A mouse model for Kinesin Family Member 11 (Kif11)-associated familial exudative vitreoretinopathy

Yanshu Wang1,4, Philip M. Smallwood1,4, John Williams1,4, and Jeremy Nathans1,2,3,4,*

1Department of Molecular Biology and Genetics, 2Department of Neuroscience, 3Department of Ophthalmology, 4Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

*corresponding author

Address for editorial correspondence:

Dr. Jeremy Nathans
805 PCTB
725 North Wolfe Street
Johns Hopkins University School of Medicine
Baltimore, MD 21205
tel: 410-955-4679
FAX: 410-614-0827
e-mail: jnathans@jhmi.edu
Abstract

During mitosis, Kif11, a kinesin motor protein, promotes bipolar spindle formation and chromosome movement, and, during interphase, Kif11 mediates diverse trafficking processes in the cytoplasm. In humans, inactivating mutations in \textit{KIF11} are associated with (1) retinal hypovascularization with or without microcephaly and (2) multi-organ syndromes characterized by variable combinations of lymphedema, chorioretinal dysplasia, microcephaly, and/or mental retardation. To explore the pathogenic basis of \textit{KIF11}-associated retinal vascular disease, we generated a \textit{Kif11} conditional knockout mouse and investigated the consequences of early postnatal inactivation of \textit{Kif11} in vascular endothelial cells. The principal finding is that postnatal EC-specific loss of \textit{Kif11} leads to severely stunted growth of the retinal vasculature, mildly stunted growth of the cerebellar vasculature, and little or no effect on the vasculature elsewhere in the central nervous system (CNS). Thus, in mice, \textit{Kif11} function in early postnatal CNS endothelial cells is most significant in the two CNS regions – the retina and cerebellum – that exhibit the most rapid rate of postnatal growth, which may sensitize endothelial cells to impaired mitotic spindle function. Several lines of evidence indicate that these phenotypes are not caused by reduced beta-catenin signaling in endothelial cells, despite the close resemblance of the \textit{Kif11} conditional knockout phenotype to that caused by endothelial cell-specific reductions in beta-catenin signaling. Based on prior work, defective beta-catenin signaling had been the only known mechanism responsible for monogenic human disorders of retinal hypovascularization. The present study implies that retinal hypovascularization can arise from a second and mechanistically distinct cause.

Introduction

Monogenic disorders in which the retina is insufficiently vascularized are inherited in X-linked, autosomal recessive, or autosomal dominant patterns, and they range in severity from subclinical defects in the peripheral retina to congenital blindness secondary to severe retinal gliosis (1,2; OMIM 13370, 305390, 310600, 605750, 601813, and 613310). Among individuals in which the disease phenotype is confined entirely or predominantly to the retina, 25-30\% carry mutations in genes coding for the components of a signaling system in which the Muller glia-derived ligand Norrin binds to receptor Frizzled4 (Fz4), co-receptor Lrp5, and co-activator Tspan12 on the surface of vascular endothelial cells (ECs) to activate beta-catenin signaling (3-6; beta-catenin signaling is also referred to as canonical Wnt signaling).

Hemizygous inactivating mutations in the gene coding for Norrin (\textit{NDP}) cause Norrie disease (OMIM 310600), in which severe retinal hypovascularization leads to congenital blindness. Mutations in other beta-catenin pathway genes generally produce a milder degree of hypovascularization, and the resulting phenotypes are referred to as Familial Exudative Vitreoretinopathy (FEVR). In mice, targeted mutations in each of these genes similarly lead to retinal vascularization defects (2,7). In the brain and spinal cord, ligands Wnt7a and Wnt7b, Fz4 and other Frizzled receptors, co-receptors Lrp5 and Lrp6, and co-activators Gpr124 and Reck function analogously to the Norrin/Fz4/Lrp5/Tspan12 system in the retina (8-14). Although the Norrin/Fz4/Lrp5/Tspan12 system is also active in the brain and spinal cord, mutations in genes coding for Norrin signaling components cause relatively mild vascular phenotypes in the brain and spinal cord because of redundancy with Wnt7a/Wnt7b signaling (10,15).

Retinal hypovascularization can also be part of more complex syndromes. For example, Norrie Disease is frequently associated with progressive hearing loss and, in a subset of affected individuals, with neuropsychiatric features (16). Whereas heterozygous mutations in \textit{LRP5} cause FEVR (OMIM 601813), homozygous mutations in \textit{LRP5} cause Osteoporosis-Pseudoglioma Syndrome (OMIM 259770), which is
characterized by both severe retinal hypovascularization and retarded bone development (17). Recently, heterozygous mutations in the gene coding for beta-catenin (CTNNB1) have been identified in individuals with isolated defects in retinal vascularization (FEVR) as well as FEVR accompanied by intellectual disability (18,19). CTNNB1 mutations have also been found in individuals who exhibit some or all of a distinctive constellation of defects, including intellectual disability, autism spectrum disorder, abnormal craniofacial features, childhood hypotonia, progressive spasticity of the lower limbs, and sparse hair (20-22; OMIM 615075). The diversity of these defects likely reflects the widespread role of beta-catenin signaling in mammalian development and the important role of beta-catenin-cadherin complexes in epithelial integrity (23).

