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The Interpretation of Lava Flow Morphology 

G. Hulme 

(Received 1974 January 28) 

Summary 

It is postulated that lavas are non-Newtonian liquids with a yield stress 
and that it is the yield stress which determines flow dimensions. An appro- 
priate theory was developed for the unconfined flow of ideal Bingham 
liquids on inclined planes. The occurrence of structures similar to IevCes 
on lava flows was predicted. The theory was verified by laboratory 
measurements on flows of suspensions of kaolin. These flows showed 
similarities to lava flows. Data from lava flows was also found to be in 
general agreement with the theory which was then used to interpret the 
shapes of two lunar lava flows. It was possible to estimate yield stresses and 
flow rates for these lavas. 

1. Effects limiting the flow of lava 

Lava flows show great variations in size, shape and surface features. The final form 
of a flow must be determined by the physical properties of the lava, its temperature 
and rate of extrusion and local conditions such as gravitational field strength and 
topography. The aim of the work presented in this paper is to isolate the parameters 
which have the greatest effect on flow morphology and to elucidate the relationship 
between the conditions at the start of a flow and the final form of the flow. At present 
there is no detailed knowledge of this kind but, were it available, the value of air- and 
satellite-photographs of lava flows would be greatly enhanced. 

The hypothesis on which this work is based is that flowing lava is a non-Newtonian 
liquid and it is its non-Newtonian properties which are mainly responsible for the 
shapes of flows. 

If lava were an ideal Newtonian liquid it would flow downhill and would continue 
to flow even after the supply at the vent had ceased until it ponded in a depression. 
Furthermore the flow would spread laterally until it was restricted by topography or 
until surface tension prevented spreading by which time it would be extremely thin. 
Observations show that lava does not behave like this. Commonly it comes to rest on 
a slope as soon as the supply of fresh lava ceases and many flow fronts are high and 
steep although unconfined by topographic features. It is clear that there is some 
process which limits the flow of lava, brings it to rest on slopes and prevents its lateral 
spreading. 

The most obvious and apparently generally accepted process is the solidification 
of lava due to cooling. For this to be a feasible process the time taken for the develop- 
ment of a strong enough skin to prevent lateral motion must be realistic. The solid 
skin of a flow experiences an outward force due to the hydrostatic pressure of the lava 
and this must be balanced by an inward force which is the result of tension in the 
curved skin. If the skin can withstand the tension the lava will not flow laterally. 
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362 C. Hulme 

Assuming that the radius of curvature of the skin is about equal to the depth of the 
flow this condition is met when 

g Pd2 
= 2 s T  

(A list of symbols appears at the end of this paper). The thickness of the cool skin 
increases with time according to 

s 7 ( S K t ) ’ / a  

(Ozisik 1968) and so the time needed to form a skin thick enough to prevent lateral 
flow is 

f (gp/sT)’ d4/8K.  

I t  is seen that this time is proportional to the fourth power of the flow depth and so 
time increases rapidly with increasing depth of flow. If the tensile strength is that of 
cold, unfractured rock the time taken to halt a flow 1 m thick is less than half a 
minute but for a flow 8 m thick it is more than one day. This is far longer than the 
time it usually takes for the width of such a flow to become fixed. It is very unlikely 
that the tensile strength of the skin will be as great as that of cold rock both because 
some of the skin is very hot and because there are usually many cracks in the surface 
of n flow. It is doubtful whether a skin of freshly cooled lava has any appreciable 
tensile strength at the relevant length scale. It can be concluded that the surface cooling 
of lava flows is important only for small scale phenomena or after long time intervals. 
I t  may prevent the lava front flowing more than a certain distance from the vent but 
generally cannot prevent either lateral or downhill movement at any other point along 
the flow. 

The part of a flow relatively near the vent may therefore be considered as isothermal 
because of the slow cooling rate and the small effect of a solid skin on the movement 
of lava. Yet even this part of a flow acquires a fixed depth and width soon after the 
commencement of activity. This may be explained if the rheological properties of lava 
are other than those of a Newtonian liquid. 

I 

Shear rate 

FIG 1 .  Stress versus rate of strain for Newtonian and Bingham liquids. 
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The interpretation of lava flow morphology 363 

Shaw et a1 (1968) measured the viscosity of a stationary lava and found that it 
showed Eon-Newtonian behaviour similar to that of a Bingham liquid. This idea is 
further discussed in Shaw (1969). The respective relationships between stress and rate 
of strain for Eingham and Newtonian liquids are shown in Fig. 1. The salient property 
of a Bingham liquid is that for stresses less than a certain value, the yield stress, the 
rate of strain is zero. The characteristic equation for a Bingham liquid is 

all 

- g z  
s - s  - 

77 is the gradient of the line in Fig. 1 and has the dimensions of viscosity. Here it will 
be called the plastic viscosity. 

This paper is an attempt to show that the shapes of lava flows may be accounted 
for if it is assumed that lava behaves primarily as an isothermal Bjngham liquid. 

2. The free flow of Bingham liquid OD a slope 

In order to show that lava behaves as a Bingham liquid it is first necessary to 
investigate the behaviour of Bingham liquids in conditions similar to those in which 
lava flows are created. The simplest situation is that in which liquid is supplied from 
a small source on to an extensive inclined plane. Before any liquid issues from the 
source there is nothing on the plane which will define the width and depth of a flow. 
These characteristics must therefore depend completely on parameters such as the 
rate of supply, the properties of the liquid and the slope of the plane. The problem is 
to discover the nature of this dependence. 

