 \\
-0.00011 & -0.00011 & -0.00011 \\
0.00013 & 0.00013 & 0.00013 \\
-0.00011 & -0.00011 & -0.00011 \\
0.00394 & 0.00394 & 0.00394 \\
0.00087 & 0.00087 & 0.00087 \\
0.00017 & 0.00017 & 0.00017 \\
0.00004 & 0.00004 & 0.00004
\end{array}
$$

152.656
153.645
153.655
154.555
154.656
155.435 155.445 155.455 155.645 155.655 155.665 155.675 156.555 156.654 157.445 157.455 157.465 158.454 158.464
-0.00013 -0.00014 $-0.00063-0.00063$ $-0.00278-0.00278$ 0.00006
$0.00015 \quad 0.00015$
$0.00018 \quad 0.00017$ -0.00197-0.00197 $-0.01066-0.01065$ $0.00086 \quad 0.00085$ -0.02963-0.02964 $-0.00594-0.00594$ $0.00016 \quad 0.00017$ $0.00016 \quad 0.00016$ $-0.00018-0.00018$ $0.00016 \quad 0.00016$ $-0.00567-0.00566$ $-0.00125-0.00124$ $-0.00024-0.00024$ -0.00006

GROUP 1,1

-0.00029	-0.000 .29	-0.00029
0.00006	0.00006	0.00006
-0.00716	-0.00715	-0.00714
-0.00010.	-0.00010	-0.00010
0.00137	0.00137	0.00137
-0.12211	-0.12207	-0.12205
0.00002	0.00003	0.00003
0.00019	0.00018	0.00018
0.00004	0.00004	0.00004
0.00103	0.00102	0.00103
0.00290	0.00289	0.00289
-0.00007	-0.00008	-0.00008
0.00007	0.00007	0.00007
0.00005	0.00005	0.00005
-0.00732	-0.00730	-0.00730
0.36890	0.36882	0.36876
0.05000	0.05001	0.05001
-0.00108	-0.00108	-0.00108
0.00294	0.00293	0.00293
0.00005	0.00005	0.00005
0.00018	0.00018	0.00018
0.00006	0.00006	0.00006
0.00006	0.00007	0.00008
0.00525	0.00525	0.00525
-0.00020	-0.00020	-0.00020
-0.00010	-0.00010	-0.00010
0.00031	0.00031	0.00031

161.557

0.00042	0.00042
-0.00008	
0.01028	0.01029
0.00014	0.00014
-0.00197	-0.00199
0.17546	0.17584
-0.00004	-0.00011
-0.00027	-0.00026
-0.00005	
-0.00147	-0.00147
-0.00416	-0.00423
0.00011	
-0.00010	
-0.00007	
0.01051	0.01050
-0.53009	-0.53050
-0.07186	-0.07182
0.00156	0.00154
-0.00422	-0.00423
-0.00008	
-0.00026	-0.00026
-0.00008	
-0.00010	-0.00011
-0.00755	-0.00756
0.00029	0.00029
0.00014	0.00014
-0.00044	-0.00044

61.557
62.546 162.556 163.535 163.545 163.555 163.557 163.755 163.765 164.554 164.556 164.566 165.345 165.535 165.545 165.555 165.565 165.575 166.554 166.564 167.355 167.365 167.553 167.555 167.565 167.575 168.554

Table (4b) continued

GROUP 1,2

1	$2-3$	1	0	1	
1	$2-3$	1	1	1	
1	$2-2$	-1	-1	0	
1	$2-2$	1	-1	0	
1	$2-2$	1	0	0	
1	$2-2$	1	1	0	
1	$2-1$	-1	0	1	
1	$2-1$	0	0	0	
1	2	0	-1	-1	0
1	2	0	-1	0	0
1	2	0	-1	1	0
1	2	0	-1	2	0
1	2	0	1	0	0
1	2	0	1	1	0
1	2	0	1	2	0
1	2	1	-1	0	-1
1	2	$2-1$	0	0	
1	2	$2-1$	1	0	

1	$3-4$	2	0	0	
1	$3-3$	0	0	1	
1	$3-3$	0	1	1	
1	$3-2$	0	-1	0	
1	$3-2$	0	0	0	
1	$3-2$	0	1	0	
1	$3-1$	0	0	-1	
1	3	0	-2	-1	0
1	3	0	-2	0	0
1	3	0	-2	1	0
1	3	0	0	0	0
1	3	0	0	1	0
1	3	0	0	2	0
1	3	0	0	3	0
1	3	1	0	0	-1

