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Genome-wide association studies have successfully identified numerous loci at which common variants
influence disease risk or quantitative traits. Despite these successes, the variants identified by these studies
have generally explained only a small fraction of the heritable component of disease risk, and have not pin-
pointed with certainty the causal variant(s) at the associated loci. Furthermore, the mechanisms of action by
which associated loci influence disease or quantitative phenotypes are often unclear, because we do not
know through which gene(s) the associated variants exert their effects or because these gene(s) are of
unknown function or have no clear connection to known disease biology. Thus, the initial set of genome-
wide association studies serve as a starting point for future genetic and functional studies. We outline poss-
ible next steps that may help accelerate progress from genetic studies to the biological knowledge that can
guide the development of predictive, preventive, or therapeutic measures.

INTRODUCTION

The first successful wave of genome-wide association (GWA)
studies has, over the last year, identified common variants
associated with numerous common polygenic diseases and
quantitative traits. As illustrated in several reviews in this
special issue, these GWA studies have mapped many novel,
convincingly associated loci [for example, at least 32 for
Crohn’s disease (1), 14 for prostate cancer (2), 15 for type 2
diabetes (3) and 40 for height (4–6)]. These discoveries
have more often than not implicated previously unsuspected
genes, highlighting the power of unbiased genetic screens to
uncover novel biology. However, these loci in combination
typically explain only a fraction of the inherited contribution
to risk, raising the question of how best to find the variation
responsible for the remainder. As discussed in several of the
articles in this issue, the successful GWA studies were often
poorly powered to discover most of the loci that they ident-
ified, indicating that more loci with equivalent effect sizes

can be discovered simply by increasing sample size. In
addition, most GWA studies have been completed in
European-derived populations, suggesting that performing
GWA studies in non-European samples will also be important
(7). However, it is not clear how much of the remaining
relevant variation will be uncovered by these steps.

In most cases, the associated loci themselves demand
additional exploration. The causal variant is usually not ident-
ified by GWA studies (see Finding Additional Associated Loci
and Variants section) and in some cases the causal variant may
be more strongly associated (and explain more of the risk) than
the marker detected in the initial GWA. Furthermore, the
associated loci remain essentially unexplored for independent
causal alleles, which may account for additional genetic risk.
Finally, it is possible that new approaches (such as genome-
wide resequencing) designed at detecting variants not well
assayed in current GWA studies will be required to define
more fully the inherited basis of common disease.
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One of the main goals of genetic studies of complex traits is
to flag pathways relevant to disease that could reveal novel
therapeutic targets. However, for most associated loci, there
is substantial ignorance regarding the mechanisms by which
genetic variation could influence phenotype: the identity of
the gene(s) affected by the susceptibility variant(s) at each
locus is often uncertain, and the mechanisms by which the
causal variants (also often unknown) influence phenotype is
usually unclear. This lack of knowledge is a substantial impe-
diment to the understanding needed to make progress towards
new therapies or preventive measures. This obstacle highlights
the need to pinpoint the causal variants and the genes affected
by those variants, as well as for informative functional and
computational studies to move from gene identification to
possible mechanisms that could guide translational progress.

Clearly, this first wave of GWA studies represents a starting
point on the journey to elucidating and understanding the
genetic basis of complex traits and common disease and trans-
lating this knowledge into clinically useful insights. In this
review, we describe some possible next steps. Specifically,
we outline possible approaches in three areas: finding
additional loci that contain causal variants, refining the
location and phenotypic consequences of causal variants and
progressing from known loci and variants to functional mech-
anisms. We do not address the ability to translate genetic dis-
coveries into predictive tests, as finding additional causal
variation is a necessary precursor to making genotype-based
predictors more accurate and useful.

FINDING ADDITIONAL ASSOCIATED LOCI

AND VARIANTS

Keeping with what’s working: the prospects
for more GWA studies

Most common diseases and quantitative traits have heritabil-
ities between 30 and 90% (8). With a few exceptions (1,9–
12), the loci discovered by association studies individually
account for a small fraction (,1%) of population variation,
and, even when considered in combination, most of the inher-
ited component of disease predisposition remains unexplained.
It is important to remember that the loci that have been ident-
ified have not yet been explored for additional variation
(common or rare) that could contribute to inherited variation
in risk. However, given the extent of the ‘missing heritability’
for most diseases and quantitative traits, as yet undiscovered
loci are also likely to be important. One immediate question
that arises is whether, given the small amount of variation
explained by the loci found in the first wave of GWA
studies, additional similar studies may be productive.

