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SUMMARY 
Heat transport by large-scale groundwater movement, reported for a number of sedimentary 
basins, may cause sufficiently severe perturbations to the thermal regime that the patterns of 
near surface heat-flow density (HFD) may be very different from that of the desired 
deep-seated conductive HFD. However, a good interpretation of the HFD data from 
perturbed areas is possible when knowledge of both the thermal and hydrological regimes is 
available, but there are three major difficulties. First, the thermal and hydrological data are 
often noisy; second, the two regimes are closely coupled; third, the deep-seated, or basal 
HFD is a very uncertain boundary condition. In this paper, we present a method, currently in 
2-D, that inverts the noisy thermal and hydrological data simultaneously, and is able to 
resolve uncertain boundary conditions. The temperature and hydraulic head and the thermal 
conductivities and intrinsic permeabilities of the subsurface materials are first parameterized 
with an isoparametric finite element model. The parameters are then estimated using a 
Bayesian type non-linear inverse method. In the finite element formulation, the boundary 
heat and water fluxes are linearly transformed into an equivalent nodal flow (ENF) vector, 
which is updated together with the estimated parameters. Another (linear) inversion of the 
updated ENF components gives the updated boundary fluxes, with variances. The applica- 
tions of the boundary flux updating technique to the determination of the background HFD in 
hydrologically active areas are illustrated with numerical examples. 

Key words: coupled geothermal-hydrological problem, finite element, general inverse 
method, heat flow density, hydrology 

INTRODUCTION 

Hydrodynamic contributions to the geothermal regime have 
long been of concern to terrestrial heat-flow researchers, but 
it was usual to assume that the effects on the conductive 
thermal regime were not significant if there were no obvious 
warning signatures in the temperature-depth plots (such as 
significant curvature in temperature gradients). However, in 
recent years it has become more evident that this criterion is 
not valid and that gravitationally driven groundwater 
movements may give rise to regional scale advective heat 
transfer to disturb substantially, and perhaps control, the 
subsurface temperature field; therefore the HFD values 
determined from near surface measurements may be 
unrepresentative of the conductive regime. For example, 
Majorowitz & Jessop (1981) and Jones, Majorowitz & Lau 
(1985) analysed bottom hole temperature (BHT) data, 
thermal conductivity and Precambrian basement rock heat 
generation of the western Canada sedimentary basin and 
concluded that groundwater flow is the most plausible 
reason for the observed uneven surface HFD pattern of low 
values in the SE, where groundwater recharge takes place, 
and high values in the NW, where groundwater discharge 
takes place. Their conclusion was supported by the study of 
the overall groundwater flow pattern of the basin (Hitchon 
1984). A number of other similar cases can be found in the 

literature, e.g. Chapman et al. (1984), eermak & Jetel 
(1985), Wang et at. (1985), Gosnold & Fischer (1986), 
Willet & Chapman (1987) and cermak (1989). Numerical 
modelling of the interaction between the thermal and 
hydrological regimes of basin scale has also been performed 
by, for example, Mercer, Pinder & Donaldson (1975), Smith 
& Chapman (1983), Bethke (1985), Wang et al. (1985), 
Luheshi & Jackson (1986) and Willet & Chapman (1987) 
using 2-D models and Woodbury & Smith (1985) using a 
3-D model. 

These studies on the interaction between the hydrological 
and thermal regimes have resulted in very useful databases 
and, though some interpretations are largely qualitative and 
some conclusions subject to debate (Bachu 1985), much 
insight into the problem has been gained. However, the 
determination of the basal conductive HFD, the thermal 
signal from the deeper part of the Earth’s crust, is still a 
problem in hydrologically active regions, that is, in regions 
where the groundwater flow is strong enough to give 
significant thermal effects. When forward numerical 
modelling techniques are used, the basal HFD, as a 
Neumann-type boundary condition, has to be estimated on a 
trial-and-error basis. In addition, thermal and hydrological 
data may be very noisy in the sense that they contain large 
errors, hence a quantitative method that can optimally 
utilize all the available information is needed. Inverse 
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theories, which incorporate relevant physical laws and 
statistical principles, are default candidates for such a 
method. Since the quality and sufficiency of thermal and 
hydrological data vary greatly, the parameters to be 
resolved by an inverse method may vary from problem to 
problem. For example, there may be very accurate 
measurements on the field variables, such as temperature (T) 
and hydraulic heat (h), in a portion of a study area where 
the values for the material properties, thermal conductivity 
(A) and permeability (K), are lacking; at the same time, in 
another portion of the same area, the material properties 
may be well known but the field variables poorly 
determined. When boundary conditions are very uncertain 
or even unknown, the situation is even more complicated. 
Therefore, an inverse method of system identification, 
which uses field variable data to identify material properties 
(or system parameters), is too limited for our problem. This 
paper is intended to present a generalized inverse method 
that, in addition to being computationally efficient, has the 
following basic characteristics: 

(1) The thermal and hydrological data can be inverted 
simultaneously, as in Kasameyer et al. (1985) and 
Woodbury & Smith (1988), so that the information 
contained in the data on the interaction of the two regimes 
can be used quantitatively. 

(2) The material properties and field variables are 
formulated equally as parameters, an approach recom- 
mended by Tarantola & Valette (1982). With this approach, 
better use is made of the total amount of information rather 
than relying on the availability of good information on one 
or two specific physical quantities. For example, inadequate 
knowledge of boundary conditions can be compensated by 
better knowledge of field variables and material properties; 
poor quality field-variable data can be compensated by good 
quality material property data; and so on. 

(3) It can provide the best estimate of the basal HFD 
values. When the basal HFD is to be determined by an 
inverse method, the common practice is to form the 
problem in such a way that the HFD is one of the 
parameters (Vasseur, Lucazeau & Bayer 1986; Nielsen 
1986; Wang & Beck 1987; Beck & Shen 1989). In this 
paper, we use a boundary flux updating procedure which 
simplifies the computation. 

Some preliminary results of the application of the 
generalized non-linear inverse method to the problems of 
coupled hydrological and thermal regimes are presented in a 
paper by Wang, Shen & Beck (1989), which will hereafter 
be referred to as Paper I. The method has two major 
steps-parameterization and parameter estimation. An 
outline of the finite element parameterization and a 
discussion of the Bayesian parameter estimation are made in 
Paper I. Synthetic examples show that with reasonably 
sufficient and well-distributed data, material properties and 
field variables can be resolved. Complementary to, and as a 
continuation of, that work, the present paper has a two-fold 
purpose: fl) to provide a more detailed mathematical 
development of the finite element discretization and the 
formulation of the gradient matrix required by the 
optimization procedures of the inverse method; (2) to 
complete the study of boundary flux updating, which may be 
considered as the third step of the method, and to illustrate, 
using numerical examples, its applications to the determina- 

tion of the basal HFD, that is the conductive contribution to 
the heat flow, in hydrologically active regions. 