0.00017	0.00017	0.00017
0.00003	0.00003	0.00003
0.00012	0.00012	0.00012
-0.00013	-0.00013	-0.00013
0.00394	0.00394	0.00394
0.00078	0.00078	0.00078
0.00013	0.00013	0.00012
-0.00012	-0.00011	-0.00011
-0.00061	-0.00060	-0.00060
0.02062	0.02062	0.02061
0.00409	0.00409	0.00409
-0.00010	-0.00009	-0.00007
-0.00032	-0.00032	-0.00032
-0.00020	-0.00020	-0.00020
-0.00012	-0.00012	-0.00012
-0.00010	-0.00010	-0.00010
-0.00008	-0.00008	-0.00008
-0.00007	-0.00006	-0.00006

GR OUP 1,3

0.00006	0.00007	0.00006
0.00023	0.00023	0.00023
0.00004	0.00004	0.00005
0.00011	0.00011	0.00011
0.00343	0.00343	0.00342
0.00067	0.00067	0.00067
-0.00007	-0.00007	-0.00007
-0.00004	-0.00004	-0.00004
0.00169	0.00169	0.00169
0.00033	0.00033	0.00033
0.01130	0.01129	0.01129
0.00723	0.00723	0.00723
0.00151	0.00151	0.00152
0.00010	0.00010	0.00010
-0.00004	-0.00004	-0.00004

181.755	-0.00009	
182.556	-0.00033	-0.00032
182.566	-0.00006	
183.545	-0.00016	-0.00016
183.555	-0.00493	-0.00492
183.565	-0.00097	-0.00096
184.554	0.00010	
185.345	0.00006	
185.355	-0.00243	-0.00240
185.365	-0.00048	-0.00048
185.555	-0.01623	-0.01623
185.565	-0.01039	-0.01039
185.575	-0.00217	-0.00218
185.585	-0.00014	-0.00014
186.554	0.00006	

GROUP 1,4

1	$4-4$	1	0	0	
1	$4-3-1$	0	1		
1	$4-2-1$	0	0		
1	$4-2-1$	1	0		
1	$4-2$	1	0	0	
1	$4-2$	1	1	0	
1	$4-2$	1	2	0	
1	4	0	-3	0	0
1	4	$0-1$	0	0	
1	4	$0-1$	1	0	
1	4	$0-1$	2	0	

0.00011	0.00011	0.00011
0.00004	0.00004	0.00004
0.00055	0.00055	0.00055
0.00011	0.00011	0.00011
0.00041	0.00041	0.00041
0.00026	0.00026	0.00026
0.00005	0.00005	0.00005
0.00013	0.00013	0.00014
0.00216	0.00216	0.00216
0.00139	0.00138	0.00138
0.00029	0.00029	0.00029

191.655
192.456
193.455
193.465
193.655
193.665
193.675
195.255
195.455
195.465
195.475
$-0.00015-0.00015$
-0.00006
-0.00079-0.00078
$-0.00016-0.00015$
$-0.00059-0.00059$
$-0.00038-0.00038$
-0.00007
-0.00019-0.00019
$-0.00311-0.00311$
$-0.00199-0.00199$
$-0.00042-0.00042$

Table 4(c)

Semi-diurnal tides-Principal terms

$2-4$	0	4	0	0
$2-4$	2	2	0	0
$2-4$	3	2	0	-1
$2-4$	4	0	0	0
$2-4$	5	0	0	-1

$\begin{array}{lc}2 & 3 \\ \text { GR OUP } & 2,-4\end{array}$

0.00018	0.00019	0.00019
0.00077	0.00077	0.00077
0.00006	0.00006	0.00006
0.00048	0.00048	0.00048
0.00006	0.00006	0.00006

GROUP 2,-3

0.00006	0.00006	0.00006
-0.00007	-0.00007	-0.00007
0.00180	0.00180	0.00180
-0.00009	-0.00009	-0.00009
0.00004	0.00004	0.00004
-0.00017	-0.00017	-0.00018
0.00486	0.00465	0.00465
0.00035	0.00035	0.00036
-0.00003	-0.00003	-0.00003
0.00090	0.00090	0.00090
0.00010	0.00010	0.00010

225.656	0.00009	
225.845	-0.00010	
225.855	0.00258	0.00259
226.656	-0.00013	-0.00012
226.854	0.00006	
227.645	-0.00025	-0.00025
227.655	0.00669	0.00671
228.654	0.00051	0.00054
229.445	-0.00005	
229.455	0.00129	0.00130
$22 \times .454$	0.00015	0.00015

2-1-2 1-2 0
2-1-2 300
2-1-1 1-1 1
2-1-1 101
2-1 0-1-2 0
2-1 0 1-2 0
2-1 00001
2-1 0 1-1 0
2-1 0100
2-1 1-1 0 1
$2-1: 000$
2-1 1 1-1-1
2-1 1 1 0-1
2-1 2-1-1 0
2-1 2-1 00
2-1 21100
$2-12110$
2-1 3-1-1-1
2-1 3-1 0-1

