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Abstract

The ‘discovery’ stage of genome-wide association studies required amassing large, homogeneous cohorts. In order to attain
clinically useful insights, we must now consider the presentation of disease within our clinics and, by extension, within our
medical records. Large-scale use of electronic health record (EHR) data can help to understand phenotypes in a scalable
manner, incorporating lifelong and whole-phenome context. However, extending analyses to incorporate EHR and
biobank-based analyses will require careful consideration of phenotype definition. Judgements and clinical decisions that
occur ‘outside’ the system inevitably contain some degree of bias and become encoded in EHR data. Any algorithmic
approach to phenotypic characterization that assumes non-biased variables will generate compounded biased conclusions.
Here, we discuss and illustrate potential biases inherent within EHR analyses, how these may be compounded across time
and suggest frameworks for large-scale phenotypic analysis to minimize and uncover encoded bias.

Introduction

The application of large-scale genome-wide association stud-
ies (GWAS) has yielded significant and important insights into
the genetic architecture of complex traits and diseases. Global
collaboration and data sharing approaches have enabled highly
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standardized sample collection, genotyping, analysis and repli-
cation. For example, efforts from the Psychiatric Genomics Con-
sortium have led to collection of >250 000 individuals with 10
psychiatric traits and disorders, and consequent identification
of >200 disease-associated loci (1). By necessity, this ‘discovery’
stage of GWAS required the collection of large, homogeneous
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cohorts. However, biological insight into disease aetiopathol-
ogy from these studies has been limited. In addition, GWAS
analyses to date have focussed almost exclusively on White-
and European-descent populations (2–5), significantly limiting
potential biological insights, reducing replicability and appli-
cability of biomarkers, and potentially leading to more deeply
stratified healthcare, with precision medicine approaches avail-
able only for a subset of patients (2,5). In order to attain clin-
ically useful insights, we must now consider the presentation
of disease within our clinics and our communities rather than
within a narrowly defined cohort including only White cases and
controls. By extension, we must look within our medical records
to uncover the next stage of genetic associations with complex
traits. Such large-scale use of electronic health record (EHR)
data can help to understand phenotypes in a scalable manner,
incorporating lifelong and whole-phenome context (6–11).

Much has been written regarding the importance of properly
accounting for race and ancestry in genetic studies, both in large-
scale GWAS (2–4,12–14) and in EHR analyses. However, biases
inherent in diagnostic practices may pose an even greater threat
to cross-ancestry studies. It is neither appropriate to assume that
EHR phenotypes are ‘ground truth’, nor that ‘clinician validation’
or text notes are a ‘gold standard’ for understanding diagnoses;
rather, EHR represent complex, multi-level human decisions
with potential for bias, compounded across legal, medical and
diagnostic systems.

Here, we define EHR ‘bias’ as influences on a variable related
to the individual or to the system assigning that variable rather
than a true description of the variable itself. Studies that fail to
account for these biases may falsely interpret their results to
infer differences between groups that are a result of structured
bias rather than biological truth; genetic analyses that do not
examine critically the potential differences in phenotypic and
diagnostic accuracy between groups will be highly vulnerable to
spurious findings or underpowered analyses.

Implicit Bias of Hidden Variables: The
Anatomy of Diagnostic Bias in Structured
and Unstructured Data
Bias is a dynamic, multi-level process occurring across indi-
viduals, local and global systems (Fig. 1). Although certain lev-
els of bias may be encoded directly within EHR, system- and
community-level bias influence data in EHR without mapping
to a specific variable within the dataset. For example, physician
bias may be encoded in specific variables such as diagnosis,
medications and treatment; hospital bias may be encoded in
types of insurance or lengths of stay. In comparison, community-
level bias may not impact a specific variable, but rather serves to
influence hospital and physician practices. Notably, each type
of variable can have bias from multiple sources. For example,
the decision to involuntarily commit an individual is encoded in
the system as a given legal status such as ‘9.39’, which is influ-
enced by multiple sources of bias including state law, hospital
policy, judicial systems and physician discretion. Frameworks
for system-level bias can serve to identify direct and indirect
sources of bias encoded in EHR data, improving both within-EHR
analysis and harmonizing studies across different EHRs.