Details of the parameter estimation method are given in 
Paper I, but a brief recapitulation is given in the next 
section; after this, the method of parameterization is 
developed in more detail. Then, we describe the procedures 
of updating boundary fluxes. Finally, a numerical example 
with simple geometry and variable data input is presented to 
illustrate the application of the boundary flux updating 
technique to the determination of basal HFD in 
hydrologically active areas. 

A SOLUTION TO BAYESIAN NON-LINEAR 
INVERSE PROBLEMS 

If a parameter vector p and a 'data' vector f a r e  related by a 
deterministic theoretical relation in the form of a set of 
mildly non-linear vectorial functions g( -), we write, 

g(P) = f. (1) 
If the a priori probability density function (PDF) of p, 9(p), 
with the covariance matrix Cpp, and the conditional PDF of 
f given p, 9(f I p), with the covariance matrix C,, are both 
assumed to be jointly Gaussian, then, under favourable 
conditions, the following iteration scheme by Rodgers 
(1976) and Tarantola & Valette (1982) (called the RTV 
scheme in the rest of the text) converges to p, the most 
probable Bayesian estimate of p, 

h+l = P O  + cpp ' Gk ' yk 

yk = R;' ' [f, - g(Pk) + Gk ' @k - PO)] 

Rk= cff -k Gk ' cpp * GI. 

(2a) 

(2b) 

(2c) 

with 

The right superscript t denotes transpose operation; bold 
faced subscript k represents the iteration step numbers; is 
the estimate of 3 at the kth iteration; po is the expectation of 
the a priori PDF of p, f, the known value (one realization) 
of f, and G the gradient (Jacobian) matrix of the 
transformation (1) , defined as 

(3) 

For a large non-linear problem, the a posteriori 
covariance matrix epp, of p, would be extremely difficult to 
obtain; the usual approach is to linearize g(p) at p and 
approximate Cpp with that of a linear case, given by the 
following equation (Schweppe 1973; Rodgers 1976; Taran- 
tola & Valette 1982), 

(4) = C  - C  . G ' . R - ' . G , C  
PP PP PP PP' 

The updated 'data' vector i is given by 

i = g(P) (5) 

e, = G * epp . GI. 

with the covariance matrix, also as a linear approximation, 

(6) 
A discussion of the Bayesian non-linear inverse method 

was given in Paper I at length, so here we only briefly 
summarize a few important points. 
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(1) For a linear Bayesian inverse problem based on 
Gaussian distribution, a point estimate, such as the 
expectation, is adequate to represent the a posteriori PDF of 
the parameter vector; but for a non-linear problem, it may 
not be, because the a posteriori PDF may behave in a very 
complex manner (Box & Tiao 1973). Schweppe (1973) 
summarized four types of point estimates for non-linear 
Bayesian problems, each revealing a different aspect of the a 
posteriori PDF, namely, the most probable, the conditional 
mean, the median and the min-max estimates (for 
definitions, refer to Schweppe 1973, p. 329). The most 
probable estimate, used in this work, gives identical results 
to that of the maximum likelihood method (Menke 1984, 
p. 147) and is usually the easiest to compute. 

(2) To use the a posteriori convariance matrix (4) to 
approximate that of a non-linear case implies the use of the 
most probable estimate to approximate the a posteriori 
expectation of the parameter vector in this work. This is 
justified only when the problem is mildly non-linear. 

(3) Iteration scheme (2) can be derived by applying 
Newton's method for solving non-linear algebraic systems to 
the maximization of the a posteriori PDF of the parameter 
vector (Rodgers 1976; Wang & Beck 1987). As a Newton 
iteration scheme, it converges quadratically to a unique 
solution when the problem is mildly non-linear and the 
initial value is not too far away from the solution. Given the 
function form (l), the convergence behaviour of the 
iteration scheme is determined by the quality of the 
a priori information. 

FINITE ELEMENT DISCRETIZATION 

The physical laws governing the subsurface thermal and 
hydrological regimes and their interactions include Fourier's 
law of heat conduction, Darcy's law of macroscopic fluid 
flow in porous media, the law of energy conservation and 
the law of mass conservation, etc. At steady state, the 
mathematical expressions for these laws are the following 
set of coupled partial differential equations (e.g. Bear 1972), 

where po  = the density of water at a reference temperature 
To, g = gravitational acceleration, T = temperature, h = 
reference hydraulic head defined as (x2 + P / p , g )  where P is 
the fluid pressure, p, = the relative water density, defined as 

P,=-P 

p being the water density at  temperature T, p =dynamic 
viscosity of water, pc = specific thermal capacity of water, 
taken as constant, ai,=Kronecker delta; the term in (8) 
containing 6, implies that the x2 axis of our coordinate 
system is in the reverse direction of gravity, ui =specific 
discharge or Darcian velocity of water, given by 

(9) 
P - P o  

Po 

As a convention, a letter with subscript(s) i, j ,  . . . , n is 
used to denote the component of a vector or tensor unless 
otherwise specified, with subscripts i and j reserved for R2, 
i.e. i, j = 1, 2; for a vector, the same bold face letter but 
without a subscript is used to denote the matrix form of the 
vector. In the above equations and the rest of the text, 
repeated subscripts and superscripts i, j ,  . . . , n imply 
summation. For generality, the thermal conductivity A and 
permeability K are taken as tensors of the second rank in (7) 
and (8). 

The reference hydraulic head h reduces to the usual 
hydraulic head as a water flow potential if the temperature 
dependence of p is assumed to be negligible. The 
assumption, though not made in this work so as to maintain 
generality, is reasonable for small Rayleigh number flow in 
porous media (Bejan 1984). However, the temperature 
dependence of p must be taken into account for the 
temperature range of our problem, as pointed out in 
Paper I. 

In this work, the temperature dependence of p and p is 
given as a first-order approximation, 

where B and q are constants. A graphical comparison of the 
linear approximation and the actual p - T and p - T 
relation was given in Paper I. If better accuracy for p and p, 
or a wide temperature range is required, it can be seen that 
multisection linear forms can replace (11) and (12). The 
numerical values of the parameter constants used in this 
work are listed in Table 1. 