GRDUP 2,-2

-0.00006	-0.00006	-0.00006
-0.00022	-0.00022	-0.00022
-0.00010	-0.00010	-0.00009
0.00004	0.00005	0.00005
0.00012	0.00012	0.00012
-0.00059	-0.00060	-0.00060
0.01599	0.01599	0.01599
-0.00027	-0.00028	-0.00027
-0.00017	-0.00017	-0.00017
0.00025	0.00025	0.00025
-0.00072	-0.00072	-0.00072
0.01930	0.01930	0.01929
-0.00004	-0.00005	-0.00004
-0.00005	-0.00005	-0.00005
0.00131	0.00130	0.00131
0.00059	0.00059	0.00059
0.00005	0.00005	0.00005
0.00005	0.00005	0.00005

-233.955	-0.00009	
234.756	-0.00032	-0.00031
235.535	-0.00014	-0.00014
235.546	0.00007	+
235.556	0.00017	+
235.745	-0.00086	-0.00086
235.755	0.02298	0.02301
236.556	-0.00039	-0.00040
236.655	-0.00024	-0.00025
236.754	0.00036	0.00036
237.545	-0.00104	-0.00104
237.555	0.02774	0.02774
238.455	-0.00006	
238.544	-0.00007	
238.554	0.00188	0.00189
239.355	0.00085	0.00085
239.553	0.00007	
$23 X .354$	0.00007	

GROUP 2,-1

-0.00010	-0.00010	-0.00010
-0.00039	-0.00039	-0.00039
0.00003	0.00003	0.00003
-0.00102	-0.00102	-0.00102
-0.00047	-0.00046	-0.00047
0.00006	0.00006	0.00007
0.00010	0.00009	0.00010
-0.00452	-0.00451	-0.00451
0.12094	0.12094	0.12095
-0.00023	-0.00022	-0.00023
-0.00065	-0.00065	-0.00066
-0.00004	-0.00004	-0.00004
0.00113	0.00113	0.00113
-0.00086	-0.00086	-0.00086
0.02297	0.02297	0.02297
0.00010	0.00010	0.00010
-0.00008	-0.00008	-0.00008
-0.00004	-0.00004	-0.00004
0.00106	0.00106	0.00106

243.635	-0.00015	-0.00015
243.855	-0.00056	-0.00056
244.646	0.00005	
244.656	-0.00147	-0.00147
245.435	-0.00067	-0.00063
245.635	0.00009	
245.556	0.00014	0.00014
245.645	-0.00649	-0.00648
245.655	0.17380	0.17387
246.456	-0.00032	-0.00033
246.555	-0.00094	-0.00094
246.644	-0.00005	
246.654	0.00163	0.00163
247.445	-0.00123	-0.00123
247.455	0.03301	0.03303
247.655	0.00014	0.00017
247.665	-0.00012	-0.00012
248.444	-0.00006	0.00153
248.454	0.00153	0.001.

Table (4c) continued
GRDUP 2,0

2	$0-3$	2	0	1
2	$0-2$	0	-2	0
2	0	-2	2	-1

-0.00008	-0.00008	-0.00008
-0.00027	-0.00027	-0.00028
0.00007	0.00007	0.00007
-0.00190	-0.00190	-0.00190
0.00005	0.00005	0.00005
-0.00218	-0.00218	-0.00218
0.00010	0.00009	0.00009
0.00033	0.00033	0.00034
-0.02361	-0.02356	-0.02357
0.63184	0.63187	0.63189
0.00036	0.00037	0.00037
0.00013	0.00014	0.00013
-0.00004	-0.00004	-0.00004
0.00193	0.00192	0.00192
-0.00036	-0.00036	-0.00036
0.00072	0.00072	0.00072
-0.00036	-0.00035	-0.00035
0.00012	0.00012	0.00012
0.00005	0.00005	0.00005

252.756	-0.00011	-0.00011
253.535	-0.00039	-0.00040
253.745	0.00010	
253.755	-0.00273	-0.00273
254.546	0.00007	
254.556	-0.00313	-0.00314
254.655	0.00014	0.00014
255.535	0.00047	0.00047
255.545	-0.03390	-0.03386
255.555	0.90805	0.90812
255.755	0.00052	0.00053
255.765	0.00019	0.00019
256.544	-0.00006	
256.554	0.00277	0.00276
257.355	-0.00052	-0.00052
257.555	0.00104	0.00107
257.565	-0.00051	-0.00051
257.575	0.00017	0.00018
258.554	0.00007	

GROUP 2,1

2	$1-3$	1	0	1	
2	1	-2	1	-1	0
2	1	-2	1	0	0
2	1	-1	-1	0	1
2	1	-1	0	0	0
2	1	0	-1	-1	0
2	1	0	-1	0	0
2	1	0	1	-1	0
2	1	0	1	0	0
2	1	0	1	1	0
2	1	0	1	2	0
2	1	2	-1	0	0
2	1	$2-1$	1	0	
2	1	2	-1	2	0