Understanding structured bias requires evaluation of bias in
data from the level of individual diagnosis to systemic practices.
For example, bias occurs in clinical practice to varying degrees,
with increased risk of bias where objective clinical markers are
unavailable. In particular, the field of psychiatry is notable for its
lack of objective markers to guide decision-making processes,

and is thus an ideal use case for discussing how clinical bias
can become encoded in EHR data. Psychiatric diagnostic criteria
are codified in the Diagnostic and Statistical Manual (‘DSM’)
(15). Although updated periodically (16), these criteria include
field-level biases and potentially outdated diagnostic criteria or
classifications, which are based on observed behaviours, either
directly or via collateral. For example, the Diagnostic and Sta-
tistical Manual version 5 (DSM-5) criteria for any given disease
requires meeting a set of symptoms for a specified duration of
time. The development of disease definition and assessment of
each individual diagnostic criterion are subject to unique biases.
Thus, the problem of bias in psychiatric phenotypes encoded in
EHR data is that both the assessment of disease and the disease
definition itself inherently lack ground truth or gold standard.

Such biases pose particular problems for EHR–genetic stud-
ies that compare automatically inferred cases versus controls.
Although minor uncertainties or algorithmic inaccuracies may
be acceptable in return for the substantial increase in sample
size offered by these approaches, introduction of systematic
bias or bias occurring primarily in one group of patients poses
a substantial risk to the accuracy and interpretability of these
studies. For example, diagnostic biases in the psychiatric field
may lead to systematic differences in diagnoses across racial
and ethnic groups or between genders. Consequently, genetic
association analyses may be less well powered among these
groups or may produce spurious results. In Figure 2, we consider
the impact of diagnostic biases on case–control definitions, and
association statistics, for a polygenic trait [e.g. schizophrenia
(SCZ) (17) or major depressive disorder (18)]. If case–control def-
initions are applied accurately, we partition our population into
cases and controls (Fig. 2Ai), and will identify a small number
of significantly associated variants (Fig. 2Bi). If instead some
bias systematically increases diagnosis of a disorder among
some patients, our ‘cases’ will now include many true controls
(Fig. 2Aii). As these biases may fluctuate across clinics, hos-
pitals or due to other unknown factors (Fig. 1), assignment of
individuals presenting with some subset of disease symptoms
or endophenotypes [i.e. those individuals falling in the middle
of our liability threshold model (18,19), Fig. 2Aii] to ‘case’ or
‘control’ groups will be essentially biologically random, driven by
circumstances of bias or access to the healthcare system rather
than relating to disease presentation. Genetic analyses and esti-
mate of heritability based on such inferences will therefore be
substantially underpowered (20) (Fig. 2Bii). Conversely, bias that
systematically decreases likelihood of diagnosis [e.g. due to race-
or gender-specific stereotyping in disease definition (21–26) or
due to bias that reduces lack of access to healthcare (27–34)]
may mean that only ‘extreme’ presentations of a disease are
identified and included as ‘cases’ (Fig. 2Aiii). In these instances,
‘control’ populations will likely also include a number of ‘true
cases’ (Fig. 2Aiii); consequently, association statistics may be
inflated (Fig. 2Biii).

Brief History of Bias in Psychiatry: Past
Evidence and Ongoing Examples
Diagnostic biases have been well documented in psychiatric
research and include both patterns of under- and over-diagnosis.
For example, numerous studies have found that Black patients
are disproportionately more likely to be diagnosed with SCZ than
White patients (35–37). A meta-analysis of 41 studies found Black
patients to be preferentially diagnosed with SCZ by an odds ratio
(OR) of 2.43 (38). White patients, on the other hand, are more
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Figure 1. Multi-level biases are inherent in EHR data. These may be explicitly encoded and detectable (e.g. length of stay) or implicit (e.g. societal bias).

