Abstract

Next generation sequencing (NGS) has ignited an unprecedented pace of discovery in the biomedical sciences that is fundamentally transforming the way that we understand, diagnose and treat disease, and has motivated the belief that true precision medicine – medicine that is tailored to an individual’s genetic, biochemical and exposure profile – will be a reality in the near term. With minimal sample requirement, NGS can enable the concurrent genome-wide study of genetic variations, transcriptomes, and certain epigenetic modifications. However, interrogating proteins as efficiently as DNA and RNA can be interrogated with NGS is lacking and this hampers more comprehensive views of molecular physiology and limits advances in biomedical science and precision medicine. The fact is that innovations in proteomic technologies pale in comparison to the advances in NGS, with current methodologies suffering from issues related to reproducibility, sensitivity, sample requirements, and limited multiplexing capacity. The development of proteomic technologies to overcome these limitations would fill the void in systems biology research, catalyze clinical innovations, and expedite the realization of precision medicine.

You do not currently have access to this article.