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Haplotype tagging is a means of retaining most of the information in high density marker maps, while
reducing genotyping requirements. Estimates of the numbers of tagging SNPs required to cover the
human genome have varied widely, ranging from 100 000 to 1 000 000. Tagging has been applied to a
number of gene-based datasets but has not been evaluated in contexts reflecting those of genome-wide
association studies—large chromosome regions and multiple samples drawn from the same population.
We analysed 5000 common markers across a 10 Mb segment of human chromosome 20 in three samples
(UK Caucasian, CEPH Caucasian, African American) to evaluate tagging efficiency and consistency.
Overall, the results indicate a high degree of efficiency, yielding 3–5-fold savings in Caucasians and
2–3-fold savings in African Americans. These levels varied according to linkage disequilibrium (LD) levels,
tagging thresholds and allele frequencies, but in high LD regions they did not vary markedly due to
marker density. However, a strong positive relationship between marker density and tagging was observed,
relating to the fact that increasing marker density yields greater sequence coverage in high LD, thus requiring
more tag SNPs to cover a greater fraction of the genome. Encouragingly, whatever the density employed,
a high level of robustness was observed between UK and CEPH samples, as most of the htSNPs selected
in one sample were also appropriate as tags in the other.

INTRODUCTION

High-density sets of well-characterized genetic markers are
emerging for complete human chromosomes or large con-
tiguous regions (1,2) (http://www.hapmap.org/downloads/
encode1.html.en), and have been assembled for a number of
specific genes (3–6). It is expected that validated SNP maps
of 1 marker/5 Kb will soon encompass the entire human
genome as part of the international HapMap project (7).
By providing a very large set of validated SNPs in multiple
populations, the HapMap project aims to benefit indirect
association studies across a wide-range of complex traits.

When markers are correlated in the population (i.e. in
linkage disequilibrium, LD), redundant information exists
in the sense that the observed genotypes at one marker yield
information about those at another. In the most extreme
case, two SNPs may be perfectly correlated in the population
(the r2 LD measure ¼ 1.0), so that each individual’s genotype
at one SNP is completely determined by that at the other.

In this case, there is nothing to be gained by genotyping
both SNPs, as either will suffice. In less extreme cases,
thresholds can be chosen so that a lower value of the r2 coeffi-
cient is deemed acceptable or that specific markers are
selected to predict a subset of all observed haplotypes. In
general, selection of non-redundant markers from a larger
set has been called ‘haplotype tagging’, and the result-
ing SNPs selected are referred to as haplotype-tag SNPs
(htSNPs) or just tag-SNPs (tSNPs) (8,9). Given an initial set
of densely spaced and potentially redundant markers, haplo-
type tagging aims to reduce the scale and cost of genotyping
in subsequent applications, yet maintain most or all of the
information provided in the dense map.

A number of different algorithms and computer pro-
grammes have been developed to define sets of htSNPs
(1,8,10–19) and it seems likely that these developments will
continue (comparisons and reviews in 9,12). Applications of
these approaches have generally focussed on genes (8,12,15,
16,19–22), small chromosome regions (9,23,24) and a large
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set of SNPs genotyped on a small number of individuals (1,10).
The results consistently point to efficiencies for tagging
common variants. Although there is substantial locus-specific
variability, the findings suggest an average savings of 2–5-
fold in Western European populations (9,19,20). As a result,
development of tagging marker sets is a key objective of the
HapMap project (7).

Despite the relatively large number of gene- and region-
based analyses of tagging SNPs, tagging characteristics have
not yet been evaluated in densely spaced SNPs covering
large chromosome regions in multiple populations, although
this is the real context of many trait association studies. Ques-
tions concerning chromosome-wide tagging efficiency, marker
density effects and consistency of results within populations
are of direct relevance for practical uses of haplotype tagging.
Here, we investigate these issues using approximately 5000
SNPs genotyped at a density of 1 SNP/2.3 Kb along a
10 Mb contiguous segment of chromosome 20q12–13.2
(25). The samples genotyped include 96 unrelated Caucasians
from the UK, 48 CEPH founders and 97 unrelated African
Americans (2). Apart from providing a dense set of SNPs
across a large region, a unique feature of this dataset is the
existence of two samples of Western European ancestry (UK
Caucasians and CEPH founders). Comparing the consistency
and robustness of haplotype tagging in these two samples
mirrors the expected use of tag SNPs in disease gene
studies, i.e. identifying htSNPs in one sample and applying
them in another sample drawn from the same population.