It is useful to consider the flow of Bingham liquids in pipes and between parallel 
plates for which equations are known (Skelland 1967). For flow in a pipe 

and between parallel plates 

Sw is the shear stress at the wall and is related to the dimensions of the flows as follows. 
In a pipe 

GD s - _ _  
4 w -  

and between plates 

Ch sw = -q 
L 

where G is the pressure gradient driving the flow. 
Substituting in equations (2) and (3) for the flow dimensions leads to 

1 s,v 4 4 sw 3 1 
.- 2rr FqG3/Sy4 = (s;) - -- 3 (--I s, + 3  

for pipe flow and 

3 s, 3 sw 2 1 
- 2 QT G2/Sy3 = (si-) - -- 2 (--I s, + 2  

(4) 

5 )  

(7) 

between parallel plates. 
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Equations (6) and (7) have the general form 

.F = f W  
where% is a dimensionless quantity relating flow rate to liquid properties and external 
forces. It has the important property that it is independent of the dimensions of the 
flow. Y is the dimensionless ratio of wall shear stress to the yield stress of the liquid. 
In effect it relates flow dimensions to liquid properties and external forces. 

In the case of the free flow of a Bingham liquid on a plane the flow dimensions 
and wall shear stress are not defined initially. However they can only depend on the 
quantities on the left-hand side of equation (6) and so an equation of the same form 
as equation (8) will hold in this case also. This equation is the required relationship 
between flow dimensions and what may be called the initial conditions. 

Naturally a more specific form of this equation is required. To this end it is helpful 
to consider how the width of the flow is determined. The lateral flow is driven by the 
pressure gradient due to the variation of flow depth across the flow. The lateral flow 
is thus similar to flow between parallel plates and is governed by a modification of 
equation (7). The important point is that the flow ceases when 

s w  = s, 
Sw is given by 

where 5 is the depth and y is the horizontal distance perpendicular to the direction of 
flow measured from the centreline of the flow. Lateral flow ceases and thetransverse 
profile of the flow becomes fixed when 

The profile may be found by solving equation (10) with the condition that 

y = w/2  at 5 = 0. 

It follows that 

and the flow depth at the centreline is found by putting y = 0 whence 

The longtitudinal flow rate will also be zero when S ,  = S,. In this case, assuming 
flow depth to be constant along the flow, 

Sw = gp sin a[ 

Sw =: g pat .  

and for small inclinations of the surface this may be written 

(1 3) 
Therefore, if the depth of the flow is less than a critical depth is there will be no 
downhill movement. t8 is given by 

5 s  = S,Igpa. (14) 

This implies that there will be a region along each side of the flow, where the depth is 
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The interpretation of lava flow morphology 365 
less than t8, where there will be no longitudinal flow. The edge of this region may be 
found by putting 5 = Is in equation (11). If ys is the distance from the centreline at 
which the critical depth is reached (Fig. 2) then 

50 

Is. 

- W Y 
2 

Yb 

FIG. 2. Diagram of flow profile. 

ye = w/2 - wb 

where W b  is the width of the region of stationary liquid and is given by 

- I  

Substituting from equation (14) leads to 

-. 
The flow rate may be expressed as 

F =  1 W l 2  Qdy = 2 l y Q d y .  
-w/2 

Since there is no flow beyond y = y8 this is equivalent to 

F = 2 Qdy. 

If the flow is much wider than it is deep then Q may be calculated approximately from 
equation (3). The flux per unit width in a flow of depth I on a plane is half that in a 
flow between parallel plates of separation 25. Hence 

Q = I2 - Sw [ I -  
31, 

Substituting from equations (13) and (14) gives 

Hence 

and integration gives 
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From equations ( I  3 )  and (14) 

50 s,v 
5 s  s, 
_ _  - at the centreline. 

Equation (21) is therefore a specific form of equation (8) for the case of the free flow 
of a Bingham liquid on a plane. It must be remembered that equation (21) is only an 
approximation because of the approximate method by which F was calculated. 
Agreement with reality will improve as the flow width increases with respect to flow 
depth. 

The quantit ies9 and Y may now be defined explicitly. They are 

.F = FT/gp5s4 (23) 

which in terms of initial conditions is 

and 

y = Pa5 0 

s, * 

Y is thus a dimensionless form of the centreline depth of the flow. C0 is not a particu- 
larly useful quantity because it is very difficult to measure on real lava flows. More 
useful is the flow width which can be easily measured from photographs. Equation 
(12)  allows Y to be expressed in terms of w whence 

Substituting from equation ( 1  7) leads to .=(&I 11% . 
(35)  

For convenience the quantity Y is replaced by another dimensionless parameter W ,  
where 