The most recent addition to the set of syndromes that feature retinal hypovascularization is Microcephaly, Lymphedema, Chorioretinal Dysplasia Syndrome (MLCRD; OMIM 152950), which is caused by mutations in the gene coding for the kinesin motor protein Kif11 (also known as Kinesin-5, BLM-C, or Eg5; 24-31). As with CTNNB1 mutations, individuals with KIF11 mutations can exhibit retinal hypovascularization with or without the other features of MLCRD (4,32-35). During mitosis, Kif11, a plus-end directed motor, interacts with microtubules in the mitotic spindle to promote bipolar spindle formation and separation of duplicated centrosomes (36,37). Kif11 has also been implicated in multiple functions unrelated to the mitotic spindle. Kif11 interacts with ribosomes to enhance translation, possibly by serving as a link to microtubules (38); Kif11 enhances transport of vesicles from the trans-Golgi network to the plasma membrane (39); and, in postmitotic neurons, Kif11 is involved in cell migration and in axonal and dendritic transport and morphology (40-42). Because of its role in cell division, Kif11 has been intensively studied as a potential target for cancer chemotherapy, and several Kif11 inhibitors are currently in clinical trials (43,44).

The present experiments were undertaken to establish a mouse model of retinal hypovascularization due to Kif11 deficiency. In previous work, a targeted null allele and a gene trap allele in Kif11 produced no apparent phenotype when present in the heterozygotes state with a wild type (WT) allele, but caused pre-implantation embryonic lethality in the homozygous state, precluding an analysis of Kif11 function in vascular development (45,46). To permit cell-type-specific analyses of Kif11 loss-of-function effects at later ages, we have generated a Kif11 conditional knockout (CKO) allele. We report here that postnatal EC-specific knockout of Kif11 leads to a profound hypoplasia of the retinal vasculature and a milder hypoplasia of the cerebellar vasculature. Importantly, EC-specific constitutive activation of beta-catenin signaling – induced by artificially stabilizing beta-catenin – does not rescue the Kif11 retinal vascular phenotype. These data imply that Kif11 causes retarded retinal vascular development by a mechanism that is independent of the beta-catenin pathway. The Kif11 conditional allele described here should be useful for genetic dissections of Kif11 function in the contexts of normal development, for modeling Kif11 deficiency syndromes, and for investigating the effects of Kif11 inhibition in cancer chemotherapy.

Results

Construction and characterization of a Kif11 conditional knockout mouse line

To construct a Kif11^{CKO} allele, exons 5 and 6 were flanked by loxP sites (Figure 1). Deletion of these two exons leads to a 311 base pair deletion within the Kif11 coding region, resulting in a frame-shift starting at codon 129 of the 1052 codon open reading frame. As a technical point, we note that in the construction of the Kif11 null allele by Chauvière et al. (46), in which exons 2 and 3 were replaced by a Beta-Geo reporter/selectable marker, the efficiency of homologous recombination in embryonic stem (ES) cells was ~1/400. As the Kif11 introns contain multiple regions with dispersed repetitive sequences and
some of these sequences are present in the homology arms of the targeting vector designed by Chauvière et al. (46), we designed the targeting vector for the Kif11^{CKO} allele to minimize such sequences on the assumption that this would increase the efficiency of correctly targeted events. With the Kif11^{CKO} targeting vector shown in Figure 1, the frequency of correctly targeted events was ~20% as determined by Southern blotting of embryonic stem (ES) cell DNA with flanking probes.

Kif11^{CKO/CKO} mice are healthy and fertile. We used Sox2-Cre-mediated germline deletion of Kif11 exons 5 and 6 to generate a recessive loss-of-function allele (Kif11^{−/−}). We note that this Kif11^{−/−} allele retains the Frt-Neo-Frt (FNF) selectable marker 5′ of exon 5, and, therefore, can be distinguished by PCR genotyping from the Kif11^{Kif11_N} allele generated by Cre-mediated recombination of Kif11^{CKO}, which lacks the FNF insertion. This distinction was essential for assessing the efficiency of Cre-mediated recombination in Kif11^{CKO} retinas in connection with Figures 3B and S1, as described below. In a Kif11^{+/−} intercross, no Kif11^{−/−} mice were found among 61 progeny genotyped, consistent with the previously reported embryonic lethality of a conventional Kif11 null allele. As there is no apparent phenotype associated with a reduction in the number of wild type (WT) Kif11 alleles from two to one, we have used both Kif11^{+/−} and Kif11^{−/−} as WT controls in the experiments described below.