RESULTS

General levels of tagging efficiency

The overall efficiency of haplotype tagging across all high LD
regions of chromosome 20q12–q13.2 is shown in Figure 1,
using the full set (1 SNP/2.3 Kb) of markers of UK Caucasian
and African American samples. The efficiency is shown for
situations in which htSNPs were selected to explain all haplo-
types in the region, no matter how rare (labelled ‘100%
diversity’), versus those in which htSNPs were required to
account for 80% of the haplotype diversity.

The results in Figure 1 indicate several main trends. First,
summing over the entire 10 Mb region, tagging all haplotypes
in high LD regions yields reductions of �3-fold in Western
European samples and 2-fold in African American samples.
These savings are of similar magnitude of those described in
gene-based applications of tagging (9,20). Second, the effi-
ciency is notably reduced in samples of African ancestry,
owing to the well-known LD differences between African
populations and those from Western Europe (26). Finally,
relaxing the htSNP requirement so that only 80% of the
initial haplotypes are tagged yields a dramatic improvement
over the requirement of explaining all haplotype diversity.
The tagging efficiencies are nearly twice as high for 80%
diversity than for 100% diversity, in both Western European
samples and African American samples.

More detailed information about tagging efficiency is pre-
sented in Table 1, in which each region to be tagged is considered
in terms of the number of markers in the initial genotyping set.
With high-density panels, most regions of consistently high LD

are short and involve relatively few markers (2,6). This trend is
reflected in the values in the columns labelled ‘N regions’,
where it may be seen that for this 2 kb map most of the regions
contain less than 10 markers, although some can be exceptionally
long (regions of 40 or more markers imply an LD tract of
.80 Kb in length). The short regions are naturally less efficient
for tagging, as there are relatively few markers from which to
select htSNPs. In contrast, the long regions offer substantial
savings from tagging, reaching 12-fold reduction for the
longest high LD segments observed. In some regions of the
genome, as few as four markers may be needed to capture
most of the variability in a segment of 80–100 Kb.

Although haplotype reconstruction can be inaccurate and
tagging as a cost saving strategy is largely doubtful for low
LD regions, similar analyses were carried out for the low
LD regions anyway as a comparison and also for random
regions (regions without regard to LD) in the 10 Mb segment.
As expected, tagging in the low LD regions was less efficient
than that in random regions, which in turn was lower than
that in high LD regions. However, the trend, i.e. the dependency
of tagging efficiency on number of markers in a region, was
similar in all the three different kinds of regions.

Effects of allele frequencies

Figure 2 shows the haplotype r2 values between htSNP haplo-
types selected from a 5 Kb map and the unobserved or ‘hidden
SNPs’ of a 2.3 Kb map. Hidden SNPs in the 2.3 Kb map,
which had minor allele frequencies .20% were predicted very
well by htSNPs drawn from the 5 Kb map (haplotype
r2 . 0.85). However, the correlation with SNPs having rarer
alleles dropped rapidly, particularly in the case of htSNPs initially
chosen to explain 80% haplotype diversity, where the values
dropped to 0.75 and 0.59 for alleles of 10–20% and ,10%
frequency, respectively. These results emphasize the difficulties
in tagging SNPs with rare alleles, as discussed by Weale et al.

It might be expected that optimal htSNPs would have the
same allele frequency profile as the hidden SNPs they are