Equation (21) then becomes 

This equatioii may be tested experimentally and also with data from lava flows. 
Before making quantitative tests of the theory its value may be assessed by considering 
the qualitative predictions made so far. The major prediction is that regions of 
stationary liquid will develop along the sides of a flow. Such a phenomenon is in fact 
observed in the formation of levies along the sides of lava flows. Levies are very 
common features on lava flows (Fig. 3) and their mode of formation has not so far 
been satisfactorily explained. The fact that this simple analysis predicts the occurrence 
of structures similar to levies is striking confirmation that the hypothesis that lavas 
are primarily isothermal Bingliani liquids is valid. The analysis also predicts that a 
flow will cease to spread laterally when it achieves a certain width and this width will 
be maintained as long as conditions do not change. This again is in accord with the 
behaviour of lava flows which commonly maintain an essentially constant width for 
great distances (Fig. 3, facing page 368). 
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3. Experimental investigation of the flow of the Bingham liquids on inclined planes 
Experiments were carried out to test the analysis of the previous section. A search 

was made for a suitable liquid. No known liquid shows ideal Bingham behaviour but 
many have a yield stress. The liquid finally selected for use was a suspension of fine 
particles of kaolin in water. The suspension was convenient to make and its properties 
could be varied by altering the concentration of kaolin. The stress versus rate of 
strain curve was calculated for each sample used from measurements made with a 
hookfield synchro-lectric rotating cylinder viscometer. A typical characteristic curve 
is shown in Fig. 4. The viscometer measurements were made first at increasing rotation 
rates and then at  decreasing rotation rates. The results were slightly different and 
their mean was used to construct Fig. 4. This type of characteristic curve is commonly 
seen in suspensions like the one used here (Daum & den Otter 1971). The yield stress 
is usually taken to be where the backward extrapolation of the upper part of the 
curve intersects the stress axis but in fact some flow occurs at weaker stresses. A graph 
of yield stress against concentration of kaolin is shown in Fig. 5. 

A diagram of the flow simulation apparatus is shown in Fig. 6. After preparation 
the properties of a kaolin suspension were measured and it was then transferred to the 
glass storage bottle. To produce a flow the suspension was extruded on to the inclined 
plane through a one-inch diameter pipe by pressure provided by water in the header 

0 'i, 0 20 40 , 60 I ao 1 100 . 
Shear ra te k-' 

FIG. 4. Stress versus rate of strain for a kaolin suspension. 

tank. The water was kept separate from the suspension by means of a plastic bag 
acting as a diaphragm in the entry to the bottle. The rate of flow was controlled by 
the tap. During each flow the rate of advance of the flow front was measured by timing 
its passage across lines spaced at 10-cm intervals along the plane. Flows typically 
lasted for about 5-min although one flow travelled 80 cm in under a minute, while 
another one took 5 h to travel less than 20 cm. The supply ceased when the bottle was 
emptied or when the tap was turned off and the flows always came to rest very shortly 
afterwards. Photographs were taken during and after flows and some are shown in 
Figs 7-9. It is seen that levees are formed, as predicted, and lateral spreading becomes 
very slow at small distances from the vent. Apparent fracture planes due to failure 
under shear stress are very common in the flows. These presumably occur when the 
shear rate is high enough for conditions to be represented by the upper past of the 
characteristic curve where plastic viscosity is very low. The sharp contrast in plastic 
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368 G. Hulme 

viscosity between upper and lower parts of the curve means that as shear rate increases 
the liquid will apparently suddenly begin to flow rapidly. This will occur in isolated 
parts of the liquid where the yield stress is slightly lower than elsewhere because once 
one part yields the shear stress is reduced in surrounding regions. 

Measurements were made at several points along the stationary flows of total 
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FIG. 5.  Yield stress versus concentration of kaolin. 

H 

FIG. 6. Diagram of flow simulation apparatus. 
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FIG. 3. Lava flows with levees, Teide, Tenetife. The slope of the cone is fairly 
uniform at about 30". (By permission of Trabajos Fotofraficos Aereos S.A.). 

fucing p. 368 
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FIG. 7. Flow A. 

FIG. 8.  Flow I. 
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FIG. 9. Close-up of flow K. 
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width, levte width, centreline depth and levCe depth. Measurements were made far 
enough from the vent for conditions to have become steady. Towards the vent depth 
increases and width decreases. In this region the slope of the liquid surface contributes 
most of the pressure gradient. Further from the vent the surface of the liquid becomes 
flatter and the pressure gradient due to the slope of the plane is the dominant driving 
force. Here both flow width and depth become constant. The downstream distance 
beyond which conditions are constant may then be estimated by 

x c  - lola 
and this was usually about 10 cm. Rods calibrated in niillimetres were used for the 
measurements ; these were accurate enough because natural variations in the quantities 

40  
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FIG. 10. Comparison of measured and predicted values of centreline depth. 

to be measured were large as can be seen from the photographs. These fluctuations 
were probably caused by small inhomogeneities in the liquid and the resulting fluc- 
tuations in flow rate. Table 1 lists the relevant data for 11 flows. 

The measurements were used to verify the equations of Section 2. Equation (14) 
was checked first. It was found that the value of S, predicted by equation (14) using 
the measured value of C8 was always in good agreement with the value taken from the 
characteristic curve. The measured values of ( 0  were then compared with the values 
predicted by equation (12). The results appear in Fig. 10 and it may be seen that l o  
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The interpretation of lava flow morphology 371 

was usually measured to be only about three-quarters of the predicted value. The 
anomalously high measured value of 50 was from flow I which was a very short flow 
and measurements had to be made too close to the vent. The discrepancy between 
theory and experiment was not unexpected here because the profile given by equation 
(1 1) cannot be correct at the centreline where it implies a discontinuity in the surface 
curvature. The uncertainty in the value of [ O  is not important for the verification of 
equation (27). 