-0.00022	-0.00022	-0.00023
0.00021	0.00021	0.00021
-0.00466	-0.00466	-0.00466
-0.00007	-0.00007	-0.00007
0.00011	0.00011	0.00011
0.00065	0.00066	0.00065
-0.01787	-0.01786	-0.01787
-0.00009	-0.00009	-0.00008
0.00447	0.00446	0.00446
0.00197	0.00197	0.00197
0.00028	0.00027	0.00028
0.00085	0.00085	0.00086
0.00041	0.00041	0.00042
0.00003	0.00004	0.00005

GROUP 2,2

$\left.\begin{array}{rrrrr}2 & 2-4 & 0 & 0 & 2 \\ 2 & 2-3 & 0 & 0 & 1 \\ 2 & 2-2 & 0 & -1 & 0 \\ 2 & 2-2 & 0 & 0 & 0 \\ 2 & 2-2 & 2 & 0 & 0 \\ 2 & 2-1 & 0 & 0 & -1 \\ 2 & 2-1 & 0 & 0 & 1 \\ 2 & 2-1 & 0 & 1 & 1 \\ 2 & 2 & 0 & 0 & -1 \\ 2 & 0 \\ 2 & 2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 & 1\end{array}\right) 0$

0.00070	0.00070	0.00070
0.01724	0.01722	0.01720
0.00067	0.00066	0.00066
0.29397	0.29399	0.29400
0.00004	0.00004	0.00004
-0.00247	-0.00247	-0.00246
0.00063	0.00062	0.00062
-0.00004	-0.00004	-0.00004
-0.00103	-0.00102	-0.00103
0.08001	0.07997	0.07993
0.02383	0.02383	0.02382
0.00259	0.00259	0.00259
0.00063	0.00063	0.00063
0.00053	0.00053	0.00053

271.557
272.556
273.545
273.555
273.755
274.554
274.556
274.566
275.545
275.555
275.565
275.575
276.554
277.555
282.656
283.445 0.00008 283.6550 .00123 283.6650 .00053
0.00123 0.00054 283.6750 .00006 285.445

$$
-0.00012
$$ 285.455 285.465

$$
0.006420 .00643
$$ 285.475

$$
0.002790 .00280
$$ 285.655

$$
0.000310 .00030
$$

262.656	-0.00032	-0.00013
263.645	0.00030	0.00024
263.655	-0.00669	-0.00670
264.456	-0.00010	-0.00010
264.555	0.00015	0.00017
265.445	0.00094	0.00095
265.455	-0.02567	-0.02567
265.645	-0.00012	-0.00012
265.655	0.00642	0.00643
265.665	0.00283	0.00283
265.675	0.00040	0.00040
267.455	0.00122	0.00123
267.465	0.00059	0.00059
267.475	0.00006	

$$
\begin{array}{rr}
0.00101 & 0.00101 \\
0.02476 & 0.02479 \\
0.00095 & 0.00094 \\
0.42248 & 0.42358 \\
0.00006 & \\
-0.00355 & -0.00354 \\
0.00090 & 0.00092 \\
-0.00005 & \\
-0.00147 & -0.00147 \\
0.11495 & 0.11506 \\
0.03424 & 0.03423 \\
0.00372 & 0.00372 \\
0.00091 & 0.00092 \\
0.00076 & 0.00078
\end{array}
$$

0.00004	0.00004	0.00004
0.00006	0.00006	0.00006
0.00005	0.00004	0.00004
0.00085	0.00085	0.00085
0.00037	0.00037	0.00037
0.00004	0.00004	0.00004
-0.00009	-0.00008	-0.00008
0.00446	0.00447	0.00446
0.00194	0.00194	0.00194
0.00021	0.00022	0.00021
-0.00003	-0.00003	-0.00003