Figure 1. Haplotype tagging efficiency in a dense marker map. Efficiency is
defined as the total number of markers genotyped divided by the number of
htSNPs required to explain all haplotypes (100% diversity) or the most
common haplotypes (80% diversity). The results indicate average efficiencies
obtained across all high LD regions in the 1 SNP/2.3 Kb marker set on
chromosome 20. Dark bars denote UK Caucasian sample and light bars
depict African American sample.
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meant to tag, as is well established for marker allele
versus disease allele frequencies in association studies
(27–31). Average allele frequency differences between
htSNPs and their hidden SNPs are inlaid in Figure 2,
showing that the bigger the difference between hidden
SNPs and the htSNPs selected to tag them, the poorer the
predictive power. In general, however, this effect is uni-
directional. Situations in which hidden SNPs have higher
average MAF than the htSNPs in the region show relatively
slight decreases in haplotype r2, but those in which
the hidden SNPs are rarer than the tagging SNPs show steep
haplotype r2 reductions. This MAF deviation effect is also
related to the haplotype diversity required by htSNP sets,
with the relaxed set of htSNPs explaining 80% haplotype
diversity having larger allele frequency effects than the
htSNPs selected to explain 100% diversity. The tagging
methodology used here appears to efficiently and robustly
capture the information of hidden SNPs which are at least as
common as the specific htSNPs selected, but it performs
poorly for those which are less frequent in the population.
As might be expected of many tagging approaches, the
allele frequency of the SNPs selected for tagging is highly cor-
related with the frequencies of those in the region to be tagged
(Fig. 2A).

There are two scenarios observed in the data which are
relevant to the relationship between rare SNPs and htSNP
sets. A rare SNP could be associated with a specific haplotype
defined by htSNPs, in which case the haplotype r2 would be 1.0.
Alternatively, it could subdivide a particular haplotype and, in
that case, the haplotype r2 would be less than 1.0. How much of
a drop in haplotype r2 depended on the allele frequency of the
SNP itself as well as the frequency of the haplotype being sub-
divided, as illustrated by the haplotype r2 formula (see
Materials and Methods). When htSNPs were selected requiring
100% haplotype diversity, only 27% of rare hidden SNPs
(minor allele frequency ,10%) fell into the second scenario.
When 80% haplotype diversity was required instead, 100% of
such SNPs were found to be subdividing rather than associating
with a particular haplotype. Therefore, the savings in genotyp-
ing achieved by reducing the required haplotype diversity had a
significant impact on detecting rare causal SNPs because rare
haplotypes were usually ignored.

It has been suggested that tagging SNPs selected on the
basis of haplotype diversity or bins do not perform better
than randomly selected markers in retaining power (31). To
investigate whether this was true with our sample data in
the 10 Mb segment, we created five random marker sets at
the 1 SNP/5 Kb map (i.e. for each high LD region, the same

Table 1. Tagging efficiency as a function of the number of SNPs in the region to tag

Haplotype diversity N SNPs in
region

UK Caucasian African American

explained by htSNPs N regions htSNP efficiency N regions htSNP efficiency

High LD regions

100% 2–10 201 1.60 277 1.33
10–20 71 3.04 56 1.94
20–30 19 4.01 20 2.68
30–40 12 6.18 6 3.38
�40 15 8.85 13 5.29

80% 2–10 201 3.04 277 2.41
10–20 71 6.49 56 3.24
20–30 19 7.95 20 4.32
30–40 12 11.35 6 5.76
�40 15 11.96 13 6.16

Low LD regions

100% 2–10 15 1.22 35 1.14
10–20 4 2.45 16 1.40
20–30 0 1 1.62

80% 2–10 15 1.68 35 1.59
10–20 4 3.18 16 1.61
20–30 0 1 1.75

Random regions

100% 2–10 201 1.53 277 1.26
10–20 71 2.50 56 1.74
20–30 19 3.90 20 2.41
30–40 12 4.85 6 3.16
�40 15 6.11 13 4.62

80% 2–10 201 2.87 277 2.18
10–20 71 4.37 56 2.41
20–30 19 6.67 20 2.70
30–40 12 7.52 6 4.00
�40 15 9.95 13 5.12

Random regions were created whose number and size distribution were the same as the high LD regions.
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number of random markers as the tagging SNPs was selected).
We chose haplotype r2 as the evaluation measure to utilize
haplotype information in a similar way as in selecting
htSNPs. As shown in Figure 2, when 100% diversity was
required, htSNPs always performed better than random
SNPs. Dropping diversity to 80%, random markers would
perform slightly better than htSNPs only if a hidden SNP
was rare (minor allele frequency ,10%). This was likely
because rare haplotypes are excluded when htSNPs were
selected, whereas random marker sets could include them
by chance. For more common SNPs, higher correlation
coefficients were observed with htSNPs than with random
markers. This result suggests that tagging based on haplotype
diversity is in general a worthwhile effort.