Figure 2. Impact of case–control definition bias on genetic studies. (A) Case (left) and control (right) definitions shown on a liability threshold model when (i) individuals

are diagnosed accurately and without bias; (ii) where bias leads to over-diagnosis; and (iii) where bias leads to under-diagnosis. (B) Genetic associations arising from

the situations described in (A). (i) A variant is identified as associated with a given trait; (ii) over-diagnosis leads to underpowered studies; true associations may be

missed; and (iii) under-diagnosis leads to spurious results; associations may be inflated.

likely to be diagnosed with an affective disorder (39). This diver-
gence has been attributed to epigenetic differences (40), with
little to no empirical support, and differences in socioeconomic
status (41), but the diagnostic discrepancy remains present even
after controlling for age, sex, income, site and education (42),
suggesting that physician bias or systemic bias presenting across
various levels of healthcare and legislative processes (Fig. 1)
may present the most notable factor. In addition, biased racial
expectations by physicians towards patients may lead to inflated
rates of SCZ diagnoses in Black patients. One such expectation
is that of dishonesty. A study by Eack et al. (43), for instance,
found that Black patients were perceived as less honest by inter-
viewers, potentially due to misattribution of cultural guarded-
ness as dishonesty, and this perception predicted over-diagnosis
of SCZ. Another study determined that presence of diagnostic
criteria are differentially weighed in diagnosis of SCZ for Black
and White patients (44). The presence of negative symptoms

especially disproportionately corresponded to SCZ diagnosis in
Black patients, whereas presence of the same symptoms did
not correspond to a diagnosis of SCZ in non-Black patients.
Such over-diagnosis leads to disproportionately high prescrip-
tion of antipsychotic medications (45), long-acting antipsychotic
injections (46) and hospitalizations in Black patients (45), con-
tributing to worse outcomes in Black patients 1 year after first
episode psychosis (47), and may lead to underpowered genetic
association analyses unless diagnostic biases are addressed and
corrected for in EHR–GWAS (Fig. 2).

We observed these same patterns of diagnostic bias in our
own EHR data (12) (C. Seah, H.R. Dueñas and L.M. Huckins,
manuscript in preparation; Fig. 3). Analysis of EHR data of 722
patients with psychosis (defined by International Statistical
Classification of Diseases codes F2-, F31.5, F31.64, F32.3, F33.3)
enrolled in Mount Sinai BioMe aligned with previous observa-
tions of overrepresentation of Black patients with psychosis
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(OR = 1.7) and underrepresentation of White patients with
psychosis (OR = 0.29). Furthermore, Black patients were more
likely to be diagnosed with SCZ (OR = 1.92) or schizoaffective
disorder (OR = 1.83) as opposed to depression with psychosis
(OR = 1.19). Black patients with psychosis were more likely to be
prescribed intramuscular (IM) Haldol injections (OR = 2.05) than
their White peers (OR = 0.23), a medication commonly indicated
for agitation. When controlled for racial distributions of patients
with psychosis, Black patients were still preferentially given
Haldol injections (OR = 1.08) compared with their White peers
(OR = 0.72). In fact, we found that Black patients were prescribed
psychiatric medications almost twice as often (1.92×) as White
patients.

Further analysis reveals that White patients are less likely
than Black patients to be placed on ‘violence precautions’,
(OR = 0.58 and OR = 1.05, respectively); a marker in the EHR that
indicates to physicians they should have a higher caution for
violence and a lower threshold to take measures such as IM
medications for agitation. These precautions are a result of
patient history in the EHR as well as outside the EHR, through
collateral such as law enforcement or family. The discrepancies
in assigning ‘violence precautions’ contributing to potential
increased use of IM Haldol among Black patients illustrates how
system-level bias that exists outside the hospital system may
contribute to encoded biases with multiple, complex origins.

However, diagnostic bias does not always lead to over-
diagnosis. For example, current estimates of individuals with
autism spectrum disorders (ASD) systematically underestimate
numbers of women with the disease, overrepresenting men
on an order of 4:1 (48). This skewed sex ratio present in ASD
is largely due to under-diagnosis of girls with the disorder.
Although this may stem in part from fundamental sex-based
aetiological differences (49), the attribution of the presentation
in men as the norm likely contributes significantly to this skew.
This male norm has historically been upheld by significant
gender biases in research study recruitment (50), with brain
volumetric studies (51) and task functional magnetic resonance
imaging studies (52) overrepresenting men by a ratio of 8:1
and 15:1, respectively. In addition, bias encoded in screening
questionnaires preferentially identify and diagnose boys,
leaving autism undiagnosed in girls. One example is the
Autism Diagnosis Interview-Revised, which preferentially scores
symptoms commonly expressed by boys and algorithmically
predicts autism in boys at a higher rate than girls (53). For
example, it, alongside the Autism Diagnostic Observation
Schedule-Generic, underscores and downplays sensorimotor
symptoms, which have been shown to be more prevalent in
girls (53). Other symptoms more present in girls, such as more
imaginative and pretend play at a young age (23) and restricted
interests related to people and animals as opposed to inanimate
objects (25), are unaccounted for. Individual items on another
diagnostic tool, the Autism Spectrum Quotient (AQ-10), have
also been shown to preferentially underestimate autistic traits
in girls and cannot be used individually (26). When girls are
diagnosed, they are diagnosed later than boys, according to a
study of 2275 individuals with autism (54). Later diagnosis of
women in adulthood adds to practical difficulties for clinicians,
as it is more challenging to obtain an accurate developmental
history (55), leading to compounded diagnostic error (Fig. 4).
Late diagnosis and misdiagnosis leads to higher rates of anxiety,
as well as self-reported exhaustion and confusion about one’s
identity in women with ASD (56).

