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Summary. The potential function 4 for a magnetic body of susceptibility p 
in a medium of susceptibility p* satisfies the integral equation 

Here @* is the potential function for the region without the heterogeneity 
and R is the distance from the point of observation to the point on the 
surface, s, of the body. a@/an is the normal derivative, in the direction of the 
outward normal. The equation allows for the effects of demagnetization. For 
numerical purposes the surfaces can be divided into N facets over which 
&$/an is a constant. The unknown quantities &plani can be found from the 
system of equations defined by: 

The prime on the summation sign denotes that the summation does not in- 
clude the ith element. 'The magnetic field in the direction of the unit vector 
P(Pl, Pz, P3) is given by: 

1 Introduction 

As early as the mid-1950's the late L. A. Richardson was actively engaged with C .  B. Kirk- 
patrick in modelling the magnetic gold bearing ore bodies of the Tennant Creek field of 
Australia. For these model studies an ellipsoidal model was chosen so as to cater for the 
largest class of shapes possible by the one modelling program. A further element in the 
modelling program was to allow for the effect of demagnetization. Subsequent experience 
by Farrar (1978) has shown that this refinement is a necessity in the area because of the very 
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68 T. J. Lee 

large percentage of magnetic minerals present in the ore bodies. What was being sought was 
a method that would allow for the direction of the magnetic field within the body to  be 
different from the inducing field. Allowing for demagnetization then would allow better 
estimates of the dip of the magnetic bodies to  be made. The method chosen for these 
studies was limited to ellipsoidal shapes only because of the limitations of boundary value 
theory (Kirkpatrick & Richardson 1974). 

Later Sharma (1966, 1977) also appreciated the need to calculate magnetic profides across 
magnetic bodies and at the same time allow for the effects of demagnetization. The method 
chosen by Sharma was to  write down the equations for the profiles in terms of an integral 
equation that required the field to be found throughout the magnetic structure. The integral 
equation was then solved by summing over a series of small rectangular prisms that 
collectively defined the total structure. 

The disadvantage with Sharma’s method was that only relatively small structures could be 
solved if the total number of unknowns was not to grow too large. The method developed 
below is also based on an integral equation. However, this time the integral involved is a 
surface integral taken over the surface of the magnetic structure. The number of unknown 
quantities, then, that are required to solve the equation by the numerical method grows as 
L2 and not L3. Here L is a length parameter of the body. 

A further advantage of the method is that the proposed algorithm has very strong simi- 
larities with a previously described algorithm for modelling the induced polarization and 
resistivity methods of prospecting. It is therefore very easy to  implement as the code for this 
case is available (Barnett 1972). 

A disadvantage with all the methods is that they do not allow for the effects of remanent 
magnetism which can also affect dip estimates (Green 1960). Despite this criticism the 
following analysis does provide a useful tool for magnetic interpretation when remanent 
magnetism can be ignored but demagnetization cannot be. 

2 Derivation of the integral equation 

If H is the magnetic field intensity, B the magnetic induction, J the current density and p 
the permeability, then: 

V X H = J ,  V - B = O  (1) 

B = p H .  (2)  

Consider the geometry shown in Fig. 1 where there is a body of permeability p in a 
medium of permeability p*.  No currents flow so 

V x  H = O  (3 1 
and there exists a potential function q5 such that 

Ii= - V &  (4) 

Hence from equations (1) and (2) 

v.pv4 = 0 

=Vp.V@+kLV2q5 
or 

v 2q5 = - ( V p  . Vq5)Ii-l. 
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2 
Fipre 1. The geometry for the integral equation. 

If @* is the potential function for the medium without the magnetic intrusion, as shown 
in Fig. 1 and p* the corresponding value of the magnetic permeability then 

= O  
V(@ - @*I 

ru* 
VZ(@ - @*) -I vp* . - 

outside the inhomogeneity, and 

(7) 

in the inhomogeneity. 

conditions as @*. 
Let G be a solution of the following equation and subject to the same boundary 

The point (x ‘ ,y ’ ,  z’) lies within the inhomogeneity. 
An integral equation can be found by multiplying 

equation (9) by # - @*. Next subtract equation (9) from 
over all space. Whence 

equations (7) and (8) by G and 
equations (7) and (8) and integrate 

Here u denotes the volume of the inhomogeneity. Following an analogous procedure to that 
used by Lee (1972) equation (1 1) is simplified to 

In equation (1 l), s is the surface of the inhomogeneity, k = (p* - p)/(p* t p), I.( is the 
permeability of the inhomogeneity and the partial derivative is with respect to the outward 
normal, n ,  of the surface s. 
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70 T. J. Lee 

Equation (1 l), then, is the integral equation describing the magnetic potential for the 
geometry in Fig. 1. As a check on this equation the known potential function for a spherical 
inhomogeneity will be found from equation (11) from a method advocated by Lee (1975) 
for solving analogous resistivity problems. 

3 Potential function for a magnetic sphere 

Let the sphere of radius b be subjected to  a magnetic field of strength Ho which is in the z 
direction. 

@* = Hoz = Hor cos B 

Therefore 

= H , ~ P ,  (COS e )  

and 

a@ a@* 2k a@ a 1 
an an 4n an'  an R 
-=-+-  [- -(-)&'. 

In equation (1 3) the primes denote the variable of integration. 

cos B on the sphere it follows that: 
Following Lee (1975) we suppose that a@/an is represented by AP,(cos 0). Since z = b 

AP, (COS 0) = Ho bP1 (cos 0 )  + - . AP, (cos 0) ds'. 