The inclusion of a source/sink term in equation (7), as 
done in Paper I, does not substantially complicate the 
problem, but does necessitate some special treatment in 
updating the boundary fluxes later in the inversion 
procedures. This term is not included here because (1) over 
the depth range (a few kilometres) considered in this work 
heat generation is usually insignificant, and (2) the 
symmetry of (7) and (8) will be maintained thus making the 
following derivation concise. 

To use a discrete parameter estimation technique to 
estimate a spatially or temporally variable physical quantity, 
whether it is a field variable or a material property, a finite 
number of parameters that are sufficiently representative of 
the quantity must be found. This process, known as 
discretization or parameterization, is usually the first step of 
an inverse method. Since dimensionality is reduced from an 
infinite to a finite number, assumptions and approximations 
are usually necessarily invoked. The parameterization of a 

Table 1. A list of parameter constants used in equa- 
tions (7), (8), (11) and (12). 

~- 

Constant Value Unit 

To 30 "C 

PO' 
9 32.579 m s kg-' K-' 
Pc 4.18 X lo6 J m-3 K-' 
g 9.8 m s-' 

995.91 kg m-3 

1253.1 s m kg-' 
0.53625 kg m-3 K-' 5" 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/98/1/69/622598 by guest on 23 April 2024



72 K. Wang and A.  E. Beck 

physical quantity can be performed in two different ways, 
probabilistic or deterministic. 

From a probabilistic point of view, the material properties 
and/or field variables are regarded as realizations of random 
fields or spatial stochastic processes. With certain stationar- 
ity assumptions, these physical quantities are described by 
statistical moments. The concept of random field is much 
used in the study of groundwater hydrology (Hoeksema & 
Kitanidis 1985a; Dagan 1986); an example in terrestrial heat 
flow research can be found in Nielsen (1987). In the inverse 
formulation of Kitanidis & Vomvoris (1983) and Hoeksema 
& Kitanidis (1984, 1985b), the parameters to be estimated 
are the unknown coefficients in both the trend in the mean 
of the logarithmic hydraulic conductivity and the covariance 
function of its residual. The covariance matrix of the 
hydraulic head and log-conductivity values is formed 
through the use of a stochastic partial differential equation 
relating the two variables. An apparent advantage of the 
probabilistic approach is that a very small number of 
parameters are used while the arbitrary heterogeneity of the 
material property is still accounted for. 

Any inverse solution by statistical parameter estimation is 
probabilistic, but many parameterization methods do not 
have to invoke the concept of random fields, and can be 
formally performed in a deterministic manner. With a 
deterministic approach, a physical quantity can be mapped 
on to a function space with a finite number of basis 
functions. The parameters to be estimated are usually the 
generalized coordinates of the bases. The simplest basis 
functions are step functions, and a generalized coordinate is 
the average value of the variable over the corresponding 
step length (or block, for more than one dimension) 
(Jackson 1979). In the usual finite element formulation in 
hydrological inverse methods (Cooley 1977; Neuman & 
Yokawitz 1979; Sun & Yeh 1985; Carrera & Neuman 1986; 
Woodbury & Smith 1988), material properties are 
parameterized using step functions, that is, each element or 
a group of elements is assigned the same material property 
value (zonation); the field variables, on the other hand, are 
parameterized using the polynomial basis functions, with the 
generalized coordinates being the nodal values of the 
variables (interpolation). In some cases, the material 
properties are chosen to be interpolated using basis 
functions and nodal values (Yeh & Yoon 1981). There are 
numerous other ways of deterministic parameterization; 
almost any numerical technique can be listed as an example. 

Although conceptually very different, the two approaches 
are closely related in certain ways. If the generalized 
coordinates based on step-functions are viewed as random 
variables, they can be considered as approximations to a 
spatial stochastic process if the correlation between the steps 
are appropriately defined; the goodness of the approxima- 
tion depends on the size of the steps (blocks). This fact 
permits the use of Monte Carlo methods in the analysis of 
spatial variability of the physical properties of subsurface 
porous media (Freeze 1975; Smith & Freeze 1979). 
Similarly, the discrete spectrum representations of a time or 
space series in the inverse methods of Gavalas, Shah & 
Seinfeld (1976) and of Wang & Beck (1987) can be regarded 
as either probabilistic or deterministic. In fact, any 
deterministic parameterization method can find a probabil- 
istic interpretation. For example, one may regard zonation 

as probabilistic, saying that the material property is a 
stochastic process that has a perfect autocorrelation in each 
zone; one may also regard interpolation as probabilistic, 
maintaining that it is the first moment of the stochastic 
process that is interpolated. A comparison made by Kuiper 
(1986) shows that the deterministic approach based on finite 
elements, despite its simplicity, may perform as well as or 
better than the probabilistic approach based on statistical 
moments in 2-D inverse groundwater modelling problems. 

In this work, we choose the deterministic approach and 
parameterize the problem with a 2-D isoparametric finite 
element model. With this model, the spatial domain of our 
problem is first divided into a number of quadrilateral 
elements, each having N, (up to eight) nodes. Each element 
has a constant A and K value. The quadrilateral in the 
coordinate system x is mapped on to a square in the 
coordinate system r, both in real space R2,  by using a set of 
basis (or shape, interpolation) polynomial functions H(r), 

where subscript k stands for the global number of a node of 
the element, and the summation is over all the nodes the 
element has; xik denote the xi coordinates of node k. The 
shape functions Hk for four-to-eight-node elements are 
given by Bathe & Wilson (1976). The values of field 
variables T and h at any point r in the element are 
interpolated by the same shape functions using the nodal 
values Tk and hk,  

(14) 
(15) 

Transformation (13), i.e. x = x(r) is 1-1 on R2, and hence 
there exists an inverse transformation r = r(x), which means 
that (14) and (15) actually perform the interpolation in the x 
domain. For this reason, we are able to derive the finite 
element discretization to (7) and (8) in a common way 
without worrying about the isoparametric model, which is 
employed to (1) make the construction of a finite element 
mesh very flexible, (2) make the integrations required in the 
computation of conductivity and gradient matrices (see 
following text) very efficient, and (3) obtain a higher degree 
of interpolation of field variables than with the commonly 
used linear triangular model and hence better discretization 
accuracy can be achieved with fewer nodal points and 
elements. 