The total amount of inherited variation that will be discov-
ered with any particular sample size depends on the underlying
genetic architecture (the distribution of effect sizes): this is
extremely difficult to predict from initial association studies.
In general, diseases where individual loci have relatively
large effects (such as type 1 diabetes) have yielded additional
loci of moderate effect as sample sizes have increased (1), but
GWA studies have discovered multiple loci even for diseases
without major genes, such as type 2 diabetes (13–18). Despite
this unavoidable uncertainty, completed GWA studies can

give some guidance as to the likelihood that additional
GWA studies will identify novel loci. Most GWA studies
have actually had low power to discover the loci that have
emerged: for many of the loci identified, chance (in the form
of sampling error) played a useful role in boosting their detect-
ability (the so-called ‘winner’s curse’) (19,20). Therefore,
many loci of equivalent effect size are likely to be present,
and can be unearthed by additional studies. For example, if
a GWA has 5% power to detect each of 40 loci, one would
expect any single study to discover two of these on average,
leaving the remaining 38 to be identified by future studies.

Populations of different ancestry may also be helpful in dis-
covering new loci. Some genetic variation is private to popu-
lations with particular continental ancestry, preventing its
discovery in other populations. Effect sizes may be larger in
certain populations, thereby increasing power. Even if a
causal allele is present in multiple populations and has consist-
ent effect sizes, allele frequencies may vary across popu-
lations, leading to different power in different groups (21).
There are already several examples of variants that, despite
the emphasis on European-derived populations for GWA
studies, were discovered first in non-European-derived popu-
lations (22–24).

Moving beyond the main effects

Almost all GWA studies to date have concentrated on the
detection and characterization of main effects. While
opinion remains divided as to the extent to which non-additive
effects [often described in terms of gene–gene (G�G) and
gene–environment (G�E) interaction] will explain the
missing inherited risk not attributable to the variants so-far
uncovered, the truth is that there are very few empirical data
to guide us.

GWA studies provide a finite data set for exploring the joint
effects of genes. Why then, given that epistasis is so prevalent
in animal models (25), and with modifier genes implicated in
many ostensibly Mendelian diseases (26,27), have G�G
effects been so hard to detect? One obvious reason is that
the understandable reliance on main-effect testing and replica-
tion in validating association signals has biased discoveries
towards signals that are not subject to G�G contingencies.
As far as unbiased genome-scale G�G discovery is con-
cerned, the computational burden imposed by any comprehen-
sive search for higher-order effects has been an important
limitation (28). Another relates to sample size and power:
individual studies are only likely to detect interaction effects
substantially larger than the main effect-sizes that have so
far emerged. This follows, in part, from the very nature of
GWA scans: while incomplete linkage disequilibrium (LD)
(e.g. an r2 of 0.8) between the causal variant and a typed
proxy may be perfectly adequate for detecting main effects,
the power to detect non-additivity is severely dented when
the causal variant has not been directly assayed (29,30).
Exhaustive studies for G�G effects are therefore going to
be dependent on knowledge of causal variants (or failing
that, ever more dense GWA data), larger data-sets and more
efficient computational approaches.

The challenges with respect to the detection of G�E inter-
action (or, more generally, understanding of the joint effects of
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G and E) are, if anything, greater. The overall parameter space
is effectively unlimited (given all the possible exposures one
could conceive of) and many of the exposures most likely to
be relevant to disease predisposition (for example, diet and
physical activity in the case of diabetes) are hard to measure
in detailed, standardized fashion in large sample collections
(29,30). Such issues impinge on the power to detect G�E
effects in the first place, but also mean that differences
between study samples (with respect to the exposures them-
selves, and the measurements thereof) may make it extremely
difficult to differentiate between failure of replication and
genuine heterogeneity. This is particularly worrying since evi-
dence for heterogeneity of genetic effect attributable to vari-
ation in a given exposure is precisely what one needs for
identifying modifiable risk factors amenable to public health
intervention. Progress in this area is going to be dependent
on harmonization of biobank measures and outcomes on a
scale not yet attempted.