Sex-based differences in disease presentation also contribute
to misdiagnosis and under-diagnosis in eating disorders. Here,

however, diagnostic standards are determined based on a female
stereotype of disease (57). Women have a 4.2-fold greater lifetime
prevalence of eating disorders than men (58). Presentations of
eating disorders vary significantly by gender (59), with women
more likely to endorse loss of control while eating, and men
more likely to overeat (60), as well as women more likely to
desire thinness, and men equally likely to desire gaining or
losing weight (61). Diagnostic criteria for eating disorders focus
on female manifestations of the disease, for instance, up until
the DSM-5, amenorrhoea was listed as diagnostic criteria for
anorexia nervosa (15,16,62), a criterion that further biases physi-
cians’ diagnostic patterns to recognize women with the disor-
der. Societal stigma contributes to later recognition of eating
disorders in men, with a study noting that 30% of men sur-
veyed had been misdiagnosed due to not fulfilling the gendered
stereotype of patients with eating disorders (57). Outcomes are
even worse in transgender patients, who describe being misgen-
dered or withholding gender information from physicians due
to worries about stigma, and therefore receiving substandard
care (63).

Compounded Bias, False Conclusions,
Incorrect Care
Importantly, biases within EHR data do not occur as the result
of a single interaction or societal factor. Rather, we expect that
repeated, longitudinal interactions with healthcare systems will
result in compound biases. Specifically, any given psychiatric
diagnosis or treatment is non-independent of previous diag-
nosis or treatments, and therefore, biases present in diagnosis
or treatment are amplified over time. Initial bias is likely to
be compounded if the original diagnosis was biased, generat-
ing biased treatments, poor patient outcomes and misguided
understanding of underlying biology.

For example, in Figure 4, we compare diagnostic journeys for
two individuals through a healthcare system. First, we describe
the assumed, ‘ideal’ diagnostic journey of an individual (Fig. 4;
left). An initial appointment produces a preliminary diagnosis
(Dx1), with some uncertainty (σ 1); a second visit refines this
diagnosis (Dx2), resulting in reduced diagnostic uncertainty (such
that σ 2 < σ 1), and perhaps including an appropriate treatment
(Tx2). Subsequent visits result in further refinement of diagnoses
and identification of increasingly appropriate treatments, and
uncertainty continues to reduce (σ 3 < < σ 1). However, this sce-
nario does not accurately reflect the impact of compound bias
throughout the system (Fig. 4; right). In this scenario, bias (B)
is introduced when assigning diagnoses and treatments and
is compounded across visits. Rather than arriving at a refined
diagnosis with low uncertainty, this patient may instead face
iterative and compound diagnostic biases (B, B | Dx1, B | Dx2),
as well as iterative and compound biases relating to treatment
(B | Tx1) and treatment response (B | R | Tx1). As each sub-
sequent diagnosis and treatment is related to previous ones,
compounded bias occurs as an individual further interacts with
the healthcare system. Given that both unbiased and biased
data appear identical in an EHR, we cannot, for example, differ-
entiate true psychotic disease with resistance from inaccurate
diagnosis resulting in non-response. Accordingly, as we develop
definitions of phenotypes based on algorithmic approaches to
large datasets, we must find a way to differentiate between
phenotypes characterized by variables encoded in the EHR and
those that are a result of variables within the variables, such as
bias, that will generate precisely false conclusions.
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Figure 3. Systemic differences in psychosis diagnosis and treatment in EHR. (A) Odds ratio for psychosis by racial group, normalized to racial makeup of all patients.