Applying the Galerkin weighted residual method (e.g. 
Zienkiewicz 1972) to (7), we have, for element e, 

1 = 1, 2, . . . , N,; where the integration is performed over 
the whole element domain Q. Using Gauss' theorem, or 
integrating by parts, we obtain 

where se is the boundary path of the element, n is a unit 
vector normal to se pointing outwards from the element 
domain. 

If we define heat flux going into the element as positive, 
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derivation is similar to that of Huyakorn & Pinder 
(1983, p. 204). 

The global system 

K . U = f  (31) 
is the combination of the elemental system (23) over all 
elements, with 

that going out as negative, the heat flux input at an 
elemental boundary point is then 

Substitution of (lo), (14), (15) and (18) into (17) yields 

d 8 .  Tk = HIqh ds. (19) L 
Similarly, applying the Galerkin weighted residual 

method to (8),  we have, after some manipulation, 

where qw is the water flux input at the elemental boundary, 
again with the inward going flux defined as positive, i.e. 

The second term on the left-hand side of (20) appears 

Defining a vector U in the (T, h )  plane, 
because p is a linear function of T as given by (11). 

u= [:;I = [ 3 
we can combine (19) and (20) into 

K f k u k = f f ,  

where f' is the elemental equivalent nodal flow (ENF) 
vector, with 

and K' is the elemental conductivity matrix, the ( i ,  k)th 
entry being 

with 

where ui is defined by (lo), and p-' by (12), with the T and 
h values interpolated using (14) and (15). The above 

K = ~ K '  
e 

f=Cf". (33) 
e 

The non-linear algebraic system (31) is the discretized 
form of the partial differential equations (7) and (8). At the 
current stage of the study, only isotropic media are 
considered. In a system identification problem, the 
elemental material properties li and K, or their logarithmic 
transform 

y=lnA (344 
q = l n K  (34b) 
are usually grouped into fewer distinct values according to 
our knowledge of the subsurface geological structure and 
formations (zonation), and regarded as parameters, while U 
and f are considered as 'data'. As mentioned earlier, the 
objective of this work is to develop a generalized inverse 
method that can readily accommodate different types of 
data and a priori information. For this reason, we define a 
parameter vector p that includes not only all the discretized 
(after zonation) y and q, as defined by (34), but also all the 
nodal values of T and h as its components; and f, which 
contains the information on boundary fluxes (equations 24, 
25), is taken as the 'data' vector. Therefore, (31) is directly 
written into a standard form to which the RTV scheme can 
be applied, 

where 

With the parameter vector defined as above, it can be 
seen that the field variables and material properties are 
treated mathematically equally as parameters. Therefore 
'inverse' has a generalized meaning; the term is used here 
simply because the solution is obtained through statistical 
parameter estimation. The 'knowns' are those parameters 
with good a priori information, the 'unknowns' are those 
with poor a priori information. Forward and system 
identification solutions are the special cases of the general 
solutions. An added advantage of our choice of the 
parameter vector is that it makes the derivation of the 
gradient matrix matrix G rather simple (as can be seen in 
Appendix A). The principal disadvantage is that large 
computer memory is needed due to the large number of 
parameters. 

Having defined the parameter vector p and the ENF 
vector f, and obtained the vectorial functions g(p) and the 
gradient matrix G ,  we use the RTV scheme to seek the most 
probable Bayesian estimate of p, with which f i n  turn can be 
updated. The parameter estimation procedure constrains the 
parameters by incorporating information in terms of their a 
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priori PDF. Aspects of the a priori and a posteriori PDFs 
are discussed in Paper I. 

UPDATING B O U N D A R Y  FLUXES 
General remarks 

The method developed in the previous sections is a 
generalized inverse approach. Given good information on 
the material properties and boundary conditions, forward 
calculation is performed to provide knowledge of the field 
variables, even though the method is called inverse. If there 
are data on the field variables and boundary conditions, the 
method can be used for system identification and to estimate 
the material properties. When the rock permeability or 
hydraulic conductivity is the major concern, thermal data 
can be used to provide further constraints on the hydraulic 
parameters, as already demonstrated by Woodbury & Smith 
(1988). 

A major objective of the technique described in this paper 
is to find the background conductive HFD from deeper parts 
of the Earth's crust, from which the thermal structure of the 
lithosphere can be inferred. There are a number of sources 
of perturbation to the 'conductive' regime, e.g. surface 
topography, surface temperature variations, subsurface 
structure, groundwater flow, etc. In this section, a 
procedure is developed for updating boundary fluxes and is 
demonstrated by application to the determination of basal 
HFD in hydrologically active regions. Although only the 
hydrologic perturbations to the thermal regime are 
considered in this work, the method can be readily adapted 
to the downward continuation of heat flow data or, more 
simply, to correcting heat flow data for topography and 
structure. 

Corresponding to the Dirichlet and Neumann boundary 
conditions in a forward solution to equations (7) and (8) ,  the 
boundary condition in our inverse method can be 
constructed in terms of either boundary variable values or 
boundary fluxes. In some cases, boundary fluxes are difficult 
to specify and of little interest to us; for example, it is more 
convenient to use the water table rather than the discharge 
rate as a ground surface boundary condition for hydraulic 
head. Such Dirichlet conditions can be easily applied and 
updated. Here we consider the Neumann-type boundary 
conditions. At some boundaries, flux distribution can be 
reasonably well specified through actual field measurements; 
for example, the HFD pattern at the ground surface can be 
found from field measurements of temperature gradient and 
thermal conductivity. At some other boundaries, the flux 
distribution is to be determined by the inversion, for 
example, the basal HFD. In both cases, the boundary 
condition can be constructed in terms of boundary fluxes. If 
well known a priori, they will constrain the inversion; if 
poorly known a priori, they are to be resolved by the 
inversion. The latter situation is the major concern of this 
section. 

Boundary flux updating procedure 

The ENF vector f is formed through the integration of 
boundary fluxes, as given in equations (24) and (25), that is 

For conciseness, we neglect the left superscript o f f ,  i.e. 1 
and 2, and the right superscript of q, i.e. h (heat) and w 
(water). Therefore, the following derivation is applicable to 
the boundary fluxes of both heat and water. The continuous 
input boundary fluxes are sampled and given at the 
boundary nodes as distinct values q k ,  but in (37), q is a 
continuous function of x, or r. To perform the integration 
(37), we interpolate the fluxes at any elemental boundary 
point x using q k  and the interpolation functions Hk 

At one side of a quadrilateral isoparametric element used 
in this work there are not more than three relevant 
interpolation functions associated with the existing nodes. 
Substituting (38) into the integrand of (37) gives 

or in matrix form 

f"=  V" * q, 

where the symmetric matrix 

(39) 

is called the elemental boundary flow transformation matrix. 
It is not difficult to see that the global V matrix is the 
summation of the elemental V"-matrices. 