Retinal response to ablation of Kif11 in vascular endothelial cells

To explore the role of Kif11 in retinal vascular development, which occurs in mice during the first two postnatal weeks, we used a single intraperitoneal (IP) injection of 4-hydroxytamoxifen (4HT) in Kif11^{CKO/CKO};Pdgfb-CreER mice to initiate Cre-mediated elimination of Kif11 function in vascular endothelial cells (ECs). [Pdgfb-CreER is also expressed in some hematopoietic cells; effects of Kif11 recombination on hematopoietic cells were not studied.] Retinal flatmounts were prepared from postnatal day (P)8 and P12 Kif11^{CKO/CKO};Pdgfb-CreER mice and phenotypically WT littermate controls that had received 100 μg 4HT at P4. This comparison showed that EC-specific loss of Kif11 produces a severe retardation of retinal vascular development, with reduced radial growth of the vascular front and reduced vascular density within the developing vascular plexus (Figure 2). This phenotype of retarded angiogenesis is strikingly similar to the retarded angiogenesis produced by loss of beta-catenin signaling in ECs, as seen in mice lacking Ndp or Fzd4 (47–49). Based on analyses of other retinal hypervascularization models (50–52), the retarded vascular development in the Kif11^{CKO/CKO};Pdgfb-CreER retina is predicted to cause severe retinal hypoxia.

The severity of the angiogenesis phenotype seen in Figure 2 reflects the efficiency of Cre-mediated recombination. Since Kif11 is presumed to act cell autonomously, any unrecombined ECs should have continued to proliferate and follow the angiogenic program, as has been observed in mosaic retinas with a mixture of Frizzled4^{−/−} and Frizzled4^{−/−} null ECs (48). Our failure to observe mosaic vascular phenotypes in Kif11^{CKO/CKO};Pdgfb-CreER retinas implies that, with the 4HT dosage used here, the vast majority of ECs were converted from a Kif11^{+/−} state to a Kif11^{−/−} state.

During the first two weeks of postnatal development, the WT murine retinal vasculature develops a blood-retina barrier (BRB), which includes the assembly of tight junctions between ECs and the suppression of fenestrations and transcytosis (53). These cell biological changes are accompanied by accumulation of the tight junction protein Claudin5 and suppression of Plasmalemma Vesicle-Associated Protein (PLVAP), a structural component of EC fenestrations and caveolea (49,54). In Kif11^{CKO/CKO};Pdgfb-CreER retinal ECs at P8, there is an accumulation of PLVAP, especially near the vascular front, which correlates with leakage of the intravascular amine-reactive low molecular weight tracer Sulfo-N-hydroxysuccinimide (NHS)-biotin (Figure 2A and B). At P12, PLVAP accumulation and Sulfo-NHS-biotin leakage are even more prominent (Figure 2C and D). Accumulation of PLVAP and increased vascular permeability can occur as a direct effect of reduced beta-catenin signaling, but they can
also occur in response to elevated levels of retina-derived Vascular Endothelial Growth factor (VEGF; also known as Vascular Permeability Factor), which is produced at a high level by the hypoxic retina (50,51,55).

Kif11 promotes cell proliferation but not beta-catenin signaling

The retarded angiogenesis phenotype produced by EC-specific loss of Kif11, as described above, could be consistent with either of two models: (1) loss of Kif11 impairs beta-catenin signaling in ECs, or (2) loss of Kif11 impairs EC proliferation independent of beta-catenin signaling. As described in the following paragraphs, we have conducted three experimental tests to distinguish these two models.

In the first test, we analyzed the accumulation of LEF1, a transcription factor and beta-catenin partner, in retinal ECs. In addition to functioning as a mediator of beta-catenin signaling, LEF1 is also a target of beta-catenin regulation, and during retinal and brain vascular development in WT mice, beta-catenin signaling leads to the nuclear accumulation of LEF1 in vein and capillary ECs (Figure 3A). Under conditions of reduced beta-catenin signaling – as seen in Ndp or Fz4 mutant mice – there is a corresponding reduction in nuclear LEF1 (56,57). In contrast, in Kif11^{CKO};Pdgfb-CreER retinal ECs at P8, LEF1 accumulates in all or nearly all EC nuclei and at levels that are higher than in WT ECs (Figure 3B), perhaps reflecting feedback regulation produced by retinal hypoxia. These data imply that the beta-catenin pathway is active (and potentially elevated) in ECs in Kif11^{CKO};Pdgfb-CreER retinas. This conclusion is also consistent with the absence of Claudin5 suppression and the relatively modest PLVAP accumulation in Kif11^{CKO};Pdgfb-CreER retinas at P8. In contrast, loss of Ndp or Fz4 (i.e. loss of EC beta-catenin signaling) leads to Claudin5 suppression and high-level accumulation of PLVAP at all postnatal ages (49).