(B) Odds ratio for racial distribution of schizophrenia versus depression with psychosis. (C) Odds ratio for Haldol administration in psychosis patients by racial group,

normalized to racial makeup of all patients. (D) Odds ratio for Haldol administration in psychosis patients by racial group, normalized to racial makeup of psychosis

patients.

Frameworks for Uncovering Implicit Bias in
Variables: Proposed Analytic Approaches

Creating automated algorithms to identify patterns and infer
phenotypes in EHR is attractive in its simplicity and potential
power. Simple definitions of case counts and specific treatments
may rapidly and easily expand case and control counts for
GWAS or other studies that require amassing very large case and
control numbers to maximize power. However, we urge caution
in the development and application of these algorithms. We
have demonstrated that, far from being gold standard, validated
phenotyping tools, EHR may encode several levels of systemic,

compound bias in arriving at treatments and diagnosis. Put sim-
ply, we expect that a person’s race, gender identity, sexuality and
many other intersectional factors will impact their experiences
of our healthcare systems. Consequently, algorithms and tools
that process EHR data without adjustment risk encoding, and
potentially reinforcing, such bias in downstream analyses.

Here, we outline analytical approaches that may be adopted
to characterize and minimize diagnostic bias in EHR analy-
ses. First, researchers should seek to minimize phenome-wide
heterogeneity among cases and controls as defined in their
studies. Broadly, we expect that patterns of comorbidities and
known risk factors should present at relatively stable levels
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Figure 4. Diagnostic journeys for two individuals through a healthcare system. Left: an ‘ideal’ non-biased diagnostic journey. Visit 1 produces a preliminary diagnosis

(Dx1), with some uncertainty (σ1); a second visit refines this diagnosis (Dx2), resulting in reduced diagnostic uncertainty (σ2 <σ1) and treatment (Tx2). Visit 3 results

in an increasingly appropriate diagnosis and treatment, and uncertainty continues to reduce (σ3 < < σ1). Right: modelling potential compound bias throughout a

diagnostic journey. Here, an initial visit results in a diagnosis (Dx1) influenced by both uncertainty (σ1) and bias (B). Bias compounds across visits; Dx2 is influenced by

both current physician bias (B) and bias relating to the previous diagnosis (B | Dx1). Similarly, treatments assigned at visit 3 will be influenced by compound bias based

on knowledge of previous treatment options (B | Tx1) and response to those treatments (B | R | Tx1). Hx, hospital system; Dx, diagnosis; Tx, treatment; σ , uncertainty; B,

bias; B | Dx, bias regarding previous diagnosis Dx; B | Tx, bias regarding previous treatment Tx; R | Tx, response to treatment Tx.

across all case or controls groups within the sample (e.g. when
partitioning samples according to race or gender), unless there
is strong biological reason to expect otherwise. Although we
expect natural fluctuations in comorbidities between cases, we
do not expect systematic differences in comorbidity profiles
between case groups. For example, consider a diagnosis of SCZ
applied in three groups of patients (White, Black and Hispanic),
as in our earlier example. We have shown that both the initial
diagnosis and downstream treatments for the diagnosis are
significantly biased between these three groups. Consequently,
we might also expect different comorbidity profiles or treatment
histories among these three groups; most obviously, different
medications prescribed and taken (as we have shown), but also
differential rates of other, similar diagnoses (e.g. depression with
psychosis versus SCZ). Such phenome-wide differences may be
present across a broad range of diagnoses, are indicative of
biased case/control assignments and will confound downstream
genetic associations. Many well-established methods exist for
researchers to probe comorbidity profile and phenome-wide
associations. For example, phenome-wide association studies
(9–11,64–68) or lab-wide association studies (69) systematically
probe associations across the full EHR, whereas phenotype risk

score approaches (70) identify significant phenome-wide risk
factors and predictors of disease outcomes and trajectories.