Next the widths of the levees were compared with the prediction of equation (17). 
Fig. 11 shows a graph of 2wb against [,/a There were several difficulties in measuring 
the width of levies. First their widths varied to some extent along a flow and some 
became vanishingly thin while new levCes appeared. Several flows produced two or 
more sets of levies (Fig. 9) which possibly stemmed from fluctuations in flow rate. It 
was found that the outermost levies agreed best with predictions and in cases where 

1 I I I I I I 1 
0 20 40 60 80 

Js / a  (mm) 

FIG. 11.  Coniparison of measured and predicted values of lev& width. 

several levies were present it was the outermost one which was used. For flows C, I 
and J it was not possible to make meaningful measurements. In spite of these diffi- 
culties-which account for the scatter on the graph--it seems reasonable to conclude 
that equation (17) is verified by the experiments. It was then possible to  calculate W 
for each flow using 

WU. 

w = G -  
This equation was preferable to equation (26) because the quantities may be measured 
more accurately than levie widths. 

To proceed further it was necessary to  know the viscosity, 7, of the kaolin-water 
suspension and because the suspension was not an ideal Bingham liquid with a unique 
value of 7 it was difficult to decide which was the correct value to use. To find the most 
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G. Hulme 372 

relevant value of 7 an attempt was made to calculate it from the measurements made 
on the flows. The apparent viscosity ?la, was first calculated using Jeffreys' (1925) 
formula for the two-dimensional laminar flow of liquid on an inclined plane. This gives 

where the depth d was taken as the mean depth of the flow between the levies and uc 
as the mean velocity of advance of the heat front. The quantities d and uc were 
calculated by integrating equation (1 1) and they are expressed by 

and 

Now apparent viscosity is defined by 
au 

s = l a &  

and by using equation (1) it is found that 

7) = ?)a (1 - W+). 

Having determined Wit was possible to calculate 7 from measurements made on the 
flows. In general it was found that 7 was close to the value given by the steepest portion 
of the characteristic curve. I t  therefore seems that the higher values of 7 dominate the 
flow and it was decided that the slope of the steepest section of the characteristic curve 
would be used as the relevant value of 7. This was probably not always accurate but 
it was possible to be consistent and the quantity used was a measured one which was 
preferable to a value calculated by an approximate method. 

The flow rate F was calculated from 

F = umA 

<r- 

FIG. 12. 9 versus W. Experimental points compared with theory. 
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The interpretation of lava flow morphology 3 73 

and the cross-sectional area, A was calculated by integrating equation (1 1). The result 
is that 

It was then possible to eva!uate% for each flow from equation (22) and the graph of 
9 against W is cornpared with equation (27) in Fig. 12. 

I t  can be seen that the experimental points all lie above the theoretical curve but 
the measurements are certainly of the same order as the predictions and show the 
same trend. The limited agreement between experiment and theory is all that conld 
have been expected because of great uncertainties in experimental measurements. The 
greatest difficulty was presented by the determination of the relevant plastic viscosity 
for a liquid which was not an ideal Bingham liquid. This non-idealness of the liquid 
also means that the theory is not strictly applicable to it. Finally it must be recalled 
that the theory itself is only an approximatior, as described in Section 2. 

In spite of these uncertainties the graph of Fig. 12 does show that the theory 
of Section 2 describes the free flow of Bingham type liquids accurately enough to be 
of use in the interpretation of lava flows. Furthermore, the experimental flows show 
similarities to lava flows in their behaviour : they develop levies. produce parallel- 
sided flows and cease flowing when the supply ceases. 

F = (2/3) { ~ w u ~ W I ~ ' .  (33) 

4. Application of the theory to terrestrial lava flows 
To test the hypothesis that lava flows are basically similar to those of Bingham 

fluids the relationship between dimensions and initial conditions of terrestrial flows 
was compared with that predicted by the theory of Section 2. It was difficult to find 
many flows for which sufficient data were available. There are many examples of flows 
with levCes but for this comparison flow velocities were needed. This limited the 
choice to flows which had been observed while active. Among these there are very 
few for which all the required dimensions and flow rate have been measured. After 
some searching of the literature a total of four usable flows was found. Even then 
some of the data were very unreliable. The flows will be discussed individually. 

McunaLoa, 1942. Details of this flow were taken from Macdonald (1943). He reports 
a single estimate of flow depth of about 7 m at an unkown point on the flow approxi- 
mately 24 km from the vent. The mean velocity is also given as from 90 to 150 m hr-1. 
The slope of the ground was measured on a contour map of Hawaii and flow and 
levCe widths were taken from air photographs at a point about 17 km from the vent. 
With this sketchy data it was possible to estimate b o t h 9  and W. The total levie width 
was calculated from equation (17) and the value of 114 ni was found to be significantly 
less than that of 260 rn obtained from air photographs. The calculated value was the 
one used since this was more likely to represent the width of the original levies. The 
relevant data for all four flows are tabulated in Table 2. 