In the second test, we asked whether initiating EC-specific loss of Kif11 in the mature retinal vasculature converts ECs from a Claudin5+/PLVAP- state to a Claudin5-/PLVAP+ state and compromises the BRB, as is observed with acute loss of beta-catenin signaling in mature ECs (49,58). For this test, Kif11^{CKO};Pdgfb-CreER mice were treated with 4HT at P21, when the retinal vasculature was fully developed. When these retinas were examined ten days later (at P31), the retinal vasculature was still Claudin5+/PLVAP- and it showed no detectable leakage of intravascular Sulfo-NHS-biotin (Figure 3C and D). Importantly, the retina flatmount analysis in Figure 3C and D is sufficiently sensitive to detect BBB loss at single-cell resolution, because (1) expression of PLVAP in single ECs can be readily observed and (2) loss of barrier integrity by single ECs gives rise to a detectable accumulation of sulfo-NHS-biotin leakage around the affected cells, as demonstrated in Figure 6D of Zhou et al. (58).

Since the results described in the preceding paragraph are consistent with either (1) no effect of Kif11 loss in the mature retinal vasculature, or (2) a failure of Cre-mediated recombination in the mature retinal vasculature, it was important to independently assess the presence of Cre-mediated recombination. Therefore, we PCR amplified total retina genomic DNA with primers that distinguish the relevant genotypes to assess Cre-mediated recombination (Supplementary Material, Figure S1A). Specifically, we used primers that flank the two Kif11^{CKO} loxP sites, and amplified DNA from P31 Kif11^{CKO};Pdgfb-CreER retinas obtained from mice that were injected with 300 ug 4HT at P21, as shown in Figure 3C and D. This reaction generated readily detectable amounts of the ~550 bp PCR product derived from Cre-mediated recombination of the Kif11^{CKO} allele in ECs (Supplementary Material, Figure S1B, right three lanes), despite the relatively low abundance of EC DNA in the retinal DNA sample (ECs comprise <5% of retinal cells). By contrast, PCR amplification of DNA from littermate Kif11^{CKO};Pdgfb-CreER or Kif11^{CKO}-retinas that were not exposed to 4HT did not show this product (Supplementary Material, Figure S1B, left three lanes). Similar results were obtained with seven additional experimental mice and six additional control mice that were injected with 4HT at P4 or P5. We note that under the PCR amplification
conditions used here, longer PCR products (e.g. ~1.2 kb from the unrecombined \(\text{Kif11}^{\text{CreKO}} \) allele and ~2.5 kb from the constitutive \(\text{Kif11} \) allele) do not accumulate to detectable levels. These results imply that a substantial number of \(\text{Kif11}^{\text{CreKO}}:\text{Pdgfb-CreER} \) ECs were converted by Cre-mediated recombination to a \(\text{Kif11}^{\beta} \) genotype at P21. Thus, our failure to observe the conversion of any retinal ECs from PLVAP- to PLVAP+ or any localized sulfo-NHS-biotin leakage implies that loss of \(\text{Kif11} \) in the mature retina has little or no effect on BBB properties.

In the third test, we asked whether constitutive activation of beta-catenin signaling in ECs can rescue the retinal vascular phenotype caused by loss of \(\text{Kif11} \). In this experiment, 4HT treatment induces Cre-mediated recombination of a \(\text{Ctnnb1} \) allele to generate a deletion derivative that codes for a stabilized version of beta-catenin. More specifically, Cre-mediated deletion of \(\text{Ctnnb1} \) exon 3 leads to a small in-frame deletion that encompasses the phosphorylation site that controls beta-catenin ubiquitination and its subsequent degradation by the proteosome. The \(\text{Ctnnb1} \) allele that has losP sites flanking exon 3 is referred to as \(\text{Ctnnb1}^{\text{lox3}} \). In earlier work that used the same timing and dose of 4HT, \(\text{Pdgfb-CreER} \)-mediated recombination of the \(\text{Ctnnb1}^{\text{lox3}} \) allele was observed to fully rescue the retinal vascular defects caused by loss of Norrin (58), which, as described above, closely resembles the defects exhibited by \(\text{Kif11}^{\text{CreKO}}:\text{Pdgfb-CreER} \) retinas. In a WT background, \(\text{Pdgfb-CreER} \)-mediated recombination of the \(\text{Ctnnb1}^{\text{lox3}} \) allele has little effect, leading only to a small increase in vascular density (58). For the present experiment, both \(\text{Kif11} \) loss and beta-catenin stabilization were initiated by 4HT treatment at P3. In contrast to the rescue of \(\text{Ndp}^{\text{KO}} \) retinas, EC-specific stabilization of beta-catenin had no effect on the \(\text{Kif11} \) loss-of-function phenotype when (Figure 4A-D). At P10, retinas with or without stabilized beta-catenin exhibited indistinguishable patterns of vascular growth retardation (as quantified in Figure 4E), disorganized capillary structure, and induction of PLVAP. Thus, artificially activating beta-catenin signaling fails to rescue the \(\text{Kif11} \) loss-of-function phenotype.

