Abstract

Four types of β-galactoside α2,3-sialyltransferase (ST3Gal I–IV) have been cloned from several animals, but some contradictory observations regarding their substrate specificities and expression have been reported. Therefore, it is necessary to concurrently analyze the substrate specificities of the four enzymes, of which the source should be one animal. Accordingly, the acceptor substrate specificities and gene expression of mST3Gal I–IV were analyzed. Since we had already cloned ST3Gal I and II, as previously reported (Lee, Y.-C. et al., Eur. J. Biochem., 216, 377–385 (1993); J. Biol. Chem., 269, 10028–10033 (1994)), the cDNAs of ST3Gal III and IV were cloned from mouse cDNA libraries. Each of the four enzymes was expressed in COS-7 cells as a recombinant enzyme fused with protein A, and applied on an IgG-Sepharose gel to eliminate endogenous sialyltransferase activity. ST3Gal I and II showed the highest activity toward Galβ1,3GalNAc (type III), very low activity toward Galβ1,3GlcNAc (type I), but none toward Galβ1,4GlcNAc (type II). ST3Gal III and IV exhibited high activity toward the type I and II disaccharides, but very low activity toward the type III one. On the other hand, asialo-GM1 (Gg4Cer) was as good a substrate for ST3Gal III and II as the type III disaccharide, though ST3Gal III and IV hardly utilized glycolipids as substrates, as indicated by in vitro experiments. Northern blot analysis revealed that enzymes of the ST3Gal-family are expressed mainly in a tissue-specific manner. The ST3Gal I gene was strongly expressed in spleen and salivary gland, and weakly in brain, liver, heart, kidney, and thymus. The ST3Gal II gene was strongly expressed in brain, and weakly in colon, thymus, salivary gland, and testis, and developmentally expressed in liver, heart, kidney, and spleen. The ST3Gal III and IV genes were expressed in a wide variety of tissues. These differences in tissue specific expression suggest the expression of each ST3Gal influences the distribution of sialyl-glycoconjugates in vivo.