Poricutin, 1345-6. There zre just enough data for this flow in Krauskopf (1948) to 
a l l o w s  and W to be calculated independently. He gives a detai!ed map of the lower 
section of the flow from which slope and widths were taken. Several levCes were built 
by the flow but only the outer ones may be used because they were presumably the 
first to be formed and so were unaffected by pre-existing ledes. It was assumed that 
the flow was at its height when these levies formed and so the flow rate was taken to 
be at the upper end of the range reported by Krauskopf. Again flow depth was not 
well known. It is reported as being between 5 and 7 m at the lower ends of flows from 
Paricutin and so lS was taken to be 6 m. The apparent viscosity of the flow was 
calculated as for the experimental flows by using equation (29). In the case of both 
Paricutin and Mauna Loa flows the results were higher than the generally quoted 
values of apparent viscosity (Walker 1973) but in each case they were representative 
of conditions much further from the vent than the points at which past estimates 
of viscosity were made. Plastic viscosity was calculated using equation (32). 
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FIG. 13. Comparison of observed and theoretical relationships between flow depth 
and slope. 

Elnu, 1966. Data for two flows were taken from Walker (1967). He plotted a graph 
of flow depth against slope. This relationship is predicted by equation (14) and is seen 
to depend on the yield stress of the lava. The predicted curve for a suitable value of 
Sy is shown superimposed on Walker's graph in Fig. 13. It is seen that equation (14) 
supported by observations. In fact it was Robsoii (1967) who first deduced from this 
data that Etnean lavas were Bingham liquids although this was not known to the 
present author at the time of the original writing. Consequently it is possible to 
achieve a good estimate of Sy for the Etnean lava. Approximate channel widths were 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/39/2/361/619759 by guest on 24 April 2024



376 G .  Hulme 

given by Walker but not levte widths. However equation (17) enabled these, and 
heme JV, to be calculated. Apparent viscosity was estimated by Walker. His value is 
in close agreement with the value calculated in the same way as for the two previous 
flows. He also reported flow velocities and so approximate values of I: could be 
calculated. 

It is clear that the data for terrestrial flows are subject to much uncertainty. One 
quantity which was not measured for any of the four flows considered here is lava 
density. It was taken to be 2.103 kg m-3 throughout. Values f o r 9  and W were obtained 
for each of the four flows and compared with the predictions of equation (27). This 
is shown in Fig. 14. All the comments made about Fig. 12 apply equally to Fig. 14 but 
in spite of the many uncertainties observations made on terrestrial lava flows do seem 
to support the hypothesis that they are basically flows of isothermal Bingham liquids. 
This means that the shapes of lava flows may be interpreted with some confidence. 
Values o f 9  may be predicted where values of W only are known from measurements 
made on air or satellite pictures. It also means that real flows may be modelled in the 
laboratory. 

The yield stress of lava 
There are several flows for which there are adequate data to allow the calculation 

of yield stresses of lavas. Equation (14) may be used if levte height, ground slope and 
lava density are known. For most terrestrial flows the value of W is low enough 
(that is, channels are relatively narrow) for the predicted centreline depth to be very 
little greater than the levte height. It is therefore acceptable to use flow depth as a 
measure of levee height. Very often, however, it is observed that levies are much 
higher than the surface of the flowing lava. This is at variance with the theory of 
Section 2 but it may possibly be explained as follows. The flow depth has obviously 
decreased since the levies were formed and this can happen, according to the theory, 
only if the yield stress of the lava has decreased. Such a decrease may be due to a 
change in composition of the lava but may also be due to a slight increase in its 
temperature because rheological properties are extremely temperate dependent. 

Suppose that an increase in eruption rate were to occur. Then the mean velocity 
would be increased and the flow depth would tend to increase also. The increase in 
mean velocity would lead to a higher mean temperature at a particular point along 
the flow and this would reduce the yield stress, possibly by a large amount. The 
reduction in yield stress may then outweigh the increase in flow rate in its effect on 
flow depth and the paradoxical situation could arise where an increase in flow rate 
leads to a decrease in flow depth in a channel of fixed width. This effect could be looked 
for in the field. 

It is commonly observed that levtes grow by accretion. This will happen if lava 
on which blocks of solidified crust are floating overflows its levCes owing to an increase 

Table 3 

Flow 

00-sima 1951 
Tristan da Cunha 
Tristan da Cunha 
Hekla 1947 
Teide 
Etna 
Paricutin 19456 
Mauna Loa 1942 
Kilauea 
Mare Imbrium 

Depth Slope 
(m) 

See text 
8 5" 

14 10" 
15  4" 
8 30" 
See text 

5 6" 
7 34O 

30 0.2" 
See text 

S Y  

(N m-? 
4.3 x 103 
1.4 x 104 

5 x 104 
2 x 104  

1.3 x 104 

8 x lo4 
7 x 108 

8 x 103 
I x 102 
4 'x 102 

Reference 

Minakami & Sakuma (1953) 
Baker & Harris (1963) 
Baker & Harris (1963) 
Einarsson (1949) 
This paper 
Walker (1967) 
Krauskopf (1948) 
Macdonald (1943) 
Shaw (1968) 
Schaber (1973) 
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in flux. It is therefore probable that many levies are higher than predicted by the 
simple theory of Section 2 although their positions and widths may well be basically 
determined by the proposed mechanism. 