In sum, these three tests imply that the \(\text{Kif11} \) retinal vascular phenotype is not caused by reduced beta-catenin signaling. The most parsimonious explanation for the \(\text{Kif11} \) phenotype is that it reflects \(\text{Kif11} \)’s role in cell proliferation and, more specifically, in mitotic spindle dynamics during mitosis. In the context of this model, we can explain PLVAP accumulation in ECs and Sulfo-NHS-biotin leakage in \(\text{Kif11}^{\text{CreKO}}:\text{Pdgfb-CreER} \) retinas as secondary consequences of retinal hypoxia rather than as a direct effect of decreased beta-catenin signaling. As noted above, in multiple models of retinal vascular insufficiency, retinal hypoxia results in increased expression of VEGF, which increases PLVAP expression and vascular permeability (50,51,55).

Effect of \(\text{Kif11} \) loss on cerebellar vascular development

We next asked whether EC-specific loss of \(\text{Kif11} \) has effects on vascular development beyond the retina. The ~100% survival of \(\text{Kif11}^{\text{CreKO}}:\text{Pdgfb-CreER} \) mice treated with 4HT at P3-P4 and followed for >1 week implies that during this period of rapid postnatal growth the vascular supply to most tissues accommodates the increase in demand. As earlier studies had shown highly efficient recombination by \(\text{Pdgfb-CreER} \) throughout the early postnatal brain vasculature (10,15), we focused our comparative analysis on the \(\text{Kif11}^{\text{CreKO}}:\text{Pdgfb-CreER} \) phenotype in the brain. Specifically, we compared sagittal sections of brain from eight \(\text{Kif11}^{\text{CreKO}}:\text{Pdgfb-CreER} \) mice and nine control \(\text{Kif11}^{\text{CreKO}} \) and \(\text{Kif11}^{\text{CreKO}} \) littermates that were treated with 4HT at P3 or P4 and sacrificed between P8 and P12. This analysis showed that the brain sizes between the two cohorts were closely matched, and the vascular densities in the cortex, thalamus, and brain stem were indistinguishable by visual inspection (Figure 5A and B). However, the cerebella of \(\text{Kif11}^{\text{CreKO}}:\text{Pdgfb-CreER} \) mice showed a modestly reduced vascular density (Figure 5A-C), an effect that was statistically significant (Figure 5D). [The P-value of 3.9 x 10^{-4} for the experimental vs. control comparison in Figure 5D was determined by a conservative calculation in which the comparison
was between the mean values of vascular density for individual mice, determined by averaging the fraction of the length of the granule cell layer-molecular layer boundary that was vascularized in seven cerebellar folia per mouse.]

Although the entire brain is growing during early postnatal life in mice, the cerebellum is distinctive in exhibiting extremely rapid growth during this period, with most granule cell divisions and much of the Purkinje cell and granule cell arbor growth occurring postnatally (59). Thus, the early postnatal requirement for Kif11 function in central nervous system (CNS) vascular cells is most significant in two CNS regions – the retina and cerebellum – that exhibit rapid rates of postnatal growth.

Discussion

The experiments reported here establish a model for KIF11-based retinal vascular disease using EC-specific elimination of Kif11 in mice. The principal finding is that postnatal EC-specific loss of Kif11 leads to severely stunted growth of the retinal vasculature that is not caused by reduced EC beta-catenin signaling despite its close resemblance to the phenotype caused by mutations in beta-catenin signaling components. Interestingly, one other region of the CNS in which early postnatal EC-specific loss of Kif11 produces a prominent hypovascularization phenotype is the cerebellum, suggesting that the most significant requirements for Kif11 function occur in rapidly developing CNS regions that require correspondingly rapid vascular growth.

The phenotypic spectrum of KIF11 disorders

The present work complements a growing literature on the phenotypic consequences of KIF11 mutations in humans. One set of reports defined a syndrome in which autosomal dominant microcephaly, lymphedema, and/or chorioretinal dysplasia (MLCRD) is associated with KIF11 mutations (25,27). Other studies have noted the extensive overlap with a closely related syndrome characterized by chorioretinal dysplasia, microcephaly, and mental retardation, with or without lymphedema (CDMMR) that is also associated with KIF11 mutations (28,30). Finally, analyses that focused on large cohorts of patients with ocular disease have found KIF11 mutations to be associated with FEVR with or without microcephaly (4,32-35). Taken together, these studies imply a substantial degree of phenotypic variability, potentially related to the diverse functions of Kif11 in mitosis and in intracellular trafficking in non-dividing cells. The present work suggests that reduced Kif11 function in retinal and brain ECs may explain part of the pathophysiology of these human disorders.

The role of Kif11 in rapidly dividing cells: implications for retinal vascular disease

Kif11, Kif15 (also called Hklp2 or Kinesin-12), and dynein are essential force-generating proteins involved in forming the bipolar spindle during mitosis and directing its movement before and during anaphase (60). Interestingly, Kif15 exhibits partial redundancy with Kif11 in a manner that varies among cell lines (61) and that can account for partial escape from pharmacologic inhibition of Kif11 (62,63). These observations suggest that the rank order of sensitivity of ECs in the early postnatal CNS to loss of Kif11 – retina > cerebellum > the rest of the brain – may reflect different degrees of dependence on Kif11 vs. Kif15, either as intrinsic differences between the vasculatures in different CNS regions or as functional differences that reflect the rapidity of EC proliferation. In this regard, it is interesting that in experiments aimed at slowing tumor growth with a Kif11 inhibitor, Exertier et al (64) observed that Kif11 expression in ECs was increased by VEGF, and that pharmacologic inhibition of Kif11 had potent antiangiogenic effects
in cell culture, in chick and zebrafish embryos, and in a tumor model in mice. Thus, in each of the paradigms in which Kif11 loss or blockade has a large effect, the unifying feature may be the extreme rapidity of endothelial cell proliferation.