Efficiency and consistency at different marker densities

To explore the effects of marker density on tagging efficiency
and consistency, we randomly selected subsets of markers
from the full dataset to yield marker panels with densities of
1 marker per 3, 4 and 5 Kb. The results in Figure 3 show

the tagging efficiency for the high LD regions of chromosome
20. When all haplotypes are explained by htSNPs, the effects
of different marker densities are relatively small; i.e. with
sparse maps, there are fewer initial markers genotyped than
with dense maps, but the proportion of htSNPs required is
approximately the same. In the case of 80% diversity,
however, there is a clear gain in efficiency as the density
increases. This gain is the result of adding markers in
regions of high LD, which only account for a few, if any,
rare haplotypes and, therefore, do not contribute enough to
the haplotype diversity to be tagged.

Using the same increasing density strategy, we also con-
sidered each of the new markers as a ‘hidden SNP’ and
tested the explanatory power of the htSNP sets identified in
the initial marker set using haplotype r2 (12). For every new
SNP in the full marker set (1 SNP/2.3 Kb), the haplotype r2

of the htSNPs identified at an initial density of 1 SNP/5 Kb
for the high LD regions was evaluated. For the unrelated
Western European samples, when the initial htSNPs
were selected to explain 100% of the haplotype diversity in
the 5 Kb panel, those same htSNPs revealed an average haplo-
type r2 of 0.93 with haplotypes defined by the 2.3 Kb set of
markers. When the initial htSNPs were selected to explain
80% of the haplotype diversity, their average haplotype r2 in
the dense set was 0.80. The results for African American
data were similar, with respective haplotype r2 values of
0.91 and 0.79. These results suggest that htSNPs drawn from
high LD regions at a 5 Kb density explain nearly as much of
the variability in those same regions as those drawn from a
map having twice as many markers.

Despite the apparent similarities in haplotype r2 across
densities and the gains in efficiency with increasing density,
the number of SNPs required to tag a region increases with
marker density (Table 2). In Western Europeans, the number
of htSNPs nearly doubles in the 5–2.3 Kb density range
(340–619); whereas in African Americans, the effect is even
more pronounced, increasing .3-fold (319–970).

To further explore the relationship between LD, marker
density and tagging requirements, we applied the tagging
approach of Carlson et al. (19). This approach relaxes all

Figure 2. Relationship of allele frequency patterns to tagging efficiency.
(A) Scatterplot between average minor allele frequencies (AvMAF) of
known markers in high LD regions and AvMAF of their individual htSNP
sets. The results show the allele frequency correspondence for htSNPs selected
at a 1 SNP/5 Kb density and required to explain 100% of the haplotype
diversity. (B) Average haplotype r2 for all hidden SNPs as a function of
their minor allele frequency. The inset lines show the relationship between
haplotype r2 and the average difference in allele frequency between the
hidden SNP and the observed SNPs. For high LD regions, htSNPs selected
at the 1 SNP/5 Kb marker set, with required haplotype diversity at 100%
(solid lines with cycled data points) or 80% (solid lines with squared
data points), were applied to the marker set of 1 SNP/2.3 Kb density. As a
comparison, five randomly selected marker sets with equivalent number of
markers as the htSNP sets at both 100% (dashed line with circles) and 80%
haplotype diversity (dashed line with squares) were also created for
each high LD region at the 1 SNP/5 Kb density. These random markers
were also applied to the marker set of 1 SNP/2.3 Kb density in the same
way as htSNPs.

Figure 3. Effects of marker density on tagging efficiency. The main figure
shows the tagging efficiency obtained in UK Caucasian samples for subsets
of the full dataset which yielded the map densities as shown. Dark bars
indicate 100% diversity required and light bars 80% diversity required
when tagging SNPs were selected.
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block requirements and uses only the correlations between all
markers, whatever their respective locations. Application of
this approach also yielded a substantial increase in the
number of markers required according to marker density
(Table 2). The number of tag SNPs required by this method
is, in part, higher than those from the block-based approach
because the former attempts to cover the entire region,
whereas the latter focuses only on high LD regions.