Remembering that the simple theory cannot account for all the complexities of the 
real situation it is possible to estimate yield stresses for lavas which were effective at 
some stage of their flow. Table 3 gives details of ten determinations. 

The data of Minakami were treated similarly to those of Walker for Etna. A graph 
of u against 5 was plotted and the best-fitting curve of the family 

a t8 = constant 

gave the value of S,. The data for flows near the summit of Teide were obtained from 
measurements made on air photographs of Tenerife. Levee height was calculated from 
levie width according to equation (17). There was some difficulty in measuring levte 
width because of the effect of material slumping down the outside of the levtes but it 
was possible to make a correction for this. 

I Observed .. 

-+- i .$  - 
__f @'to 

FIG. 15. Diagram of flow profile with slumping. 

c-- 

The theory indicates that the profile of a flow becomes vertical at the edges. Real 
flows do not have vertical walls (except perhaps pahoehoe flows) because, as is 
commonly observed, cooled blocks of lava continually fall off the walls. The profile 
stabilises when the surface of the fallen material achieves the angle of repose, Oc, as 
shown in Fig. 15. The effect of this on levCe width can be calculated easily and the true 
IevCe width is given in terms of the observed width, Wbo, by 

It can be seen that slumping causes a significant increase in levCe width only when the 
slope of the ground is comparable with the angle of repose of unconsolidated blocks. 
The increase is only 10 per cent on a slope of 10" when the angle of repose is 30". 

The yield stress for Kilauean lava is the only one which has been measured directly 
(Shaw et al. 1968). This was done by sinking the head of arotating cylinder viscometer in 
Makaopuhi lava lake. It would be expected that Kilauean lava would have properties 
similar to those of lava from Mauna Loa and the observed discrepancy in their yield 
stresses is probably due to the different temperatures at which the measurements were 
made. In the lava lake the temperature was close to the liquidus value whereas the 
yield stress for Mauna Loa lava was estimated at a point 17 km from the vent where 
the lava must have been very much below its liquidus temperature. It is probable that 
yield stress behaves similarly to viscosity in its dependence on temperature. The Mauna 
Loa lava yield stress would therefore be expected to be higher than that of the Kilauean 
lava and the difference between the two values is an indication of the variation of 
yield stress over the melting range of a lava. 
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E Etno 1966 
H Hekla 1947 
K Kilaueo 
MI More lrnbriurn 
ML Mouna Loo 1942 
OS Oo-sirna 1951 
P Poricutin 1945-6 
T Teide 
TdC Triston do Cunho 

1 I I I 1 
40 45 50 55 60 

Silica content (%I 

FIG. 16. Yield stress of lava versus silica content. 

Yield stress was plotted (Fig. 16) against silica content of the lavas. Silica content 
was used to classify the lavas because it is known to be related to the rheology of lavas 
(Bottinga & Weill 1972). There are few points and a large amount of scatter due 
mainly to the lack of temperature control but in spite of this a trend of increasing 
yield stress with silica content may be seen. This is again similar to the variation of 
viscosity. 
Pahoehoe and Aa Lava 

The existence of a yield stress may also account for another commonly observed 
phenomenon of lava flows-the transition from pahoehoe to aa lava. 

The surface of a liquid is kept smooth by the action of surface tension. If a nor- 
mally plane liquid surface is distorted then surface tension forces act on the distorted 
region to restore the surface to a plane. The surface of flowing lava is continually 
being broken and distorted but if the lava possesses a yield stress then surface tension 
forces must overcome the yield stress before any smoothing of the surface takes place. 
For three-dimensional distortions with a radius of curvature R the condition for the 
distortion to be removed is 

2T 
R -- > s y .  

Hence for any lava there is a certain radius of curvature for distortions above which 
they will not be removed by surface tension. Therefore surface tension removes small 
scale perturbations of the surface but not large scale ones. The critical radius of 
curvature is 

-T 
L1 

Rc = - 
SY (35) 

Therefore lavas of high yield stress and low surface tension will be able to sustain 
smaller scale surface distortions. 

The surface tension of lavas has been measured in the laboratory (McBirney & 
Murase 1970) and it is found that, for all lavas, surface tension increases with in- 
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creasing temperature. Also, lavas with lower silica content have higher surface 
tensions. This means that lavas of low silica content at  high temperature have the 
lowest yield stresses and highest values of surfaces tension. Both of these factors lead 
to a high value of R, and so the surfaces of these lavas remain smooth up to large 
scales. This is characteristic of pahoehoe lava which should therefore occur in hotter, 
more basic lavas which is in accord with observations. Cooling such lavas increases 
their yield stress and lowers their surface tension and both of these changes are marked. 
They both cause R, to become smaller and so R, is extremely sensitive to temperature. 
When R, falls to less than about 1 mm a lava surface becomes spiny which is charac- 
teristic of aa lava and the transition may be rapid. Aa lava therefore occurs in cooler 
lavas and in lavas of higher silica content. 

The yield stress at which transition to aa lava occurs may be calculated from 
equation (35). The surface tension of basaltic lava at  its liquidus temperature is about 
0.35 N m-1. Supposing that the transition occurs when R, is 1 mm means that the 
yield stress must be 700 N m-2. This value fits in well with those plotted in Fig. 16 
where cool Hawaiian lava of aa type has Sy of order lo4 N m-2 and Hawaiian lava 
close to its liquidus and of pahoehoe type has Sy of order lo2 N m-2. 