Table (4c) continued

GROUP 2,4						
2 4-4 0 0 0-1	0.00006	0.00006	0.00005	291.554	0.00008	
$24-3001$	0.00005	0.00005	0.00005	292.556	0.00007	
$24-20000$	0.00074	0.00074	0.00073	293.555	0.00106	0.00107
$24-2010$	0.00032	0.00032	0.00031	293.565	0.00046	0.00046
$24-2020$	0.00003	0.00003	0.00003	293.575	0.00005	
$240-200$	0.00036	0.00036	0.00036	295.355	0.00052	0.00053
$240-210$	0.00016	0.00016	0.00016	295.365	0.00023	0.00023
2400000	0.00118	0.00117	0.00117	295.555	0.00169	0.00168
2400010	0.00102	0.00102	0.00102	295.565	0.00146	0.00146
2440000200	0.00033	0.00033	0.00033	295.575	0.00047	0.00047
240030	0.00005	0.00005	0.00005	295.585	0.00007	
${ }^{\dagger}$ See comment in text						
Table 5(a)						
Low-frequency tides-3rd-degree terms						
		12	3	$1900 \cdot 0$		
GROUP 0,0						
000100	-0.00020.	-0.00020	-0.00021	055.655	0.00025	0.00026
$002-100$	-0.00004	-0.00004	-0.00004	057.455	0.00005	
GROUP 0,2						
0 1-2 0000	0.00004	0.00004	0.00004	063.555	-0.00005	
0100010	0.00019	0.00020	0.00019	065.545	-0.00024	-0.00024
010000	-0.00375	-0.00375	-0.00375	065.555	0.00466	0.00466
010010	-0.00059	-0.00059	-0.00059	065.565	0.00074	0.00073
010020	0.00005	0.00005	0.00005	065.575	-0.00006	
GROUP 0,2						
$02-2100$	-0.00012	-0.00012	-0.00012	073.655	0.00015	0.00015
$020-100$	-0.00061	-0.00061	-0.00061	075.455	0.00076	0.00076
$020-110$	-0.00010	-0.00010	-0.00010	075.465	0.00012	0.00012
GROUP 0,3						
$03-2000$	-0.00010	-0.00010	-0.00010	083.555	0.00013	0.00013
$030-200$	-0.00007	-0.00007	-0.00007	085.355	0.00009	
0300000	-0.00031	-0.00030	-0.00030	085.555	0.00038	0.00038
030010	-0.00019	-0.00019	-0.00019	085.565	0.00023	0.00024
030020	-0.00004	-0.00004	-0.00004	085:575	0.00005	
GROUP 0,4						
$040-100$	-0.00008	-0.00008	-0.00008	095.455	0.00010	0.00011
$040-110$	-0.00005	-0.00005	-0.00005	095.465	0.00006	

Table (5b)

Diurnal tides-3rd-degree terms

	1	2	3	$1900 \cdot 0$
GROUP	$1,-4$			

$1-40200$	$-0.00006-0.00006-0.00006$	115.755	-0.00010-0.00010
$1-42000$	$-0.00006-0.00006-0.00006$	117.555	-0.00010-0.00010
GR OUP 1,-3			
1-3 $001-10$	-0.00014 -0.00014-0.00014	125.645	-0.00023-0.00023
$1-30100$	-0.00035-0.00035-0.00035	125.655	-0.00058-0.00058
1-3 2-1 00	-0.00007-0.00007-0.00007	127.455	-0.00011-0.00011
GROUP 1,-2			
1-2 $000-20$	$-0.00004-0.00004-0.00004$	135.535	-0.00007
1-2 $000-10$	$-0.00051-0.00050-0.00050$	135.545	-0.00083-0.00084
1-2 00000	-0.00128-0.00128-0.00128	135.555	-0.00211-0.00211
1-2 0200	-0.00008-0.00008-0.00008	135.755	-0.00013-0.00013
1-2 2000	-0.00011-0.00011-0.00011	137.555	-0.00018-0.00018
GROUP 1,-1			
1-1 $0-100$	0.000070 .000070 .00007	145.455	0.000120 .00012
1-1 $001-10$	$0.00010 \quad 0.00010 \quad 0.00010$	145.645	0.000160 .00016
1-1 0100	-0.00065-0.00065-0.00065	145.655	-0.00108-0.00108
1-1 01110	0.000090 .000080 .00009	145.665	$0.00014 \quad 0.00014$
1-1 2-1 00	-0.00013-0.00013-0.00013	147.455	-0.00022-0.00021
GR OUP 1,0			
$10000-10$	$0.00059 \quad 0.00059 \quad 0.00059$	155.545	0.00098 0.00098
100000	-0.00399-0.00399-0.00399	155.555	-0.00660-0.000661
100010	0.000520 .000520 .00052	155.565	0.000860 .00086
GROUP 1,1			
$11-2100$	-0.00004-0.00004-0.00004	2.63 .655	-0.00007
$1110-1-10$	$0.00003 \quad 0.000030 .00003$	165.445	0.00005
1100100	-0.00022-0.00022-0.00022	165.455	-0.00036-0.00036
$1110-110$	$0.00003 \quad 0.000030 .00003$	165.465	0.00005
1100100	$-0.00008-0.00008-0.00008$	165.655	-0.00013-0.00013
210210	$-0.00003-0.00003-0.00003$	165.665	-0.00005
GROUP 1,2			
1 2-2 000	-0.00005-0.00005-0.00005	173.555	-0.00008
$1200-10$	0.000050 .000050 .00005	175.545	0.00008
120000	-0.00146-0.00146-0.00146	175.555	-0.00242-0.00241
120010	-0.00059-0.00059-0.00059	175.565	-0.00098 (-0.00089) ${ }^{\dagger}$
120020	-0.00005-0.00005-0.00005	175.575	-0.00008

GRDUP 1,3

1	$3-2$	1	0	0	
1	3	0	-1	0	0
1	3	$0-1$	1	0	

$$
\begin{array}{lll}
-0.00005 & -0.00005 & -0.00005 \\
-0.00024 & -0.00024 & -0.00024 \\
-0.00010 & -0.00010 & -0.00010
\end{array}
$$