Therefore, the boundary nodal flux vector q is linearly 
transformed into the global ENF vector f, i.e. 

f = V - q .  (43) 
If q is Gaussian, f is also Gaussian, and the covariance 
matrix of 8 ( f  I p) is readily obtained 

c,= v . c,, . v, 
where C,, is the covariance matrix of q. The diagonal 
entries of C,,, the variances, represent the uncertainties in 
the boundary fluxes; the off-diagonal entries, the covari- 
ances, define the spatial correlations between different 
components of q. 

If the covariances in C,, are used to define the degree of 
smoothness of the flux distribution at a boundary, an 
extensively used exponential correlation function 

(45) 

can be used; here d k  is the covariance between the two 
components of q, qr and q k ,  separated by a distance SIk, c? 
the uniform variance of the components of q at this 
boundary, and L the correlation length. It is the correlation 
length that determines the degree of smoothness of the flux 
distribution at this boundary. 

The updated ENF vector 2 is given by equation (5). From 
(43), a linear inversion of the components of the updated f 
will give the updated boundary flux vector a. f and q are of 
the global dimension, i.e. twice the total number of nodal 
points. Some discussion is required to clarify the existence 
of V-'. Because nodal points that are not on the global 
boundary, the inner nodal points, d o  not participate in 
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a forming the global V matrix, most of the rows and columns 
of V consist only of zeros; this would make the V matrix 
singular, but it is not the only form of the V matrix. 
Consider an inner nodal point 1 at which 

fr = q/ = 0. (46) 

If an arbitrary non-zero number is placed at the 
corresponding diagonal entry of the V matrix, so that 
V , # O ,  equation (46) is still satisfied. Therefore, we can 
always ensure that V is non-singular by letting all the 
diagonal entries corresponding to inner points be non-zero. 
In real computation, this problem is easily avoided by 
neglecting the inner nodal points thus reducing the 
dimension of V, f and g. Since V-' exists, the updated 
boundary flux vector 4 is obtained as 

q=v-'.^r. (47) 

From (47), the covariance matrix of ti, eqq, is 

so that, according to (6), 

(49) 
cq4 can be put into another form which is similar to that 

of C,, as given by equation (4) (see Appendix B), 

eqq = C,, - C,, . V . R-' . V . Cqq. (50) 

This makes the computation of cqq very efficient, because 
we can choose to compute only those entries of cqq that are 
related to the boundary fluxes that interest us, such as the 
basal HFD, ?nd also avoid the time consuming computation 
of cpp and C,. 

The updated boundary flux g at any boundary point of an 
element is interpolated with the updated nodal values of 
boundary flux of the element using (38), i.e. in matrix form, 

4 = H' - 4. 

P = H ' . e  44 . H .  (52) 

(51) 

The variance of 4 is then 

A NUMERICAL EXAMPLE OF B A S A L  HFD 
DETERMINATION 

In this section, the boundary flux updating technique is 
applied to the determination of basal HFD in hydrologically 
active areas. Because it is necessary to know how close the 
inverse results are to a perfectly known situation, we choose 
to test against an idealized synthetic model rather than use a 
field example. With a synthetic model, it is also easy to 
understand the behaviour of the solution by isolating 
different factors that affect the results, and to find the 
limitations of the method by using input datasets with 
different noise levels. Once a satisfactory technique for 
solving the problem has been identified, it can be applied to 
real problems. 

The idealized model used here is based on a small 
trough-type sedimentary basin. Fig. l a  shows the cross- 
section of the model to which our 2-D inverse method is 
applied. There are only three sedimentary formations, each 
having a distinct thermal conductivity and permeability 
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F i i  1. (a) A simple synthetic geological model and the finite 
element mesh used for the inverse solutions. The medium consists 
of four layered geological units, each of which has a distinct thermal 
conductivity and permeability value, as listed in Table 2. The finite 
element discretization in the vertical direction coincides with the 
geological units. (b) True model, for subsequent inversion, obtained 
in a forward solution of the simple geological model illustrated in 
(a); note that the reference hydraulic head as defined in the text is 
not a potential, and is therefore difficult to interpret visually. 

value (Table 2), overlying an impermeable crystalline 
basement. The first (top) geological unit is an aquitard, the 
second unit is the major aquifer in the system, and the third 
unit is a less permeable aquifer. Part of the basement is 
included in the model as the fourth layer to minimize the 
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Table 2. Material property values of the 
synthetic geological model (refer to Fig. l(a) 
for the zone numbers). 

Zone Avalue K value 
number (W m-l K-' ) (10-"jm2) 

1 2.0 0.5 
2 2.0 100.0 
3 2.5 10.0 
4 3.0 0.0 

influence of the thermal disturbance by water flow in the 
overlying permeable rock units on the lowermost boundary 
of the model, where the conductive HFD from below is 
assumed to be unperturbed. The geometrical and structural 
simplicity of the geological model removes the need to take 
into account perturbing factors such as the effects of 
topographic relief and 3-D structure and makes it relatively 
easy to demonstrate the general features of the inverse 
solutions to our specific problem. Naturally, for a more 
complex model, more material property zones and a finer 
finite element mesh should be employed and, ultimately, a 
3-D model will be needed; with the isoparametric finite 
element model, these extensions are not difficult in principle 
but are computationally more expensive. 

Synthetic data of field variables T and h, are generated 
with given material property values (Table 2) and 
appropriate boundary conditions by using a forward finite 
element calculation, a procedure similar to that of Smith & 
Chapman (1983). The nodal values of the temperature and 
head fields obtained by the forward calculation are shown in 
Fig. lb. These values, together with the logarithmic 
transform of A and K values, are taken as the true values of 
the components of the parameter vector p. The true basal 
HFD from the bottom of the cross-section is taken to be a 
constant at a typical value of 60 mW m-2. The 'measured' 
ground surface HFD, as well as its noise level, is a function 
of position (Fig. 2), and the water table is assumed to 
coincide with the ground surface; these surface boundary 
conditions are used in all the numerical experiments. The 
nodal values of these functions and of the guessed basal 
HFD consist of the non-zero components of the nodal 

boundary flux vector q. The two vertical boundaries are 
assumed to be impermeable perfect insulators. Our 'field 
data' are the values of the parameter vector p and the 
boundary flux vector g together with their standard 
deviations. 