As chromosome 20 represents �2% of the genome (25) and
the 10 Mb region represents about 1/6 of chromosome 20,
general extrapolations of genome-wide requirements may be
obtained by multiplying the chromosome 20 figures by 300.
These extrapolations, shown in Table 2, reveal very different
estimates of tagging requirements from the high LD versus
entire region assessments. The extrapolations suggest that
focussing on only high LD would require only about
100 000–300 000 for Western European or African American
samples, whatever the density (up to 2.3 Kb), whereas
attempting to encompass both high and low LD regions
would necessitate about three to four times more markers,
nearing 1 million for Western Europeans and exceeding
that figure for African Americans. These different figures
suggest that the actual number of tag SNPs required depends
explicitly on the aims and assumptions of the investigator,
as well as the marker density, local LD patterns and tagging
methods used.

Using tag SNPs in new samples

The main objective of haplotype tagging is to genotype
densely in one sample in order to reduce the genotyping
required in subsequent applications. The primary assumption
underlying this objective is that the frequency patterns of
common haplotypes are similar within populations, and thus
htSNPs selected in one sample should provide the same
coverage in another sample drawn from the same population.
We evaluated the level of consistency in Western Europeans
by comparing the properties of htSNPs in our UK Caucasian
sample with CEPH founders, all of which are of Western
European ancestry. We selected htSNPs from UK Caucasians
and then evaluated the degree to which they explain the hap-
lotypes in CEPH founders. Table 3 shows that the haplotype r2

remains very high in the dense marker panels. For example,

htSNPs selected to explain 100% haplotype diversity in UK
Caucasian samples explain 96% of the variance in CEPH hap-
lotypes, and htSNPs covering 80% of UK Caucasian diversity
explain 73% of that in CEPH data. Similarly, there is a large
degree of overlap between the htSNPs chosen in the two
samples; �90% of the htSNPs selected in one sample would
also be selected as htSNPs in the other sample. This pro-
portional overlap does not differ between the 100% and 80%
diversity requirement. Compared with the high consistency
of tagging within West European population, the correspond-
ing figures dropped when the same htSNPs were applied to
African American samples, particularly if the diversity was
80% in which the haplotype r2 dropped to 0.58.

To further explore the generalizability of tagging SNPs, we
compared UK and CEPH data for map densities of 2.6, 3, 4,
5 Kb. By selecting htSNPs at a coarse density in UK
sample, and then looking at how well they explain the haplo-
types derived from a finer SNP map in CEPH data, we can
begin to appreciate how much practical information might
be gained by extending current maps of �1 SNP/5 Kb to
finer-scale marker densities. Table 4 shows that when LD is
high, there is apparently little difference in sample consistency
between tagging at a 5 Kb density and tagging at a 2.3 Kb
density. The diagonal elements in Table 4 indicate that for
htSNPs selected to explain 100% of the diversity in one
sample (lower matrix), the haplotype r2 is at least 95% for
another sample genotyped at the same marker density. This
level of consistency is similar to that observed within the
same sample but at different marker densities (Figs 2 and 3).
The off-diagonal elements show haplotype r2 values in
excess of 93% when a coarser map is used to define the
htSNPs in another sample. When the htSNPs are selected to
explain 80% of the diversity (upper matrix), the loss of
explained variance is similarly small, with all haplotype r2

values at least 0.73.

DISCUSSION

In this study, properties of tagging SNPs were analysed using
approximately 5000 SNPs genotyped in multiple samples
across a 10 Mb segment of human chromosome 20. Haplotype
correlations between tagging SNP sets and ungenotyped

Table 2. Number of tagging SNPs required for chromosome 20, with genome-wide extrapolations

Map density (Kb) Chromosome 20q12–q13.2 Genome-wide extrapolation

N markers
in region

Sequence in
high LD (%)

N htSNPs to
cover high LD

N tag SNPs to
cover entire region

N htSNPs to
cover high LD

N htSNPs to cover
entire genome

UK Caucasians
5 2020 52 340 1081 102 000 324 300
4 2525 58 425 1373 127 500 411 900
3 3366 64 498 1911 149 400 573 300
2.3 4337 68 609 2787 182 700 836 100

African Americans
5 2020 38 319 1398 95 700 419 400
4 2525 42 567 1713 170 100 513 900
3 3366 50 758 2328 227 400 698 400
2.3 4337 56 970 3472 291 000 1 041 600
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SNPs were used as a measure of the reduction in power to
detect effects at unassayed SNPs. Several of the present
results from our analyses of this large contiguous region are
in strong agreement with those previously obtained using
smaller marker sets in genes and gene-regions (9,19,20).
Others, particularly those relating to marker density and the
comparisons of UK and CEPH samples, extend the previous
results into the practical context of local gene discovery and
eventually genome-wide association.