183.655
185.455
185.465

-0.00008	
-0.00039	-0.00040
-0.00016	-0.00016

GROUP 1,4

140000 140010
$\begin{array}{lll}-0.00004 & -0.00004 & -0.00004 \\ -0.00006 & -0.00005 & -0.00005 \\ -0.00005 & -0.00005 & -0.00005\end{array}$

193.555	-0.00007
195.555	-0.00009
195.565	-0.00008

Table 5(c)
Semi-diurnal tides-3rd-degree terms

		12	3	$1900 \cdot 0$		
GROUP 2,-4						
2-4 21100	-0.00006	-0.00006	-0.00006	217.655	-0.00008	
GROUP 2,-3						
2-3 002000	-0.00018	-0.00018	-0.00018	225.755	-0.00027	-0.00027
$2-3$ 2 0-1 0	-0.00003	-0.00003	-0.00003	227.545	-0.00005	
$2-32000$	-0.00019	-0.00018	-0.00018	227.555	-0.00027	-0.00027
GROUP 2,-2						
2-2 0 1-1 0	-0.00018	-0.00018	-0.00018	235.645	-0.00027	-0.00027
2-2 01100	-0.00107	-0.00 107	-0.00.107	235.655	-0.00156	-0:00156
2-2 2-1-1 0	-0.00003	-0.00003	-0.00003	237.445	-0.00005	
2-2 2-1 00	-0.00020	-0.00020	-0.00020	237.455	-0.00029	-0.00029
GROUP 2,-1						
2-1 $0000-20$	0.00003	0.00004	0.00003	245.535	0.00005	
2-1 $000-10$	-0.00066	-0.00066	-0.00066	245.545	-0.00097	-0.00097
2-1 000000	-0.00389	-0.00389	-0.00389	245.555	-0.00569	-0.00569
2-1 002000	0.00007	0.00007	0.00007	245.755	0.00010	0.00011
$2-12000$	0.00010	0.00010	0.00010	247.555	0.00014	0.00015
GR OUP 2,0						
$20-2100$	0.00005	0.00005	0.00005	253.655	0.00008	
$200-1-10$	0.00004	0.00004	0.00004	255.445	0.00005	
$2000-100$	0.00022	0.00022	0.00022	255.455	0.00032	0.00032
2 l	-0.00003	-0.00003	-0.00003	255.645	-0.00005	
200100	0.00059	0.00059	0.00059	255.655	0.00086	0.00086
2000011100	0.00011	0.00011	0.00011	255.665	0.00016	0.00016
$202-100$	0.00011	0.00011	0.00011	257.455	0.00017	0.00017
2100000	0.00359	0.00359	$0: 00359$	265.555	0.00525	0.00525
210010	0.00068	0.00068	0.00068	265.565	0.00099	0.00099
GROUP 2,2						
$\begin{array}{cccccc}2 & 2-2 & 1 & 0 & 0\end{array}$	0.00004	0.00004	0.00004	273.655	0.00005	
$220-100$	0.00019	0.00019	0.00019	275.455	0.00028	0.00029
$220-110$	0.00004	0.00004	0.00004	275.465	0.00005	
GR OUP 2,3						
$23-2000$	0.00004	0.00004	0.00004	283.555	0.00006	
230000	0.00033	0.00033	0.00033	285.555	0.00048	0.00048
2300010	0.00021	0.00021	0.00021	285.565	0.00031	0.00031
230020	0.00004	0.00004	0.00004	285.575	0.00006	
GROUP 2,4						
$240-100$	0.00005	0.00005	0.00005	295.455	0.00008	

Table 5(d)
Ter-diurnal tides-3rd-degree terms

		12	3	$1900 \cdot 0$		
GROUP 3,-2						
$3-20200$	0.00036	0.00037	0.00037	335.755	-0.00057	-0.00056
3-2 20000	0.00037	0.00037	0.00037	337.555	-0.00057	-0.00057
GROUP 3,-1						
3-1 $001-10$	-0.00012	-0.00012	-0.00012	345.645	0.00018	0.00018
3-1 01100	0.00210	0.00210	0.00210	345.655	-0.00326	-0.00326
3-1 2-1 00	0.00039	0.00039	0.00039	347.455	-0.00061	-0.00061
GROUP 3,0						
$30-2200$	-0.00005	-0.00005	-0.00005	353.755	0.00007	
$300000-10$	-0.00043	-0.00043	-0.00043	355.545	0.00067	0.00066
300000	0.00765	0.00765	0.00765	355.555	-0.01188	-0.01188
GROUP 3,1						
$\begin{array}{llllll}3 & 1-2 & 1 & 0 & 0\end{array}$	-0.00011	-0.00011	-0.00011	363.655	0.00017	0.00017
$3110-100$	-0.00043	-0.00043	-0.00043	365.455	0.00067	0.00067
$\begin{array}{llllll}3 & 1 & 0 & 1 & 0 & 0\end{array}$	0.00016	0.00016	0.00016	365.655	-0.00025	-0.00025
310110	0.00007	0.00007	0.00007	365.665	-0.00011	-0.00011
GROUP 3,2						
3200010	-0.00004	-0.00004	-0.00004	375.545	0.00006	
320000	0.00100	0.00100	0.00100	375.555	-0.00155	-0.00155
3200010	0.00044	0.00044	0.00043	375.565	-0.00068	-0.00068
320020	0.00005	0.00005	0.00005	375.575	-0.00007	
${ }^{+}$See comment in text						