Assessing variation that is not captured in current
GWA studies

The commercial arrays used for GWA scans are designed to
provide excellent coverage of common SNPs, but have only
limited potential to capture rare and low frequency variants
(i.e. those with a minor allele frequency below 5%) (31).
[The specific case of detection of copy number variants is dis-
cussed in (32).] Indeed, the extent to which low-frequency,
intermediate penetrance variants contribute to disease predis-
position, and explain the large proportion of the inherited
risk yet to be localized, represents one of the major unan-
swered questions in human genetics. Such variants will have
‘flown below the radar’ of available genome-wide technol-
ogies, neither penetrant enough to show Mendelian segre-
gation and to be detected through traditional linkage
approaches, nor frequent enough to be captured by GWA
approaches. Yet, such variants could, individually and collec-
tively, have greater impact in terms of explaining familial risk,
and providing individual prediction of disease risk, than the
common variants emerging from GWA studies (33). For
instance, the locus-specific sibling relative risk attributable
to a variant with control MAF of 1% and a per-allele odds
ratio of 3 exceeds that of the strongest common T2D-
susceptibility variant currently known (TCF7L2) and around
30 such variants distributed across the genome could explain
all the residual missing inherited risk for this disease.

Identification of such variants remains a substantial challenge,
though advances in high-throughput resequencing technologies
and the efforts of the Thousand Genomes Project should
enable rapid progress. Initial efforts are likely to be focused
around genes already (by virtue of a role in monogenic or multi-
factorial forms of disease) implicated in disease pathogenesis,
since functional variants in such genes represent particularly
impressive candidates. Genome-wide surveys for such variants
are likely to become practical first in recent isolates and ‘self-
contained’ populations (such as Iceland and Finland) where
homozygosity mapping (34) and long-range haplotype phasing
(35) will prove valuable tools for the detection of rare
disease-associated haplotypes. Because low frequency variants
are likely to reflect relatively recent mutational events, evalu-

ation of signals emerging from any given study will likely be
complicated by substantial allelic heterogeneity and ethnic
differences: evidence that the variants identified are causal
may well need to be built up on a ‘locus-wide’ basis by studies
conducted across multiple samples.

More unusual sources of inherited variation

Large samples and currently available technologies, or those
that will likely be available in the near future, should enable
assessment of the various types of genetic variation described
earlier. It is possible that such comprehensive efforts, plus con-
sideration of gene–gene and gene–environment interactions,
will explain the bulk of inherited variance. However, epigenetic
effects, such as methylation or histone modifications, offer an
additional possible contribution to heritability. Note that epige-
netic effects that track with underlying DNA sequence variation
(36) should be detectable in the usual fashion: in this case, epi-
genetic effects are part of the explanation of mechanism by
which DNA variation affects phenotype. In addition, while
non-sequence-dependent epigenetic effects may also have
strong influences on gene expression and phenotype, they are
usually not transmitted across generations, so they are unlikely
to contribute to estimates of heritability (at least in the usual
scenario where twins and parent/offspring trios provide reason-
ably consistent estimates of heritability). However, one poten-
tial source of heritable variation not captured by traditional
approaches is epigenetic changes that are transmitted across
generations but where the inherited epigenetic state does
not track with underlying DNA sequence variation. Under
certain circumstances, changes in DNA methylation in mice
can be induced purely by dietary modification and then
transmitted across generations even after the dietary modi-
fication has been removed (37). As yet, similar heritable,
non-sequence-dependent changes in methylation or other epi-
genetic modifications of DNA have not been documented in
humans but, if these phenomena were prevalent in humans,
new approaches would be required to detect these effects.