With reasonably well-known boundary heat fluxes, the 
inverse method can resolve the field variables and material 
properties using noisy data. For example, consider a 
situation where the basal HFD is correctly known to be 
60 mW m-2 with a standard deviation (s.d., but STD on the 
figures) of only lmWm-', but the values of material 
properties are unknown. To indicate our lack of knowledge 
of the material properties, we assign a priori lognormal 
PDFs with erroneous a priori expectations and large s.d., 
that is, the values are very loosely constrained. The nodal 
values of T and h obtained from the forward solution are 
perturbed by Gaussian random noise (Fig. 3a and b), and 
then regarded as the field data. The availability of accurate 
measurements and the certainty in the data usually 
decreases with increasing depth; to account for this, the 
noise added to the nodal values of T and h are given as 
increasing with depth, as shown by the contour maps of the 
s.d. of T and h (Fig. 3a and b). The solution shows that the 
estimates of most of the parameters are close to their true 
values, the reliability decreasing with depth, as illustrated in 
Fig. 3. There is not much information gain on the 
permeability of the third layer where the head data are very 
noisy. Being non-linear, the power of this inverse method is 
limited by the noise level in the input data. In the current 
system identification problem, for example, if the noise in 
the a priori nodal values of T and h is increased by 25 per 
cent, an almost identical solution can be obtained; but if the 
noise is increased by 50 per cent, the iteration will not 
converge, unless better information on the material 
properties or on the boundary conditions are given. Because 
this is not one of the examples of applying the boundary flux 
updating technique to the background HFD problem, it is 
referred to as case 0. 

In each of the following cases, the basal HFD is assumed 
to be very poorly known a priori, and a constant value of 
70 mW m-* is guessed at every lower boundary nodal point; 
a large s.d. of 40 mW m-2 is assigned to show our ignorance 
of the' HFD value. The correlation length L of the basal 
HFD will be specified for individual examples. Numerical 
experiments show that with the basal HFD so loosely 
constrained, it does not matter whether a value of 70 or 
80rnWm-', a constant or a reasonable set of different 
values is used as the guess. By varying the noise level of 
other parts of the synthetic dataset, we are able to examine 
the information requirement and the limitations of the 

I -  boundary flux updating technique when applied to the 
problem of HFD determination. 

Case 1. Accurate field variable data 

In this case, T and h data contain Gaussian random noise 
with very small s.d. of 0.001 K and 0.1 m, respectively, but 
the material property values of all geological units are 
assumed to be unknown. Our objective is to estimate the 

the upper thermal conductivities and permeabilities of all the 
geological units and the basal HFD. This is a system 
identification problem with one very uncertain boundary 
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Fgure 2. The near-surface HFD distribution used 
thermal boundary condition for all the inverse solutions. The 
dashed lines represent 1 s.d. error range. 
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Figure 3. The inverse solution of case 0, in which the material property values are unknown and the s.d. of noise in temperature and head data 
increase with depth. (a) Contour maps of nodal values and s.d. for temperature. (b) Contour maps of nodal values and s.d.'s for head. (c) A 
priori (dashed lines) and a posteriori (solid lines) thermal conductivity and permeability PDFs showing that the material properties are 
resolved. The numbers in brackets are the zone numbers. The true property value, which a perfect inversion will return, of each zone is 
indicated by an arrow. 

condition. Since it is assumed that nothing is known about boundary heat flux and the thermal conductivities of the 
the material property values, erroneous and loosely medium are poorly constrained, while the geothermal 
constrained homogeneous a priori values of A and of K for gradient is tightly constrained because the temperature field 
the whole medium are used (Fig. 4a); the correlation length is almost noise free. For a pure heat conduction problem, it 
of the basal HFD is taken to be zero. Here both the is easy to see from Fourier's law that if the temperature 
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Figure 4. Inverse solution of case 1, in which the T (s.d. = 0.001 K) and h.(s.d. = 0.1 m) data are nearly noise-free; 1 and K are unknown. ( 
A priori (dashed lines) and a posteriori (solid lines) material property PDFs. (b) The updated basal HFD distribution. 

gradient is the only physical quantity that is well 
constrained, an inverse method will tend to find a proper 
ratio of HFD and A, as noted by Wang & Beck (1987) and 
Shen & Beck (1988). The current case involves convective 
heat transfer, and the head field and its boundary 
conditions, that is, the water table and the other three 
impermeable boundaries, are either well constrained or 
pefectly known. The good hydrological data provided 
independent information on the HFD and A, and thus 
helped to resolve the basal HFD as well as the material 
properties (Figure 4a and b). 

We briefly examine the response of the solution to the 
assigned a priori values of the material properties in this 
simple case. Although there could be an infinite number of 
combinations of different a priori A and K values, the 
general behaviour can be demonstrated, in Table 3, by 
varying K only. Convergence is defined as the L, norm of 

the difference parameter vector at iteration step 1 
pk-pk--l, is less than 0.01 (SI units). As long as tt 

Table 3. Convergence behaviour of the solution 
for case 1, responding to different a priori 
permeability K values (a priori thermal conduc- 
tivity A = 2.5 W m-l K-' in all cases). 

K value Log s.d. Convergence 
(m3 (mZ) behaviour 

1 0 - ~  
10-10 
10-11 
10-12 
1 0 - l ~  
10-l4 
1 0 - l ~  
10-16 

4.0 Non-convergent 
3.5 18 iterations 
3.5 16 iterations 
3.0 14 iterations 
2.5 11 iterations 
2.5 9 iterations 
2.0 7 iterations 
2.0 Non-convergent 
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iteration converged, it was found (results not shown) that all 
solutions were very similar to those shown in Fig. 4. It is 
interesting to see that a smaller a priori K may easily render 
the solution unstable, but a larger value (up to lo-'') only 
tends to cost more iteration steps. 