Expansion of the radiational potential

The radiational potential was introduced by W. H. Munk to account for motions of tidal nature which are caused directly or indirectly by the Sun's radiation. Such motions dominate the atmospheric tides, and they are also detectable in the ocean. Since response-type analyses often include coefficients of the radiational potential, it is desirable to know their harmonic amplitudes to add to the gravitational tides.

If α is the Sun's zenith angle at the place (θ, λ) the potential is defined in the present notation as

$$
\Psi=S \xi \cos \alpha \text { for } 0 \leqslant \alpha \leqslant \frac{1}{2} \pi \text { (day) }
$$

or

$$
\begin{equation*}
0 \text { otherwise (night). } \tag{23}
\end{equation*}
$$

where S is the solar constant, taken as the unit. Expansion in Legendre polynomials, ignoring the parallax Π^{\prime} in comparison with unity, gives

$$
\begin{equation*}
\Psi=S \xi\left(\frac{1}{4}+\frac{1}{2} P_{1}(\cos \alpha)+\frac{5}{16} P_{2}(\cos \alpha)-\frac{3}{32} P_{4}(\cos \alpha)+\ldots\right) \tag{24}
\end{equation*}
$$

P_{3} does not appear because odd order terms other than P_{1} contain the factor Π^{\prime}. The series (24) differs from the gravitational formula (8) mainly in the appearance of P_{1}, which is due to the day-night asymmetry of (23), and in the different powers of $\xi \dagger$, which alters the fine structure in the tidal Groups.

The harmonics of 1 st degree arising from P_{1} contain strong lines at the seasonal annual $S a$ and daily S_{1} frequencies, which do not strictly appear in the gravitational expansion, although it has some close minor terms depending on the solar anomaly (non zero k_{6}). The harmonics of 2nd degree occupy the same frequencies as the corresponding solar gravitational terms but can be distinguished in long quiet records by the absence of lunar effects. Cartwright (1966) found the radiational content of S_{2} of several records of sea level to average 18 per cent of the gravitational content.

The time harmonics from P_{1} and P_{2}, listed in Table 6, were derived from (24) by algebraic expansion, which is fairly easy in the case of the Sun, using equations (9), (10) and (11), and the relations (for $\beta^{\prime}=0$):

$$
\begin{aligned}
\cos \Theta^{\prime} & =\sin \left(L^{\prime}+\delta L^{\prime}\right) \sin \varepsilon, \\
\cos \Lambda^{\prime} \sin \Theta^{\prime} & =\cos \tau^{\prime} \cos \left(L^{\prime}+\delta L^{\prime}\right)+\sin \tau^{\prime} \sin \left(L^{\prime}+\delta L^{\prime}\right) \cos \varepsilon \\
\tau^{\prime} & =\left(f_{1}+f_{2}\right) t+\pi, \\
\delta L^{\prime} & =2 e^{\prime} \sin l^{\prime}+0\left(e^{\prime 2}\right), \\
\xi^{\prime} & =1+e^{\prime} \cos l^{\prime}+0\left(e^{\prime 2}\right)
\end{aligned}
$$

Since there is no call for great accuracy here, only the first power of e^{\prime} was retained in the expansions, and the numerical values of e^{\prime} and ε were taken at the epoch $1950 \cdot 0$ (equations (5) and (7) with $T=0 \cdot 5$). Omission of terms in $e^{\prime 2}$ limits the accuracy to about ± 0.0020. All coefficients in Table 6 were confirmed to this accuracy by comparison with spectral analyses of 3 -year time series.

The possible relevance of P_{4} in (24) to the radiational tide has not been ascertained.
\dagger G. W. Groves and H. G. Loomis (unpublished MS) have experimented with a radiational function $\propto \xi^{2}$.

Table 6
Radiational potential

Computers and acknowledgments

The large scale computations used the $360 / 65$ system at the IBM Data Centre, London, with all real variables in double precision. Subsidiary work involved the IBM 1800 at the National Institute of Oceanography.