Development of a lava flow 
From the evidence that has been presented it is concluded that, to a first approxi- 

mation, lava behaves like an isothermal Bingham liquid. This knowledge is very 
helpful when interpreting the shapes and dimensions of lava flows. The formation of 
a flow will now be described. 

At the start of an effusive eruption there are basically six predetermined parameters 
which define the shape of the subsequent flow. These are the lava flux, the gravitational 
field strength, the slope and three lava propertiesdensity, plastic viscosity and yield 
stress. The effects of temperature variations may be ignored in the first instance. These 
six parameters combine to form the dimensionless quant i ty9 which characterises the 
flow. It is directly related in the way which has been described to the quantity W which 
relates the width and depth of the flow to the initial conditions. After flowing a short 
distance the flow achieves its predetermined width and depth which it maintains as 
long as conditions, in particular slope and effusion rate, stay constant. A flow auto- 
matically develops levies and in terrestrial flows the flow depth is never very much 
greater than the height of these levies. Levie height is therefore a good indication of 
flow depth and it is proportional to the yield stress of the lava. Yield stress increases 
with silica content and so basaltic lavas give rise to less deep flows than do more 
acidic lavas. 

The ratio of flow depth to flow width may be called the aspect ratio. This is a very 
useful quantity for describing the shape of a flow. (See Appendix 1). A flow of low 
aspect ratio is wide and of small depth while a high aspect ratio flow is narrow and 
deep. Aspect ratio may be measured at any point along a flow and it will change as 
conditions change. If levCe height is used to represent flow depth then, from equation 
(28), 

(36) 
rs a 

Aspect ratio = - = - w W '  
Now in the range 

1.5 < W < 10 

the relationship between 9 and W is approximately 
FG: w4 

and so, using equation (23), 

Aspect ratio = Sy/(F7#/* ( g ~ ) ~ ' ~ .  (37) 
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Aspect ratio therefore depends mainly on yield stress. This predicts that lavas of low 
yield stress such as basalts will give rise to flows to low aspect ratio and more acidic 
lavas will occur in high aspect ratio flows. This is in general agreement with field 
observations. 

Often flows cross a change in slope and by considering the aspect ratio it is possible 
to see how flow width is affected. Aspect ratio is shown by equation (37) to be approxi- 
mately independent of slope but flow depth must change according to equation (14). 
The result is that flow width is inversely proportional to slope. This agrees quali- 
tatively with observations but it has not been possible to confirm it accurately because 
of a lack of data. 

Aspect ratio is also predicted to be insensitive to changes in effusion rate but in 
reality the situation is more complicated because of the effect of temperature variations. 
A large increase in effusion rate would tend to widen a flow slightly but the lava may 
be confined if levies it has already constructed have cooled enough to have become 
fixed. Moreover, a change in effusion rate changes the temperature of the flowing lava 
at a particular station and this may change the yield stress by a large amount, It has 
already been mentioned that an increase in flux may result in a lowering of the level 
of lava in a channel. A reduction in effusion rate could result in the construction of 
new levies inside the old ones and this is commonly witnessed. 

When the supply ceases flow in the channel may continue for a short time until 
the centreline depth falls below the critical depth for flow to occur. The flow then 
comes to rest although it is possibly still in a fluid state and it may be reactivated if 
the supply recommences or if another flow overrides it and thereby increases the 
shear stress at its base. 

5. Interpretation of lunar lava flows 
Some lunar lava flows display channels and levies and it is therefore possible to 

use the foregoing theory to discover the initial conditions which determined the 
shapes of those flows. Measurements of channel width and total flow width were made 
on a section of a flow in south-west Mare Imbrium (Fig. 17). W was calculated to be 
1.2 which by equation (27) impl ieds  equal to 3.2 10-4. The viscosity of simulated 
lunar flood basalts has been measured in the laboratory (Murase & McBirney 1970) 
where the lavas were treated as Newtonian liquids and so it is uncertain how the 
measured values of viscosity relate to plastic viscosity. For the want of better infor- 
mation the plastic viscosity will be assumed to be of the same order as the liquidus 
viscosity and this is about 10 Pa s. 'The flow rate of the Mare Iinbrium lava flow was 
then calculated to have been 8.104 m3 s-1. Such a large effusion rate is compatible with 
the great distance which the flow travelled (over 200 kn) in accordance with the work 
of Walker (1973). It is also consistent with the high effusion rates predicted for sinuous 
rille formation (Hulme 1973). 

The mean velocity, the velocity of the flow front, was found to be 0.4 m s-1 (1.4 
km hr-1) while the velocity in the channel was estimated at 1.7 in s-1; these both seem 
reasonable values. The flow would have been einplaced in about six days if the effusion 
rate had remained steady. The mean depth of the flow is about 30 m (Schaber 1973) 
and substituting this into equation (17) gives a value of 1/250 for the slope of the lunar 
surface which is consistent with satellite measurements. The yield stress of the lunar 
basalt was then calculated to be about 400 N m-2 which is consistent with its low 
silica content (Fig. 16). 