GENETIC AND PHENOTYPIC

CHARACTERIZATION OF ASSOCIATED LOCI

AND CAUSAL VARIANTS

Genetic refinement of association signals identified
by GWA studies

With current imputation methods (38,39), about 3 million SNPs
[those in HapMap (40)] can be tested for association, either
because they have been directly genotyped or because their gen-
otypes can be imputed from data at nearby variants. However,
because there are many more than 3 million common variants
in the genome (41), not all common causal variants will be rep-
resented in HapMap and not all will have been tested, either
directly or indirectly through imputation. The current generation
of successful GWA studies will instead provide a list of common
variants that show convincing evidence of association because
they are correlated with nearby causal variants. Due to strong
LD throughout most of the genome (41), there will often be
several variants that show more or less equivalent evidence of
association for any given signal of association. There may also
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be multiple independent signals of association at a locus, such as
at 8q24 for prostate cancer (2), and the chromosome 9 locus for
type 2 diabetes (16).

If the goal were to identify markers of disease risk for the
purposes of prediction, validating associations without
further genetic localization of the source of the signal would
be a sufficient endpoint for GWA studies (assuming the
associated variant is reasonably tightly correlated to the
causal variant and thus accurately reflects the contribution to
inherited risk). However, to facilitate follow-up functional
studies or generate hypotheses regarding mechanism, it is
essential to refine the location of causal variants as sharply
as possible. [We note that fine mapping may also increase
the strength of association, although the gains in significance
may not be dramatic if the GWA study evaluated a reasonably
dense set of SNPs (42).] In the next few paragraphs, we
discuss possible steps to localize the variant(s) responsible
for a signal of association.

To generate a more comprehensive list of potential causal
variants that could explain an association signal, resequencing
across the entire region of association (at least out to the point
at which LD has substantially decayed) and confirmatory gen-
otyping efforts will generally be required. Improved sequen-
cing methodologies (43) currently make this task much more
practical than previously. Furthermore, the 1000 genomes
project, once completed, should lessen the necessity of the
sequencing step. We note that comprehensively searching
for additional causal variants that are independent from the
association signal and may be of lower frequency will
require much more substantial sequencing and genotyping
efforts, both in depth and breadth, to fully interrogate nearby
genes for possible additional susceptibility alleles.

Once a set of potential causal variants has been assembled
(from the variants showing the best evidence for association
in the GWA data, and any strongly-correlated newly identified
variants), various methods can be in theory be used to test
which are most likely to explain the signal of association
(44,45). One such method, stepwise logistic regression, can
be used to test whether one of a set of variants is necessary
and sufficient to explain the association signal—if variant A
remains significant with variant B in the regression model,
but variant B is not significant with variant A in the model,
than variant A is more likely to be causal. In practice, the com-
bination of strong LD (many pairs of variants have correlation
coefficients that approach 1) and modest effect sizes means
that samples of hundreds of thousands of individuals may be
required for this or any other method to distinguish between
multiple nearly equivalent variants. Indeed, the level of pair-
wise correlation between variants may approach the genotyp-
ing accuracy rate (often between 0.99 and 1 for directly
genotyped SNPs, and lower for imputed SNPs), in which
case even minimal genotyping error rates can still confound
these analyses. Thus, fine mapping will be challenging even
in large, densely genotyped data sets.

One method of lessening the obstacle of strong LD is to
perform fine mapping in populations of different ancestries,
in the hope that pairwise correlation coefficients will not be
equally high in all populations (and/or that additional causal
alleles with more attractive fine-mapping potential are
revealed). Individuals of recent African ancestry may be

particularly helpful because of the lower levels and often dis-
tinct patterns of LD (7). By genotyping all of the equivalently
associated variants in multiple populations, it is possible that a
subset of variants may emerge that show a more consistent
pattern of association across populations, making these more
likely candidates for being causal.

By taking associations discovered in one population and
testing them in populations of different ancestries, a new chal-
lenge may arise. It is not yet known how often loci discovered
in one population (until now, usually European-derived popu-
lations) will also show association in other ethnic groups, and
it is possible that none of the associated variants from, say, a
European population will show association when genotyped in
a population of recent African ancestry, making fine mapping
impossible. Of primary concern is that power could be limit-
ing, either due to the unavailability of sufficiently large
samples in populations of African ancestry, and/or a smaller
effect size in these populations. Thus, the success of this
approach will depend on the collection of large samples
from multiple ethnic groups.