The senior author (D.E.C.) is grateful to Mr D. H. Sadler, Superintendent of H.M. Nautical Almanac Office, for initial advice on ephemeris calculations. He also found the explanatory part of Jean Meeus's tables an invaluable guide for the non-expert.

National Institute of Oceanography, Wormley, Surrey

References

Brown, E. W., 1905. Theory of the motion of the Moon (Part IV), Mem. R. astr. Soc., 57, 51-145.
Brown, E. W., 1919. Tables of the Motion of the Moon, Vol. 3, New Haven.
Cartwright, D. E., 1967. A group of computer programs for tidal analysis and prediction by the 'response method', National Institute of Oceanography, Int. Rep. No. N11 (Supplement for use with IBM $360 / 65$ by R. J. Tayler: Int. Rep. No. N23).
Cartwright, D. E., 1968. A unified analysis of tides and surges round north and east Britain, Phil. Trans. R. Soc. A, 263, 1-55.
Cartwright, D., Munk, W. \& Zetler, B., 1969. Pelagic Tidal Measurements. ' EOS ', Trans. Am. geophys. Un., 50, 7, 472-477.
Darwin, G. H., 1883. Report of a committee for the harmonic analysis of tidal observations, Brit. Ass. Rep., 48-118.
Doodson, A. T., 1921. The harmonic development of the tide-generating potential, Proc. R. Soc. A, 100, 305-329.
Doodson, A. T., 1954. Re-print of above, with minor corrections, same title, Int. Hydrog. Rev., 31, 11-35.
Eckert, W. J., Jones, R. \& Clark, H. K., 1954. ' Improved lunar ephemeris 19521959 ", 283-363 U.S. Govt. Print. Off., Washington, D.C.
Horn, W., 1967. Tafeln der Astronomischen Argumente $V_{0}+v$ und der Korrektionen $j, v, 1900-1999$. Deutsches Hyd. Inst. pub. no. 2276 Hamburg.
Longman, I. M., 1959. Formulas for computing the tidal accelerations due to the Moon and the Sun, J. geophys. Res. 644, 2351-2355.
Maskelyne, N., 1762. Observations on the tides in the island of St. Helena, Phil. Trans. R. Soc., 52, 586-606.
Meeus, J., 1962. Tables of Moon and Sun, Kesselberg Sterrenwacht, Kessel-Lo, Belgium.
Melchior, P. \& Georis, B., 1968. Earth tides, precession-nutation and the secular retardation of the Earth's rotation, Phys. Earth Planet. Int., 1, 267-287.
Munk, W. H. \& Cartwright, D. E., 1966. Tidal spectroscopy and prediction, Phil. Trans. R. Soc. A., 259, 533-581.
Munk, W. H., Snodgrass, F. E. \& Wimbush, M., 1970. Tides off-shore: transition from California coastal to deep-sea waters, Geophys. Fluid Dyn., 1, 161-235.
Munk, W. H., Zetler, B. \& Groves, G. W., 1965. Tidal Cusps, Geophys. J. R. astr. Soc., 10, 211-219.
Neumann, G. \& Pierson, W. J., 1966. Principles of physical oceanography, PrenticeHall.
Rossiter, J. R. \& Lennon, G. W., 1968. An intensive analysis of shallow water tides, Geophys. J. R. astr. Soc., 16, 275-293.
Sadler, D. H. \& Clemence, G. M., 1954. Improved lunar ephemeris 1952-1959, Introduction, U. S. Govt. Print. Off., Washington, D.C.
Wilkins, G. A., 1964. The system of astronomical constants, Part 1, Q. Jl R. astr. Soc., 5, 23-31.
Wilkins, G. A., 1965. The system of astronomical constants, Part 2, Q. Jl R. astr. Soc., 6, 70-73.
Zetler, B., Cartwright, D. \& Munk, W., 1970. Tidal constants derived from response admittances, I.U.G.G. 6th Symp. on Earth Tides, Strasbourg, 1969. (In press).
Zetler, B. D. \& Cummings, R. A., 1967. A harmonic method of predicting shallowwater tides, J. Mar. Res., 25, 103-114.

[^0]: \dagger The printed formula for the Moon's longitude omitted the Annual Equation, included in the calculations. Error curves were calculated by Dr M. J. Krijger of the Hague (private communication).

[^1]: \dagger A few terms with amplitude a little lower than the stated limits were also included where their arguments were inevitably used in the longitude, viz. Serial Nos. 676, 753, 872, 912.

[^2]: \dagger Meeus and others make the approximation that $3422^{\prime \prime} \cdot 70$ is in fact the mean arc, although strictly incorrect according to EJC.
 \ddagger Strictly, the planetary effects on tides, though minute, are incomplete, because we have not included the direct tidal potential of the planets. The present object is merely to establish an accurate ephemeris.

[^3]: \dagger The difference $f_{4}-2 f_{5}$ also appears, but only between terms from $W_{2}{ }^{m}$ and terms from $W_{3}{ }^{m}$