In sum, the present experiments implicate Kif11’s function in mitotic spindle assembly as the likely link to its role in diseases of retinal vascular development, and they suggest that genes coding for other components or regulators of the mitotic spindle could be plausible candidates for diseases or syndromes with the same or overlapping features. Importantly, these data imply that retinal hypovascularization disorders can arise from two mechanistically distinct causes: defects in beta-catenin signaling and defects in the mitotic machinery.

Materials and Methods

Mice
The following mouse alleles were used: Pdgfb-CreER (65), Sox2-Cre (66; JAX 008454); R26-Flp (67; JAX 009086); Ctnnb1flexx (68); Kif11\(^\text{CKO}\) and Kif11\(^\text{f11}\) (see below). Experiments were conducted and mice were housed and handled according to the approved Institutional Animal Care and Use Committee (IACUC) protocol MO16M369 of the Johns Hopkins Medical Institutions.

Construction of the Kif11 conditional knockout line
A BAC clone with one endpoint 3.5 kb 5’ of exon 2 and extending through the 3’ end of the Kif11 gene was used to construct the targeting vector, which consisted of: (1) a ~3.5 kb 5’ homology arm starting at an EcoR V site ~1 kb 5’ of exon 2 and ending ~100 bp 5’ of exon 5, (2) loxP sites ~100 bp 5’ of exon 5 and 3’ of exon 6, with a Frt-PGK-Neo-Frt (FNF) cassette adjacent to the 5’ loxP site, and (3) a ~3.5 kb 3’ homology arm starting ~100 bp 3’ of exon 6 and ending at an Apa I site in exon 8 (Figure 1). The loxP sites are 640 bp apart. The targeting sequences were inserted into a vector with a PGK promoter and Herpes Simplex Virus Thymidine Kinase coding region for negative selection with ganciclovir. Following electroporation of R1 ES cells, positive selection with G418, and negative selection with ganciclovir, correctly targeted ES clones were identified by Southern blotting with probes distal to the 5’ and 3’ homology arms. Correctly targeted clones with a normal karyotype were injected into mouse blastocysts. To create the constitutive null allele (Kif11\(^\text{f11}\)), the original Kif11 targeted allele with FNF still present was subjected to germline Cre-mediated recombination by crossing to Sox2-Cre. To generate the Kif11\(^\text{CKO}\) allele, the FNF cassette was excised by crossing to germline Flp-expressing mice (R26-Flp). Genotyping to distinguish WT and Kif11\(^\text{CKO}\) alleles with a single PCR reaction was performed with a pair of primers flanking the 3’ loxP site [sense: ACTGCAAGCAACCTTGATGAATGCTT (PMS1134), and antisense: CAATCTTCCAGTATTGCGAGCCTC (PMS1161)]. Three PCR primers were used in two separate PCR reactions to distinguish the WT Kif11 allele, the Kif11\(^\text{CKO}\) allele, and the Kif11 null allele resulting from Cre-mediated recombination of the Kif11\(^\text{CKO}\) allele (Figure S1):

\[
\text{GATGGGAGGGTGAGCTGAGTAGTA} (\text{PMS1181}), \text{AGATTTCCAATAGGGACACTTTAACTG} (\text{JN4435}), \text{and ATGGTTGATTTGAGACACAGTC} (\text{JN4437}).
\]

PCR conditions were: 1x94°C for 4 minutes; 35x[94°C for 10 seconds; 63°C for 30 seconds; 72°C for 30 seconds], 1x72°C for 7 minutes.

Antibodies and other reagents
The following antibodies were used for tissue immunohistochemistry and immunoblotting: rat anti-mouse PLVP (MECA-32; BD Biosciences 553849); mouse anti-Claudin5, Alexa Fluor 488 conjugate (Thermo Fisher Scientific 352588); rabbit mAb anti-LEF1 (Cell Signaling Technologies C12A5); Texas Red Streptavidin (Vector Laboratories SA-5006). Alexa Fluor-labeled secondary antibodies and GS Lectin
(Isolectin GS-IB4) were from Thermo Fisher Scientific. Sulfo-NHS-biotin was from Thermo Fisher Scientific (21217).