On average, haplotype tagging offers consistent genotyping
savings in regions of high LD, although the level of efficiency
varies substantially according to allele frequency of htSNPs
versus ungenotyped markers, size and marker coverage
of the genomic region and extent of haplotype diversity
explained. The efficiency is particularly strong in large
genomic tracts of high LD, where the savings occur due to
the redundancy of many markers spread over a large distance.
The highest level of savings observed on chromosome 20 was
12-fold in UK Caucasians and 6-fold in African Americans. In
contrast, small genomic regions or those in which LD was low
revealed almost no gains from haplotype tagging.

In most haplotype tagging methods, including those
employed here, arbitrary thresholds must be set concerning
the level of haplotype diversity, marker correlations or pro-
portion of variance explained by htSNPs. Our results suggest
that the exact level of these thresholds may have important
implications for the efficiency and robustness of the tagging
process. A strict criterion in which htSNPs were required to
explain 100% of the haplotype diversity yielded about one-
half of the level of savings as a criterion of explaining only
80% of the diversity (3.0- versus 5.7-fold in Caucasians; 1.9-
versus 3.3-fold reductions in African Americans). It is not
surprising that stricter thresholds demand more genotyping,
but the high level of change is relevant for association study
design.

Allele frequencies are a key feature of haplotype tagging
(12). The present results suggest that the most important
feature is not simply whether htSNPs are rare or common,

but the extent to which they match the frequencies of ungeno-
typed (or ‘hidden’) SNPs. Tagging was much less reliable for
untagged SNPs which were rarer than the htSNPs selected
than for those that were at least as common as the htSNPs.
In addition, the high correlation between htSNPs and the
underlying hidden SNPs may have implications for disease
gene mapping. For example, if a causal SNP occurs at a fre-
quency that is different from the average of the observed set
of markers in a region, the chance of this causal SNP being
detected by any of the htSNP sets in the region would be
low, especially if the SNP was rare. The closer the frequencies
values, the greater the likelihood of detecting the association
effects by haplotype tagging.

The primary objective of this study was to evaluate effi-
ciency and reliability of tagging in practical settings. In this
regard, the results are encouraging, as different marker den-
sities did not have a serious impact on the efficiency or
reliability of haplotype tagging on chromosome 20. We eval-
uated the effects of marker density on haplotype tagging
by choosing subsets of our full (1 SNP/2.3 Kb) marker set
to create panels in which SNPs were 3, 4 and 5 Kb apart.
The 1 SNP/5 Kb density represents what is proposed for
the initial version of the genome-wide haplotype map (7).
Nearly 80% of the htSNPs selected at the 1 SNP/5 Kb density
map remained htSNPs at the full marker density, a figure
which increased when more relaxed levels of explanatory
power of htSNPs were allowed. Also, in high LD regions,
markers selected at the 1 SNP/5 Kb density explained nearly
the same proportion of haplotype variance in a 1 SNP/2.3 Kb
map as they were required to explain to meet the initial
selection. This holds promise for using tagging strategies to
reduce the amount of genotyping effort for common alleles.

A very high degree of consistency was observed between
htSNPs selected in our sample of UK Caucasians and US-
based CEPH samples. At least 80% of the htSNPs selected
in UK Caucasian set would also have been selected as
htSNPs in the CEPHs in all situations examined. Moreover,
in high LD regions, the proportion of variation explained

Table 3. Robustness of htSNPs selected in sample of UK unrelateds when applied to CEPH sample

Haplotype diversity
explained by
htSNPs (%)

N SNPs in
region

N htSNPs in N htSNPs in common Haplotype r2

CAUC CEPH AFAM CAUC–CEPH CAUC–AFAM CAUC–CEPH CAUC–AFAM

100 2139 843 958 1156 757 (90%) 753 (89%) 0.96 0.84
80 2139 431 438 727 385 (89%) 355 (82%) 0.73 0.58

CAUC denotes UK Caucasians; CEPH denotes CEPH founders and AFAM African Americans.