It is not known how often effect sizes will vary substantially
across populations, because, as of yet, few truly validated associ-
ations have been exhaustively examined across multiple ethnici-
ties. However, some well-validated associations where the
causal variant has almost certainly been identified, such as
ApoE4 and Alzheimer’s disease, do show smaller effects in
African-derived populations than in the European-derived popu-
lations in which the association was discovered (46). However,
comparisons of effect sizes for type 2 diabetes susceptibility
loci between European and Asian populations have shown an
encouraging consistency across these groups at least (47–50).

Variable effect sizes across populations of different ances-
tries could arise for many different reasons. As one possibility,
the strengths of joint gene–gene or gene–environment effects
may vary across populations and thereby modify the observed
main effects of causal variants. For example, if a variant only
influences the risk of cancer in individuals exposed to an
unmeasured environmental variable, the power to detect
the association would track with the prevalence of the environ-
mental exposure. Similarly, gene–gene interactions, if strong,
could modify effect sizes through variable allele frequencies
across populations. Differences in the phenotype itself could
influence power: if a variant only increases risk for a certain
clinical subtype [such as has been seen for estrogen receptor
positive versus negative breast cancer (2)], power will be
greater in those populations where that clinical subtype rep-
resents a greater fraction of ascertained cases. Finally, the
very differences in LD that inspire fine mapping in multiple
ethnicities may also complicate the interpretation of a negative
result, as it may be possible that the causal variant is in LD
with known variants in some populations but not in others
(Fig. 1). This last possibility highlights the potential import-
ance of comprehensive resequencing in regions of association
in diverse populations.

Finally, many of the more straightforward methods used for
fine mapping assume that a single causal variant is responsible
for the association signal. However, given the large number of
loci that influence common disease, and the examples of
multiple independent causal variants at a single locus, it is
possible that some signals could result from two or more
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causal variants that are in strong LD with each other. In this
case, a SNP that happens to tag both high-risk alleles or
both low-risk alleles may show the strongest statistical evi-
dence of association but not be a causal variant (or even
tightly correlated with either causal variant; Fig. 2).

Phenotypic refinement of association signals identified
by GWA studies

GWA association studies generally focus on single pheno-
types, but associated variants may actually influence multiple
traits. In some cases, the phenotypes are correlated, such as the
association of FTO variation with diabetes, obesity and other
obesity-related phenotypes (3,51). In others, the phenotypes
have a clear connection, such as the association of variants
with different combinations of autoimmune diseases (1) or

cancers (2). But, in yet others, the phenotypes shared have
no obvious connection, such as the association of HNF1B
and JAZF1 variants with both prostate cancer and type 2
diabetes (18,52,53), and the evidence for pleiotropy therefore
suggests previously unsuspected mechanistic connections
between two apparently unrelated diseases (54). Thus, it will
often be productive to analyze validated associated variants
with respect to a wide variety of phenotypes.

In theory, associated variants can also be used to reverse the
usual experimental flow of GWA studies. Traditionally, GWA
studies begin with a fixed phenotype (such as type 2 diabetes)
and then search across a large range of possible genotypes for
associations. A reverse experiment might begin with a fixed gen-
otype at a validated variant (such as the diabetes-associated SNP
at TCF7L2), and search across a range of possible phenotypes for
new associations. One might extend this analogy to imputation
as well: traditionally, genotypes at untyped markers are inferred
using combinations of genotypes from correlated variants. The
effects of unmeasured phenotypes might be inferred if combi-
nations of phenotypes show stronger associations than the
measured phenotypes themselves; in this case, the combination
of phenotypes might represent a new ‘unmeasured’ phenotype.
In this way, associations from GWA studies might lead to the
discovery of new phenotypes, and might suggest possible mech-
anisms of action of the associated variants.