Second, where possible, researchers should consider order
and convergence of diagnoses across the lifespan. Approaching
EHR analyses as retrospective ‘snapshots’ risks wrongly
conflating unrelated symptoms occurring years or even decades
apart. For example, reasonable EHR approaches to automatically
identifying individuals with treatment-resistant depression
may select individuals with a history of multiple depression
diagnoses and multiple prescriptions of antidepressants. Failure
to account properly for order and times between these events
may conflate separate, unrelated episodes of depression or
treatments, reducing case-definition specificity and resulting
in underpowered studies. In Figure 5A, we illustrate three
individuals with various lifetime diagnoses and treatments.
From a ‘snapshot’ perspective, all individuals have identical
phenome-wide profiles. However, sampling throughout the
life course will produce radically different phenomes for each
individual. Furthermore, sequential diagnoses, versus simul-
taneous diagnoses or treatments, may allow for introduction
of different biases, which should be carefully considered. For
example, historical biases as diagnostic boundaries shift and
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Figure 5. Approaches to detect biases in EHR. (A) Consider order and convergence of diagnoses across the lifespan. Here, we consider three individuals (dark blue,

light blue and grey), with identical variables within the EHR (single-dashed lines represent identical diagnoses, etc.). From a retrospective, ‘snapshot’ perspective, all

individuals appear identical; however, order and persistence of diagnoses clearly differ. (B) Leverage known biology. Here, we illustrate how polygenic risk scores might

be applied to test accuracy of phenotype definitions. In this case, we consider controls (‘-’), schizophrenia cases (‘+’) and individuals with ‘TRS’. If these definitions are

accurately assigned, we expect increased PRS in cases versus controls and in TRS versus others (blue). If however some bias affects phenotype assignment, we may

identify a group of individuals with divergent PRS (grey). (C) Here, we illustrate three EHR (EHR1, EHR2 and EHR3), with overlapping but not identical sets of biases B and

phenotypes [x1 . . . xN]. Genotypic and phenotypic associations {SNPs, ICDx}, which are present across multiple different EHR are more likely to represent true biological

signal rather than representing biased inferences.

f luctuate, or compound biases across iterations of hospital visits
(Fig. 4).

Third, researchers should leverage known biology to probe
the accuracy of diagnostic classifications. Although insufficient
for clinical predictions when used alone, polygenic risk scores
(PRS) or known genetic correlations between traits may be used
to provide additional evidence for diagnostic classifications. In
Figure 5B, we take treatment-resistant schizophrenia (TRS) in an
EHR as an example. ‘Case’ status in these studies may be ascer-
tained through clinician interview and validation (in best case
scenarios) or by automated mining of antipsychotic prescription
history to identify increasing dosages and/or large numbers of
different antipsychotic drug prescriptions. We suggest that the
latter approach may identify two distinct groups: first, individ-
uals truly suffering from TRS; second, individuals with some
separate, distinct disorder. Antipsychotic treatment in these
instances will be ineffective (treating not a core symptom, but

rather a misdiagnosis). In order to disentangle these groups,
we can leverage known biology. For example, previous work
has demonstrated that individuals with TRS have significantly
increased SCZ–PRS compared with both controls and SCZ cases.
Modelling SCZ–PRS among controls, SCZ cases and TRS ‘cases’
may validate diagnosis (individuals shown in blue, Fig. 5B) or
conversely may indicate misdiagnosis (individuals shown in
black, Fig. 5B).

To date, validation in genetic association studies has relied
upon replication in an independent dataset. For researchers
using EHR data, we caution that systemic biases will differ across
healthcare systems, likely in a non-random fashion. Studies at
each EHR site must be carefully tailored to characterize and
address specific local data biases; this may mean development
of individual algorithms and approaches separately within each
healthcare system. Here, we propose that the same theoret-
ical framework underpinning trans-ancestral fine-mapping of
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genomic loci may be useful to researchers. That is, associa-
tions that are present across multiple different EHR are more
likely to represent true biological signal rather than representing
biased inferences (Fig. 5C). In order to infer potential sources
of shared and distinct biases across healthcare systems and
EHR, researchers should consider carefully the various systemic
biases that may be inherent in each different cohort in their
studies, considering, for example, different local, governmental
and legal structures in place at each site.

Any algorithmic approach built on bias will perpetuate bias
and false conclusions. Without knowledge of the exact nature
of the bias itself, it is possible to design algorithmic approaches
to large structured datasets that may leverage this uncertainty
to identify the impact of implicit bias on variables. Overall, the
development of analytical frameworks to address bias in large
datasets has the potential to both elucidate biology of disease
and characterize implicit bias encoded in systems.
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