Table 4. Haplotype r2 in the CEPH samples for htSNPs selected in UK unrelateds

UK unrelated (80% diversity)
2 Kb 3 Kb 4 Kb 5 Kb

UK unrelated 2 Kb 0.96 0.75 0.75 0.74 0.73 2 Kb CEPH founders

(100% diversity) 3 Kb 0.95 0.96 0.74 0.74 0.73 3 Kb
4 Kb 0.94 0.94 0.96 0.74 0.73 4 Kb
5 Kb 0.93 0.93 0.94 0.95 0.73 5 Kb

2 Kb 3 Kb 4 Kb 5 Kb
CEPH founders
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by htSNPs in UK Caucasian sample was nearly unchanged
when those same SNPs were applied to CEPH data (all
differences in haplotype r2

� 0.07).
A main outcome from the present study concerns the

relationship between marker density and tag SNP selection.
The results suggest that the tagging SNPs selected in high
LD regions are largely robust to variability in marker
density, but at the same time the number of tag SNPs required
increases as marker spacing becomes more dense. These
findings may be seen as contradictory, since the efficiency
suggests greater economy of genotyping whatever the
density, whereas the increase in numbers of htSNPs suggests
less efficiency. Why is this so? At least one reason for the
apparent discrepancy relates to LD. By definition, tagging
requires markers to be correlated: higher LD leads to greater
efficiency. However, with sparse maps, less of the genome is
in high LD than with denser maps. On chromosome 20, only
52% of the 10 Mb segment is in high LD when evaluated
using a 5 Kb map, but the high LD sequence coverage is
�70% with a 2.3 Kb map (Table 2). Thus, fewer markers
are required with sparse maps, but less of the chromosome
is tagged, and consequently, as the density increases, more
markers are required to encompass a greater fraction of the
chromosome.

Extrapolations from the chromosome 20 data to the number
of htSNPs required to cover the human genome highlight the
density/LD relationship. If one is interested only in high LD
regions, only 100 000–300 000 markers may be required.
However, if the tag SNPs are selected from a 5 Kb map,
only �50% of the genome will be covered, since that is
roughly the fraction of the genome in high LD at 5 Kb
density. Using higher density markers clearly improves the
coverage, but at even a 1 SNP every 2 Kb only �70% of
chromosome 20 is covered in our sample of Western
Europeans, and less so in African Americans. For complete
or near-complete coverage of the genome, including both
high and low LD regions, three to four times more SNPs
may be needed than that for the high LD regions only, i.e.
�1 000 000 or more selected genetic markers. Interestingly,
the lower estimates are consistent with some previous sugges-
tions (9), whereas the higher estimates are in line with other
reports (19,20). It thus seems possible that one reason for
the apparent discrepancy in tagging estimates is simply differ-
ent aims of genomic coverage and assumptions about LD pat-
terns by different investigators. Our chromosome 20 data are
consistent with both estimates when taking into account the
different underlying study objectives.

Although the present results are generally encouraging, it is
important to emphasize that certain important questions
remain that were not possible to address in the present dataset.
First, consideration of rare alleles is clearly a key issue for
haplotype tagging. Our results point to some important conse-
quences of allele frequency, but we cannot formally assess the
effects below the range of �4% minor allele frequency due to
the genotyping and SNP ascertainment strategies used.
Second, our sample sizes are generally small, though typical
of those often examined in LD and tagging assessments. It
will be important to evaluate the robustness of the LD patterns
and the htSNP selections in samples of the size which is
likely to be used in practical disease applications, i.e. thousands

of individuals. Third, as one of the shorter chromosomes in
the human genome, chromosome 20 has a higher overall recom-
bination rate than the genome average (32). Accordingly, the
levels of LD are lower and the total sequence covered in high
LD is less than some other parts of the genome. Thus, the
genome-wide extrapolations from these data may reflect upper
bounds on the estimates. Finally, UK and US (CEPH) samples
examined here are likely to be more homogeneous than
those in the general population from which they were drawn.
Evaluating tagging consistency in more representative samples
would greatly assist in evaluating the practical utility of
tagging for large scale association studies.

MATERIALS AND METHODS

Samples and SNP genotyping

DNA was used from a panel of 96 UK Caucasian and 97
African American individuals. Details of the samples and
SNP genotyping are provided in the literature (2). A total of
4427 and 4938 markers were genotyped across a 10 Mb
region of chromosome 20 (contig NT_011362.7:3 726 000–
13 824 000 bp) in UK and African American samples, respect-
ively. In total, 4337 of the SNPs were common to both
populations, yielding an average density of 1 marker/2.3 Kb.
In order to evaluate the within-sample tagging consistency,
we also examined 48 CEPH founders genotyped on 5324
markers, of which 3810 were in common with the above
two population samples (1 marker/2.6 Kb).