COMBINING FUNCTION AND GENETICS

Although statistical (‘reverse genetics’) approaches can help
move a robust association closer to an improved understanding
of disease processes, ‘functional’ data can certainly support
and inform such efforts. Of course, functional inferences are
already widely used to identify the leading positional candi-
dates which often (even before definitive evidence of their

Figure 1. Different LD patterns can yield different patterns of association.
Hypothetical haplotypes in an associated region and their effects on disease
risk are shown for a European-derived population (A) and an African-derived
population (B). In European-derived populations, several SNPs show equival-
ent signals of association, including the causal SNP (marked by jagged lines).
Two of these are in HapMap, and have been tested via genotyping or imputa-
tion, permitting the effect of the causal SNP (which is not in HapMap) to be
detected indirectly. In African-derived populations, the causal SNP is rarer and
is no longer strongly correlated with the surrounding SNPs in HapMap, so the
surrounding SNPs will not show strong association. Thus, a fine-mapping
approach based only on HapMap SNPs but without additional resequencing
may fail to detect a signal in the African-derived population.

Figure 2. A common SNP may be strongly associated because it tags multiple
rarer causal variants. In this hypothetical example, the C allele of the geno-
typed SNP on the left (indicated by the box) is strongly associated with
disease risk because it tags a combination of two rarer causal variants which
are themselves only weakly correlated with the associated SNP. Sequencing
in affected individuals carrying high-risk haplotypes might be required to
uncover the actual causal variants, which in this example have not been geno-
typed.
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direct involvement is available) provide ‘shorthand’ notation
for the association signals with which they co-localize (18).
Sometimes, the combination of a credible biological candidate
and putatively functional variant [e.g. the R325W variant
in SLC30A8 in type 2 diabetes (13)] will provide a very
strong functional hypothesis that can be directly evaluated.
However, poor understanding of disease mechanisms (frustrat-
ing efforts to define candidacy within associated loci), and the
sheer challenge of evaluating the potential impact of many
possible candidate variants on the expression and/or function
of nearby genes, will often leave researchers dependent on
statistical approaches to do the ‘heavy-lifting’, turning to
direct experimental functional evaluation once the list of
potential candidate variants has been reduced to manageable
proportions. Opportunities for more effective integration of

functional and statistical approaches are discussed below
(and summarized in Fig. 3).

Using expression information

The most obvious shortcut from association signal to putative
mechanism lies in the use of expression quantitative trait locus
(eQTL) data (55,56). Publicly available eQTL data exist for a
growing number of tissues (57–62), and there is growing
interest in expanding the range of tissues and cell-lines for
which equivalent information is available. With such data, it
becomes possible to establish if any of the variants within
the association signal have transcriptional effects (most par-
ticularly, on those genes that lie nearby). Overlap between
the association patterns with respect to disease and gene

Figure 3. Strategies for using functional data to support causal variant and causal gene identification. The figure illustrates ways in which fine-mapping efforts
can be supported by clues from functional data: (A) consider a locus at which GWA analysis (complemented by replication data—not shown) has revealed a
highly significant association mapping between the coding regions of genes B and C. Directly typed SNPs are shown in the filled symbols, imputed SNPs in open
symbols. Flanking recombination hotspots (blue triangles) define an interval within which the variant causal for that signal is most likely to reside. This interval
contains the entire coding sequence of gene B, and portions of genes A and C. For the purposes of this cartoon, the causal variant turns out to be the typed SNP
with the strongest association, and it exerts its effect on disease through altering expression of gene C; (B) clues to the identity of the causal gene are derived by
expression QTL studies in a tissue relevant to disease: not only is the expression of gene C associated with the same cluster of variants which shows the disease
association; but there are also directionally-consistent associations between gene C transcript levels and disease state; (C) clues to the identity of the causal gene
are derived from analysis of genome annotations: not only does gene C code for a member of a pathway previously implicated in the disease, but the associated
variants are predicted to have strong functional credibility; (D) clues to the identity of the causal gene are derived from deep exon resequencing of genes A–C:
three independent premature stop-codon mutations in gene C (predicted to lead to generation of a truncated protein product with dominant-negative effects) are
found in subjects with severe, early-onset forms of the disease of interest.
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expression, particularly if supported by independent evidence
that expression of the gene(s) concerned is correlated
with disease state, has the potential to highlight putative
mechanisms and enable a targeted approach to resequencing
and fine-mapping (Fig. 3B). In principle, these ‘genetical
genomics’ approaches can be extended to proteomic and
metabolomic data (63). However, with so many variants to
consider, and so many potential eQTL associations, it can be
difficult to know precisely what weight to place on such
observations, especially if the eQTL data come from a tissue
or cell-line of limited pathophysiological relevance to the con-
dition of interest (64). Nonetheless, such approaches at least
offer mechanistic hypotheses amenable to early experimental
evaluation. The eQTL approach is likely to be particularly
valuable in circumstances where causal variants exert remote
regulatory effects on genes whose coding regions lie outside
the boundaries of the region of maximal association and there-
fore would not otherwise be considered as strong candidates
for involvement in the disease process.