Tissue processing and immunohistochemistry

Tissues were prepared and processed for immunohistochemical analysis as described by Wang et al. (49) and Zhou et al. (58). Mice were injected intraperitoneally with Sulfo-NHS-biotin (100 μl of 20 mg/ml Sulfo-NHS-biotin in PBS for P8-P12 mice, and 200 μl of 20 mg/ml Sulfo-NHS-biotin in PBS for P31 mice) ~30 minutes prior to sacrifice. Mice were deeply anesthetized with ketamine and xylazine and then perfused via the cardiac route with 1% PFA in PBS without calcium or magnesium, and the brains were dissected and dehydrated in 100% MeOH overnight at 4°C. Tissues were re-hydrated the following day in 1x PBS at 4°C for at least 3 hours before embedding in 3% agarose. Tissue sections of 100-200 μm thickness were cut using a vibratome (Leica). For retina flatmounts, intact eyes were immersion fixed in 1% PFA in PBS at room temperature for 1 hour, and then the retinas were dissected and processed as described below.

Sections were incubated overnight with primary antibodies or Texas Red streptavidin diluted in 1x PBSTC (1x PBS + 1% Triton X-100 + 0.1mM CaCl2 + 10% normal goat serum (NGS)). Incubation and washing steps were performed at 4°C. Sections were washed at least 3 times with 1x PBSTC over the course of 6 hours, and subsequently incubated overnight with secondary antibodies diluted in 1x PBSTC + 10% NGS. If a primary rat antibody was used, secondary antibodies were additionally incubated with 1% normal mouse serum (NMS) as a blocking agent. The next day, sections were washed at least 3 times with 1x PBSTC over the course of 6 hours, and flat-mounted using Fluormount G (EM Sciences 17984-25). Sections were imaged using a Zeiss LSM700 confocal microscope, and processed with ImageJ, Adobe Photoshop, and Adobe Illustrator software.

4HT preparation and administration

Solid 4HT (Sigma-Aldrich H7904) was dissolved in an ethanol:sunflower seed oil (Sigma-Aldrich S5007) mixture (1:10 volume:volume) to a final concentration of 2 mg/ml and stored in aliquots at -80°C. All injections were performed intraperitoneally.

Quantification of retinal vascular growth and cerebellar EC vascular density

For quantifying the distance from the optic disc to the vascular front, four distance measurements at 90-degree intervals were made from each image of a flatmounted retina. For quantifying the density of blood vessels at the granule cell layer/molecular layer junction, 100 μm thick sagittal vibratome sections were stained with GS-lectin and DAPI. Confocal images were scanned at 10 μm intervals along the Z-axis, and four of these scans were Z-stacked. Starting with each Z-stacked image (as seen in Figure 5), the Adobe Illustrator pencil tool was used to first trace the length of the granule cell layer/molecular layer junction for each of the seven cerebellar folia and then to trace those regions of the granule cell layer/molecular layer junction that included a blood vessel. The length the traces for each folium was quantified by calculating its pixel coverage as a fraction of a standard rectangular area, using ImageJ. For the granule cell layer/molecular layer junction of each folium, the vascularized length was divided by the total length to yield the fraction of the granule cell layer/molecular layer junction that was vascularized. MATLAB and Excel were used to generate plots and to perform statistical analysis. The mean ± standard deviations are shown. Statistical significance was determined by the unpaired t-test, using the mean values for each mouse.

Acknowledgements.

The authors thank Chip Hawkins, Ann Lawler, and Johnisha Witherspoon (Johns Hopkins Transgenic Core Facility) for ES cell injection, Dr. Maketo Taketo (Kyoto University) for the Ctnnb1flex3 mice, and Drs.
Chris Cho, Amir Rattner, and Jie Wang for assistance and helpful discussions. This work was supported by the Howard Hughes Medical Institute.

Conflict of Interest Statement
The authors report no conflict of interest.

References

Figure 1. Structure of the *Kif11* conditional knockout allele.

Shown from top to bottom are: the region of the WT *Kif11* allele encompassing exons 2-8, the ES cell targeting vector, the targeted allele, the conditional KO (CKO) allele, and the KO allele following Cre-mediated recombination of the CKO allele.
Figure 2. Severely retarded retinal vascular growth following early postnatal EC-specific knockout of *Kif11*.

Retinal flatmounts were prepared at P8 or P12 from littermate control *Kif11^{CKO}* mice (A,C) and *Kif11^{CKO};Pdgfb-CreER* mice (B,D) following treatment with 100 ug 4HT at P4. Each image shows one retinal quadrant, with the optic disc at the left and the retinal periphery is at the right. Loss of *Kif11* leads to retarded vascular development and reduced vascular coverage of the retinal surface. At both ages, *Kif11^{CKO};Pdgfb-CreER* retinas show increased expression of PLVAP and increased Sulfo-NHS-biotin leakage. Scale bars, 500 μm.
Figure 3. EC-specific knockout of Kif11 leads to continued EC accumulation of LEF1 during development and no effect of post-mitotic knockout on vascular permeability.