The integral in equation (14) is easily evaluated by expanding 1/R in spherical harmonics. 
Multiplying though by Pl(cos 0) sin 0 and integrating over the sphere yields: 

The potential function outside the sphere, then, is readily found from equations (15) and 
(1 1) to be given by 

Equation (16) is the familiar solution from boundary value theory (Ward 1966, p. 66, 
equations A2-17). 

4 Numerical solution of the integral equation 

Equation (1 1) is analogous to the integral equation that Barnett (1972) has provided an 
elegant numerical solution for. In view of this only the briefest details are given below. 

For the magnetic case under consideration 

cp* = H,X + H,Y + H,Z 
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where 

Hence 

Barnett solves this equation by dividing up the surface of the heterogeneity by a number of 
triangular facets over each one of which the quantity a$/an is a constant. 

To construct an equation suitable for numerical purposes we require that @ @ / d n ) p  is 
continuous over the surface. If the body is divided up into N facets and p(a$/an)  is constant 
over each of them then the above integral equation yields for the ith point (at either side of 
the boundary) the equation 

The prime on the summation sign indicates that the sum is over all the facets but does not 
include the ith facet. 

If subscripts 1 and * denote terms within and outside the boundary respectively, then the 
boundary conditions require that 

at the boundary. 
An equation suitable for numerical purposes, then, can be found by calculating (a$/an)p  

at both sides, but not at the ith facet, and letting the points at which the quantity is calcu- 
lated approach the same point on the ith facet. 

Therefore 

In proceeding to the limit we have used the result of Sternberg & Smith (1964, p. 140, 
equation 20). 

Equation (20) defines a system of equations for which the unknown quantities adan, 
can be determined. 

Once these quantities have been determined the magnetic field Hp in the direction of a 
unit vector P(Pl, P2,P3) is found from equations (4) and (8) to be given by: 
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72 T. J. Lee 
5 An example to check the method 

Equation (16) forms the basis for calculating the magnetic field about a sphere which has a 
high susceptibility. Equations (20) and (21) are the two equations that provide the basis 
for a numerical method of calculating the same quantity. Fig. 2 shows the result of using 
equations (20) and (21) to  approximate the integral equation for the case of a spherical 
shaped structure. This choice was dictated because simple analytical results were available 
to check the numerical procedures. 

For these calculations the sphere was approximated by 48 facets and the susceptibility 
was taken to be 0.1. Curves 1 and 3 are based upon the numerical procedures described 
above while curves 2 and 4 were calculated from the known formulae. The first two curves 
(1, 2) are for the case where effects of a demagnetization are ignored and the last two 
(3, 4) are for the case where demagnetization is included. For the cases where demagnetiza- 
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Figure 2. A comparison of two sets of calculations for a north-south profile of the total magnetic field 
intensity across a buried sphere. Curves 1 and 3 are based on numerical methods while curves 2 and 4 are 
based on an analytical method. The inducing field has a strength of 58429 nanoTesla and a dip of -64.2". 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/60/1/67/561794 by guest on 24 April 2024



Computation of magnetic anomalies 73  

tion was ignored the curves were calculated from equation (22) with a$/ani = a@*/ani. In 
all cases the radius of the sphere is 100 m and its depth to centre is 200 m. 

The results show that it is possible to  use the formulation given above to obtain excellent 
numerical results. As Fig, 2 shows, the greatest difference in the curves is over the top of the 
sphere. However, even here the ratio of the field strengths is still 0.67 against an expected 
0.70. The difference is due to  the point on the top of the faceted sphere. 

For more irregularly shaped structures, however, care should be taken to ensure that 
there is a sufficient number of facets in areas of high curvature. If this is not done the un- 
known function will be poorly approximated and in such cases the calculated results will 
have large errors. 

6 Discussion 
The theory given above establishes an integral equation and outlines an algorithm that will 
give its approximate solution. Those results have been used to model a vertical magnetic 
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Figure 3. A north-south profile across a vertical dyke. The inducing field has a strength of 58429 nano- 
Tesla and a dip of - 64.2". 
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dyke of depth extent of 1000 m, width 500 m, and thickness 100 m. The depth to the 
centre of the dyke is 750 m. The results, which are shown in Fig. 3, are for a north-south 
profie and give the value of the magnetic field in the direction of the inducing field. In the 
calculations the susceptibility was 0.1,0.3 and 0.5 respectively. 

The calculations show just how strongly the inducing field can be bent along the direction 
of the dyke. Routine interpretation procedures, assuming induced magnetization in the field 
direction, would indicate a southerly dip for the dyke and make it appear to  be much 
thinner than it is. 

The theory given above provides the basis of a useful modelling program. 
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Typographical errors in Lee (1975) 
Equation reads 
T1 e q . 2 2 n  

10 1/P,+ 1/P2 

15 1 

a 
20 2-Kn(ab) 

ab 

a 
21 1 -2k1-K,(olb) 

ab 

22 A,[ 
22 -h(h  - z )  

22 dp 

a 
23 -K,,(ab) 

ab 
m 

23 s, 
28 - .i, 
23 ( - l )n+M 

27 1/(2TY) 
m 

29 1/(2n) 

30 b i n  

31 dh 

Correction 
2n/d 

PI + p2 

k? 

a 
2- Z,(ab) .K,(ab)  

ab 
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