Many of the variant sites assessed here were initially ident-
ified via resequencing of four individuals, yielding a slightly
greater proportion of rare marker alleles than typically found
in public databases. However, the genotyping technology
employed and the final marker selection protocol resulted in
a (largely) uniform distribution of allele frequencies, which
under-represents rare alleles in the human genome (33,34).
Allele frequency and marker spacing distributions, as well
as the LD patterns amongst the SNPs, are described by
Ke et al. (2).

Characterization of LD

The levels and patterns of LD are a critical feature of any
htSNP selection scheme and there are a variety of ways to
delimit regions for tagging (e.g. on the basis of genes, LD,
number of markers, physical spacing, recombination rates,
etc.). For simplicity in the present analysis, we dichotomize
the data into high LD segments versus everything else. We
do this in order to examine tagging properties in one of
the most optimistic scenarios (high LD) to gain a sense of
the best possible results, and then contrast this with situations
in which the marker correlations are more variable. We
defined high LD regions according to the haplotype block
definition of Gabriel et al. (35), though we note that tagging
does not require target regions to be delimited by blocks
or even by exceptionally high LD (8,9,19). This approach
is expected to yield high tagging efficiencies within blocks
since by definition they have high correlations amongst
component markers. We would expect that different
definitions of high LD could give different absolute results,
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but we might anticipate similar trends and general extrapol-
ations. In contrast, low LD regions outside blocks are less
amenable to tagging and less accurate for haplotype estimation
in population data (36).

Tagging SNP selection

For each high LD region partitioned by the block assessments,
haplotypes were estimated using snphap (http://www-gene.
cimr.cam.uk/clayton/software). For general htSNP selec-
tion, haplotypes with frequency ,0.01 were excluded and
then tagging SNPs were identified using the SNPtagger
programme (13).

For all block-based analyses, two sets of htSNPs were con-
structed and evaluated. In the first case, htSNPs were selected
to explain 100% of the haplotype diversity given the markers
analysed. This strict definition defines a baseline which is inef-
ficient but as robust as possible. It also provides a setting in
which the specific tagging methodology employed is expected
to be largely irrelevant, since different genotype-based tagging
approaches would likely have similar requirements to explain
all variability in haplotypes (19). As most tagging approaches
aim to capture ,100% of the underlying information, we also
employed a strategy of tagging of 80% of the haplotype
diversity.

In order to obtain a block-independent view of the overall
number of SNPs required to tag a region, we also used the
greedy algorithm of Carlson et al. (19), in which markers
exceeding an arbitrary LD level are collected in bins and tag
SNPs then selected from within each bin. This method pro-
vides an indication of the number of tag SNPs required for
any genomic region, which may encompass both high and
low LD runs. Following the suggestions of Carlson et al.,
we set the LD threshold at r2 ¼ 0.5 and used their LDselect.pl
script to identify common tSNPs (minor allele frequency
�0.05).

Measures of tagging consistency and efficiency

Following Weale et al. (12) and Goldstein et al. (9), we use
the haplotype r2, which reflects the degree to which a
tagging SNP set explains variability in the haplotypes it is
chosen to tag. For the ith tagged SNP in question, this
measure is calculated as

r2
i ¼ 1 2

2m2
P

g f giðhg 2 f giÞ=hg

2m2f ið1 2 f iÞ
;

where m is the total number of chromosomes observed, fi is
the frequency of allele ‘1’ at locus i, fgi is the frequency of
that allele on the gth haplotype and hg is the haplotype
frequency of the gth htSNP-defined group.

To assess the savings in genotyping offered by tagging, we
define ‘tagging efficiency’ as n/nh, where nh is the number of
htSNPs selected to cover the region. Note that n is the total
number of markers genotyped in this study; it does not
reflect any unascertained SNPs as we do not attempt to draw
inferences about marker densities finer than those presently
available. Regions that fell between two high LD regions

and contained only one marker were excluded from the
study, which counted for ,5% of the total markers in the
whole segment.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG Online.
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