Abstract

Although there are several methods for genotyping previously identified single nucleotide polymorphisms (SNPs), there is a paucity of approaches for high-throughput scanning for unknown variations. Mismatch repair detection (MRD) utilizes a bacterial mismatch repair system in vivo to detect sequence variants in human DNA samples. We describe modifications in MRD that allow a high degree of parallel processing, and use this modified version to accurately scan for variations in 35 different human DNA fragments simultaneously. MRD’s potential for high-throughput scanning can be used to identify new SNPs and to comprehensively compare sequences between patients and controls for identifying disease susceptibility alleles.

You do not currently have access to this article.