(A,B) Retinal flatmounts were prepared at P8 from littermate control Kif11^{CKO/+} mice (A) and Kif11^{CKO/-};Pdgfb-CreER mice (B) following treatment with 100 μg 4HT at P4. Each image shows one retinal quadrant, with the optic disc at the left and the retinal periphery is at the right. LEF1, a marker of beta-catenin signaling, accumulates in the nuclei of vein and capillary ECs but not in arterial ECs in control retinas, and in all ECs in mutant retinas. (C,D) Retinal flatmounts were prepared at P31 from littermate control Kif11^{CKO/+} mice (C) and Kif11^{CKO/-};Pdgfb-CreER mice (D) following treatment with 300 μg 4HT at P21. Each image shows one retinal quadrant as in (A) and (B). Loss of Kif11 has no effect on vascular architecture, expression of Claudin5, suppression of PLVAP, or BRB integrity, as seen by the absence of Sulfo-NHS-biotin leakage from the intravascular space into the retinal parenchyma. See Supplementary Material Figure S1 for an analysis Cre-mediated recombination at P21. Scale bars, 500 μm.
Figure 4. Postnatal EC-specific stabilization of beta-catenin does not rescue the Kif11 retinal vascular phenotype.

(A,B) Retinal flatmounts were prepared at P10 from control Kif11CKO/+ mice (A) and Kif11CKO/-Pdgfb-CreER mice (B; three examples shown) following treatment with 100 µg 4HT at P3 to assess the Kif11 retinal vascular phenotype. (C,D) From the same set of crosses, retinal flatmounts were prepared at P10 from control Kif11CKO/+;Ctnnb1flex3/+;Pdgfb-CreER mice (C) and Kif11CKO/-;Ctnnb1flex3/+;Pdgfb-CreER mice (D; three examples shown) following treatment with 100 µg 4HT at P3. Retina vascular development in both sets of control mice is indistinguishable from WT. Beta-catenin stabilization following Cre-mediated recombination of Ctnnb1flex3/+ fails to rescue the Kif11 retinal vascular phenotype. In (A) and (C) each image shows one retinal quadrant, with the optic disc at the bottom and the retinal periphery at the top; in (B) and (D) each image is centered on the optic disc. All images in (A)-(D) are at the same magnification. Scale bars, 500 µm. (E) Quantification of the radial distance from the optic disc to the vascular front at P10 for individual retinal quadrants for the genotypes shown in panels A-D. Plots show mean +/- standard deviation.
Figure 5. Retarded density of cerebellar vasculature following early postnatal EC-specific knockout of Kif11.

(A,B) Sagittal brain sections were prepared at P12 from control Kif11CKO/+ mice (A) and Kif11CKO+;Pdgfb-CreER mice (B) following treatment with 100 μg 4HT at P4. The region of the dorsal cerebellum enclosed by the white square is enlarged at right. Scale bars, 1 mm (left images) and 200 μm (right images). Except for modestly reduced vascular density in the cerebellum (inset at right), brain size and vascular density are unaffected by EC-specific loss of Kif11. Sulfo-NHS-biotin leakage is seen in the choroid plexus (arrow) and in the circumventricular organs (area postrema and median eminence; arrowheads) as expected, but is not observed elsewhere in the brain. (C) Sagittal brain sections were prepared at P8 from control Kif11CKO/+ mice and Kif11CKO+;Pdgfb-CreER mice, following treatment with 100 μg 4HT at P4. Scale bar, 500 μm. (D) With early postnatal loss of Kif11, vascular density in the P8 cerebellum is reduced, as determined by quantifying the fraction of the molecular layer/granule cell layer border that is occupied by blood vessels in six control Kif11CKO/+ and seven Kif11CKO+;Pdgfb-CreER P8 mice. For each mouse, seven folia were quantified from a single confocal image of the cerebellum [examples in (C)]. The plot in (D) shows mean +/- standard deviation for each mouse.
Supplementary Material

Figure Legend

Figure S1. PCR detection of the Kif11 null allele derived from Cre-mediated recombination of Kif11^{CKO} ; Pdgfb-CreER retinal ECs following 4HT injection at P21.

(A) The WT Kif11 allele (left), the constitutive Kif11 null allele (constitutive Kif11^{KO}) (center), and the Kif11^{CKO} allele and its derived Kif11 null allele (Kif11^{KO}) (right), showing the locations of the three PCR primers used for genotyping. (B) Agarose gel electrophoresis of PCR reactions using as template genomic DNA prepared from P31 retinas that were dissected from mice that had been injected IP with 300 ug 4HT at P21. Upper panel: PCR reactions with primers PMS1181+JN4437 to detect the Kif11 null allele that was generated by Cre-mediated recombination from the Kif11^{CKO} allele. Lower panel: PCR reactions with primers PMS1181+JN4435 to detect the WT allele and the Kif11^{CKO} allele. The third lane, with both WT and Kif11^{CKO} alleles, produces a heteroduplex band that migrates slightly faster than the Kif11^{CKO} PCR product. Positions of the bands in a 100 bp ladder (“1 kb Plus” DNA ladder; New England BioLabs) are shown to the left of each gel.