A lunar flow of a different lava type with well-developed levies is to be found 
close to the crater Tycho (Fig. IS). W was measured to be 1.8 and the height of one of 
the levCes was estimated by measuring the length of its shadow, to be 60 m. The slope 
of the ground was then found to be 0.088 ( S O )  which is in accord with the measure- 
ments of Turner (1970) who estimated the slope at the same distance from the rim of 
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FIG. 18. Lava flow with well-developed channel near Tycho. (Portion ot Orbiter V 
128 Hn). 
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Tycho to be between 2" and 6". The yield stress of this lava was calculated to be 
1.7 lO4N m-2 which indicates that it has a higher silica content than the Mare Imbrium 
lava. Its plastic viscosity was assumed to be similar to that of terrestrial lavas of 
similar yield stress and so a value of 106 Pa s seemed reasonable. The flow rate was 
then estimated to have been 750 m3 s-1. The flow is about 20 km long and again these 
values are consistent with the work of Walker (1973). The mean velocity is found to 
have been very low at 0.012 m s-1 or 1 km per day and so the emplacement time seems 
to have been of the order of 20 days. This evidence suggests that, whereas this flow 
may have been triggered by the formation of Tycho, by impact, the lava is not simply 
splashout from the impact. It was probably supplied at a fairly steady rate for a long 
period compared with the time of formation of the crater. A similar conclusion was 
reached by Strom & Fielder (1970) who used completely independent (morphological 
and statistical) arguments. 

6. Summary 

It was argued that the cooling of lava is too slow a process to be important in 
determining the widths and depths of lava flows. It was postulated that most lavas 
behave similarly to Bingham liquids and that it is the existence of a yield stress which 
determines flow dimensions. 

Details were given of an approximate theory for the unconfined flow of ideal 
Bingham liquids on inclined planes. Surprisingly the occurrence of levtes was pre- 
dicted. Experiments were carried out to test the theory and the results supported the 
theory but their significance was limited because the experimental liquid was not an 
ideal Bingham liquid, Nevertheless the formation of levCes was observed and the 
flows showed other characteristics of lava flows. Data from lava flows were then 
compared with the theory. Again some measure of agreement was found but accurate 
verification of the theory was not possible because the rheological parameters of lava 
are very poorly known and the flow data were of poor quality and coverage. 

The theory needs more confirmation to increase confidence in its use and this will 
involve measuring the rheological properties of different types of lava at various 
temperatures. A greater supply of good quality data from active flows is also required. 
Flow depths need to be measured particularly accurately and at various stations along 
a flow in conjunction with gradient and velocity measurements. The dimensions of 
levtes and channels are essential. 

The hypothesis that it is the non-Newtonian behaviour of lavas which chiefly 
determines the morphology of flows has been shown to be very fruitful. It produced 
a simple explanation for the occurrence of levtes and channels and a way of predicting 
flow dimensions from initial conditions. The value of the hypothesis is that it now 
becomes possible to estimate flow rates, velocities and possibly lava types from simple 
measurements on high altitude photographs of lava flows. This was demonstrated for 
two lunar flows and there are other lunar and martian lava flows to which the method 
will be applied. 
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Appendix 1 

100, 345-350. 

book Co., Scranton, Penn. 

Houston. 

107-1 18. 

Aspect ratio 
The purpose of this appendix is to avoid confusion over the use of the term aspect 

ratio which is likely to be widely used in future when discussing lava flows. The 
definition used here is different to the one given by Walker (1973) and was purposely 
chosen to be so. Aspect ratio is a term used commonly in aerodynamics where it is 
the ratio of the height or length of an aerofoil blade or wing compared with the chord 
length or distance from leading to trailing edge. The problem is which lava flow 
dimension should be used as a reference length analogous to chord length. Because it 
is really flow height which is being described it seems reasonable to use flow width as 
the reference length whereupon aspect ratio becomes equal to heightlwidth. This 
means that, while in aerodynamics aspect ratio is usually greater than unity, it will 
always be fslr less than unity for lava flows but it seems more straightforward to say 
that a high aspect ratio flow is high in  relation to its width than that it is of high width 
compared with its height. 
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Notation 

A 
d 
D 
f 
F 
9 

C 
h 
0 
K 
& 

S 
S T  

S,V 
SY 

S 

I 
T 
U 

uc 

cross-sectional area, 
mean depth of moving lava, 
diameter of pipe, 
function of, 
flow rate, m3 s-1, 
dimensionless parameter defined 
in equation (8), 
gravitational field strength, 
pressure gradient, 
separation of parallel plates, 
flow rate per unit  width, m2 s-1 
radius of curvature, 
critical radius of curvature, 
skin thickness, 
shear stress, 
tensile strength, 
wall shear stress, 
yield stress, 
time, 
coefficient of surface tension, 
velocity, 
mean velocity in channel, 

Urn 
)V 

u' b 
w 
X 

Y 

Y s  

Y 

z 
a 

17 
?a  
5 
i s  

50 

K 

P 

mean velocity of flow, 
flow width, 
levCe width, 
dimensionless parameter defined 
in equation (26) ,  
downstream distance, 
cross-stream distance from 
centreline, 
distance from centreline at  which 
critical depth is reached, 
dimensionless parameter defined 
in equation (8), 
vertical distance, 
gradient of ground, 
plastic viscosity, 
apparent viscosity, 
flow depth, 
critical flow depth, 
centreline depth, 
thermal diffusivity, 
density. 
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