Case 2. Accurate material property data 

In this case, the A and K values are all accurately known, 
with lognormal s.d. of 0.001. The noise level of the T and h 
data is the same as in case 0 (Fig. 3a and b). The objective is 
to estimate the temperature and head field and the basal 
HFD. Because the material property values are accurately 
known and therefore well constrained, this case is similar to 
a forward solution of the problem except that one boundary 
condition, the basal HFD, is very uncertain. With this 
dataset and a zero correlation length of the basal HFD, the 
RTV iteration scheme converges to T and h values that are 
far from the true values in certain regions of the 

cross-section, as can be seen in the contour maps of the a 
posteriori nodal values of the temperature field (Fig. 5a); 
consistent with the incorrect temperature field, an incorrect 
basal HFD distribution has been estimated (Fig. 5b). The 
situation tends to be worse in the discharge and recharge 
regions where the vertical component of water movement is 
prominent and therefore, because the flow of heat in this 
model is mainly vertical, the thermal and hydrological 
regimes are strongly coupled. It can be observed in 
equations (7) and (8) that with given material property 
values, the more strongly coupled the two regimes are, the 
more non-linear the problem becomes, and hence the more 
difficult it is for an iteration scheme to converge to a correct 
solution (see earlier discussion on the RTV scheme). We 
refer to these regions as the 'sensitive' regions, since the 
solution there is more vulnerable to noise in the data. There 
are three ways to improve the results: 

(1) In this synthetic case, spatially uncorrelated noise was 
added to the true nodal values of T and h to form a noisy 
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Figure 5. First inverse solution of case 2, in which the A and K values are all accurately known (log s.d. = 0.001), and the a priori T and h are 
the same as in case 0 (Fig. 3); correlation length L = 0. (a) Contour maps of the aposferiuri T and h and the s.d.; the temperature contour map 
shows that the iteration has converged to some wrong values. (b) The updated basal HFD distribution; the unrealistic oscillations are due to 
the wrongly resolved temperature field. See Fig. 6(c) for explanation of circled points. 
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dataset, so that there are some drastic, and possibly 
unrealistic, variations in the a priori T and h patterns as can 
be seen in Fig. 3a and b. Since these T and h values are used 
as initial values for the iteration, the large magnitude errors 
in them will have an undue influence on the convergence if 
the problem is sufficiently non-linear. If the noise in the a 
priori nodal values of T and h is reduced by 50 per cent but 
the same variances are used, that is, the initial values are 
closer to the true solution although the uncertainties in these 
values are the same, the results will be improved (Fig. 6a). 
In a real case, data would likely be processed, e.g. filtered, 
before being used and hence be smoother than in this 
synthetic case. Spatial correlations of the input nodal values, 
which are sometimes obtained by the data-processing 
procedures, may also help to constrain the solution. 

(2) The assumption of zero correlation length allows the 
basal HFD to have variations of short wavelengths. A 
correlation length L>O may smooth the results. The same 
case as shown in Fig. 5 was recomputed with L = 10 km, and 
the results were obviously improved (Fig. 6b). However, we 
have to be careful in specifying the value of L. Unless other 
information is available, either from theoretical or 
experimental studies, all we know about the spatial 
correlation of the HFD is that L is unlikely to be zero; if a 
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-re 6. The updated basal HFD distribution of other solutions of 
case 2. (a) The noise in the a priori values of T and h is reduced by 
50 per cent, although the same variances as before are used. (b) 
The correlation length of the basal HFD L = 10 km. (c) The 
seven-nodal temperature values indicated by circles in the discharge 
region in Fig. 5 are tightly constrained with s.d. = 0.005 K. 

large L is chosen, we must ensure that we do not 
inadvertently create and use extra information. 

(3) Even without smoothing the data and without 
choosing L>O, the solution can be greatly improved by 
tightly constraining a few temperature points in the sensitive 
regions; in a real case this would mean that we have to 
obtain a few accurate borehole temperatures there. For 
example, if the noise s.d. of nodal temperatures at the seven 
circled points illustrated in Fig. Sa are reduced to 0.005 K, 
while those of other nodal temperatures and the head values 
remain the same as before, the basal HFD is much better 
resolved in the discharge region (Fig. 6c); although similar 
comments apply to the recharge region, fewer accurate 
temperature points would be needed there because the 
thermal disturbance is less focused there. 

Case 3. Field variable and material property data with 

In a realistic situation, some information is often available 
for all the physical quantities involved, but neither field 
variables nor material properties will be perfectly known, 
and the data quality varies from place to place in a study 
area. To test the inverse method for such a situation, the 
following case is considered. 

Except for the temperatures at the 12 nodal points located 
in sensitive regions as illustrated by circles in the contour 
map of the a posteriori nodal temperatures in Fig. 7(a) 
which are tightly constrained with an s.d. of 0.005K, the 
noise in the T and h data is the same as in case 0. Some of 
the material properties are better known while some are 
more poorly known a priori (Fig. 7b). It can be seen that the 
basal HFD (Fig. 7c), the field variables (Fig. 7a) and the 
material properties (Fig. 7b) are all well resolved. 

varying quality 

Case 4. Accurate material property and head data, 
unknown temperature 

This rather unrealistic but very interesting case is used to 
illustrate further the important feature of the inverse 
method, information compensation between different 
physical quantities. 

The a priori information on the material properties is the 
same as in case 2, and the head data are the same as in case 
1, but the temperature is assumed to be unknown. 
Ignorance of the temperature field is depicted by large noise 
in all the nodal temperatures with an identical s.d. as large 
as SO K (Fig. 8a), which makes this field variable effectively 
unconstrained. Although the temperature data do not 
contribute to the inversion in a positive way, the basal HFD 
is still well resolved (Fig. 8b), because the lack of 
information on temperature is compensated by good 
knowledge of, and therefore well-constrained values of, 
head and material properties. A real situation is unlikely to 
be as extreme as in this case, but the principles of 
information compensation still prevail. However, informa- 
tion compensation is limited by the physical laws involved. 
Obviously, if the interaction between two physical quantities 
is weak, the information compensation link is also weak, as 
observed by Woodbury & Smith (1988). For example, if the 
order of magnitude of the second term in equation (7) is not 
comparable to that of the first term, due either to a low 
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Figure 7. Inverse solution of case 3, in which the field variable data are the same as in case 0. except that the 12 nodal temperature points 
indicated by circles in the sensitive regions are tightly constrained with s.d. = 0.005 K. (a) Contour maps of the a posteriori T and h and the 
s.d.'s. (b) A priori (dashed lines) and a posteriori (solid lines) material property PDFs. (c) The updated basal HFD distribution. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/98/1/69/622598 by guest on 23 April 2024



82 K .  Wang and A.  E. Beck 

R PRIOR1 TEMPERATURE (OEG Cl 

0 10 20 30 40 S O  60 

R POSTERIORI TEMPERRTURE [OEG Cl 

____( 
-w. uu- g w i i ]  

2 -  100.0 w 
-1 
w o  

0 10 20 90 40 SO 60 

A POSTERIORI TEMPERATURE STD [Kl 
d- - 

E 

SL m 
-7 

0 10 20 30 40 50 60 
DISTRNCE ( K M I  

Figure 8. The inverse solution of case 4, with nearly noise-free head 
and material property data but very uncertain temperature data. 
The a priori s.d. for nodal temperatures is a uniform 50K. (a) 
Contour maps of the a priori T and the a posteriori T and s.d.'s. 
The contour interval for the a priori temperature is 50K. (b) The 
updated basal HFD distribution. 

