Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. However, we know little of mutational spectrum in the Chinese population. Thus, here we report the identification of somatic mutations for Chinese PTC using 402 tumor-normal pairs (Discovery: 91 pairs via exome sequencing; validation: 311 pairs via Sanger sequencing). We observed three distinct mutational signatures, evidently different from the two mutational signatures among Caucasian PTCs. Ten significantly mutated genes were identified, most previously uncharacterized. Notably, we found that long non-coding RNA (lncRNA) GAS8-AS1 is the secondary most frequently altered gene and acts as a novel tumor suppressor in PTC. As a mutation hotspot, the c.713A>G/714T>C dinucleotide substitution was found among 89.1% patients with GAS8-AS1 mutations and associated with advanced PTC disease (P = 0.009). Interestingly, the wild-type lncRNA GAS8-AS1 (A713T714) showed consistently higher capability to inhibit cancer cell growth compared to the mutated lncRNA (G713C714). Further studies also elucidated the oncogene nature of the G protein-coupled receptor LPAR4 and its c.872T>G (p.Ile291Ser) mutation in PTC malignant transformation. The BRAF c.1799T>A (p.Val600Glu) substitution was present in 59.0% Chinese PTCs, more frequently observed in patients with lymph node metastasis (P = 1.6 × 10−4). Together our study defines a exome mutational spectrum of PTC in the Chinese population and highlights lncRNA GAS8-AS1 and LPAR4 as potential diagnostics and therapeutic targets.

You do not currently have access to this article.