Darcian velocity or to the orthogonality of the Darcian 
velocity and the thermal gradient, little information on the 
temperature field would be extracted from the head values, 
even if they are perfectly known. 

CONCLUSION A N D  DISCUSSION 

A Bayesian type generalized non-linear inverse method is 
applied to the problem of coupled thermal and hydrological 

regimes, with the heat transfer equation and the fluid flow 
equation discretized by a 2-D isoparametric finite element 
model. All the finite element nodal values of temperature 
and head, and the logarithmic transform of the discretized 
thermal conductivity and permeability values are regarded 
as the components of a parameter vector. The 'data' vector 
of the usual Bayesian inference method is replaced with an 
equivalent nodal flow vector which is linearly transformed 
from boundary fluxes. The choice of the parameter vector, 
combined with a boundary flux updating technique, has two 
advantages: 

(1) It makes the inverse method flexible in dealing with 
different types of problem and data quality. All three types 
of physical quantity involved (field variables, material 
properties, boundary fluxes) can be resolved by this method 
as long as there is a reasonable total amount of a priori 
information. 

( 2 )  It makes possible, and efficient, the application of a 
gradient method, such as the RTV scheme, to the 
maximization of the a posteriori joint PDF of the parameter 
vector. 

A simple synthetic model is used to illustrate the 
application of the boundary flux updating technique to the 
determination of basal HFD in hydrologically active areas. 
Four cases with the same water-table configuration and 
uncertain ground surface HFD are investigated to see 
whether, and under what conditions, the very uncertain 
basal HFD can be resolved. In the first case, the field 
variable data are nearly noise-free, and it is possible to 
resolve the HFD when the material properties are unknown; 
in the second case, the material properties are accurately 
known while the random noise in the data of field variables 
increases with depth; in the third case, both field variable 
and material property data are moderately noisy; in the 
fourth case, an extreme situation is used to illustrate how 
the lack of information on one physical quantity can be 
compensated by good knowledge of other quantities. From 
these examples, we can draw the following preliminary 
conclusions. 

(1) The boundary flux updating technique has the 
potential to be used to determine reliable values of the basal 
HFD in hydrologically active areas. To model the 
interaction between the two regimes, both thermal and 
hydrological data are needed and should be inverted 
simultaneously. 

(2) Lack of information on some physical quantities may 
be compensated by sufficient information on other physical 
quantities. This allows us to consider the sufficiency of 
information on the whole problem, instead of individual 
quantities, and introduces some practical flexibility. But, as 
is true for all inverse problems, the smaller the amount of a 
priori information available, the less successful is the 
solution; beyond a certain limit, no stable solutions can be 
obtained. 

(3) In regions where the groundwater movement and heat 
flow are strongly coupled, such as the water recharge and 
discharge regions, the inverse solution is more sensitive to 
the noise in temperature and head data. More information, 
such as a few accurate temperature measurements, is 
needed in these sensitive regions if the inversion is to 
converge to reasonable solutions. 

As a forward problem, equation system (7) and (8) is 
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non-linear in the field variables; as an inverse problem, it is 
non-linear in the material properties as well. The 
convergency of a Bayesian type inverse solution is also 
influenced by the quality of the a priori information 
(Jackson 8t Matsu'ura 1985). The a posteriori covariance 
matrix of a non-linear inverse problem given as a linear 
approximation does not always necessarily suggest the 
reliability of the estimates, and when the iteration converges 
to a wrong solution, the unreliability will not be fully 
revealed by the 1 s.d. uncertainty range (see Fig. 5(c) for 
example). This reflects the complexity of the a posteriori 
PDF of the parameters of a non-linear inverse problem; the 
solution may converge to a local maximum of the a 
posteriori PDF. Generally there is no way to be sure if a 
maximum is local or global; indeed the global maximum 
may not even be the best estimate point. With synthetic 
data, failure or success of the computation can be 
determined by comparing the solution with the true model, 
using a convenient criterion, such as whether the estimate is 
within 1 s.d. from the true value. Without a known true 
model, behaviour of the solution has to be judged 
intuitively. For example, there are two possibilities in 
evaluating the updated HFD in Fig. 6(c): (1) to accept the 
solution as a success, assuming that the oscillations in the 
HFD pattern are caused by an unknown process going on in 
the basement formation; (2) to reject the solution, on the 
basis that we know, somehow, that the basal HFD is 
unlikely to have short wavelength, large magnitude 
variations. If failure of the solution is suspected, more 
information should be sought or further assumptions 
invoked, to help constrain the solution. In one case we 
constrained the solution by using accurate temperature data 
from two hypothetical boreholes drilled in the discharge 
region; in another case, we constrained the solution by 
assuming spatial correlations in the basal HFD distribution. 

When the problem is too poorly constrained, which often 
means insufficient data, the RTV scheme may not converge 
to any fixed point. In such a case, any Bayesian non-linear 
inverse method based on point estimates, as well as our 
particular iteration scheme, is invalid. 
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APPENDIX A: GRADIENT MATRIX 

A direct differentiation of g(p) with respect to the 
components of p poses problems. However, according to 

(32), we have 

g = K *  U =  C K e  * U = x ( K e .  U ) = Z g e  ('41) 
( e  e e 

and hence 

Since the differentiation is of the first order, the placement 
of the left superscript i of g right after 3 should not create 
any confusion. The same comments apply to the following 
derivations. 

Therefore, the G matrix can be derived for individual 
elements and assembled at the global level. The entries of 
the elemental G matrix are derived as follows, with il and K 

assumed to be isotropic, 

APPENDIX B: COVARIANCE MATRIX eqq 
Denoting G . Cpp . G' by R', and substituting (4) into (6), 
we have, 
t,= R' - R ' .  (R' + cff)-l. R' 

= R' - R' * (R' + C&' * (R' + C f -  C,) 
= R' -R '  . [Z- (R' + C')-' * C,] 

= R' . (R' + C&'. Cff 
= (R' + C,- C,) * (R' + C&' * C, 
= C,- C,. (R' + C,)-' * C p  (B1) 

Using (48) after substituting (44) into equation (Bl), we 
obtain the simple form of tqq as given by (50). 
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