Using genome annotation

A visit to any genome browser will reveal the vast range of
annotation which now adorns the human genome sequence
(65). As more of this information becomes available, research-
ers have to consider how to exploit these rich data sources to
support identification of causal variants (Fig. 3C).

In principle, one strategy would involve using such annota-
tions to assign different prior odds (based, for example, on
estimated functional impact) to the variants that map within
a region of maximal association, allowing formal integration
of functional and statistical data to inform fine-mapping ana-
lyses. This would, in effect, attempt to extend and formalize
heuristics that currently assign the greatest causal credibility
to non-synonymous coding SNPs that lead to non-conservative
amino acids changes in critical parts of the protein product.
The equivalent approach at the level of the gene makes use
of mechanistic insights from previous rounds of disease-
susceptibility gene discovery to inform evaluations of pos-
itional candidacy in new signals [as in the case of Crohn’s
disease and autophagy, for example (66,67)].

Of course, the challenge with such strategies (particularly
those operating at the level of sequence variation) lies in defin-
ing those priors with any accuracy: the sheer breadth of anno-
tation available can be intimidating, and it may be unclear
which particular annotations are most relevant in any given
setting. Nevertheless, such approaches may provide some
rational basis for defining the order and nature of functional
experimentation when statistical methods alone have failed
to resolve completely the identity of the causal variants.
Equally, in silico assessments of functional credibility are
likely to become increasingly important as researchers target
low-frequency variants that are individually too rare for defini-
tive association testing (68). The most powerful association
tests in such a setting may well involve ‘locus-wide’ compari-
sons of the overall mutational load in cases and controls, and
such analyses would certainly be strengthened if it became
possible to integrate estimates of the potential functional
impact of each of the variants concerned.

Using functional experimentation

If in silico assignment of function is difficult, experimental
evaluation of the functional impact of putative causal variants
is even more challenging. Many GWA signals map some dis-
tance from the nearest coding sequence, and are likely to
mediate disease predisposition through remote regulatory
effects on transcription, or (in the case of microRNAs) trans-
lation. Such variants are notoriously resistant to functional
enquiry: ensuring that assays developed are relevant to the
disease situation will depend on making appropriate choices
with respect to the tissue and cell-type of interest, the stage of
cellular and organismal development, and the inclusion of perti-
nent environmental factors, decisions which are almost imposs-
ible to make with confidence. Similar obstacles are likely in the
use of animal models to interrogate the function of putative
causal variants. Functional studies can be troublesome enough
for alleles causal for Mendelian disease: in comparison, causal
alleles involved in complex trait susceptibility are likely to
have much more subtle molecular and cellular effects. It is
essential to bear in mind that measurable effects of an allele
in a given functional assay does not, by itself, prove a causal
role in disease pathogenesis. Unless the functional assay is
particularly compelling as a model for the processes involved
in disease pathogenesis in man, such functional data cannot
substitute for convincing genetic evidence.

Using genetics again: finding new causal variants
at associated loci

Allelic heterogeneity is a common feature of Mendelian
disease, and many genes have been implicated in both rare
and common forms of the same condition [one obvious
example is KCNJ11 variants in which are related to diabetes
phenotypes ranging from syndromic neonatal diabetes to
common type 2 diabetes (69,70)]. Once there is evidence
that one variant in a given gene influences a particular
disease phenotype, the probability that other functional var-
iants in the same gene also modify disease risk is markedly
enhanced.

Such considerations open up the prospect of deploying
targeted resequencing efforts to identify independent causal
variants within the genes mapping to an association signal,
in the hope that such discoveries will reveal which gene is
responsible for the index association (Fig. 3D). The explicit
aim is to identify ‘smoking gun’ mutations (typically of low-
frequency and modest- to high-penetrance) which avoid the
problems of functional attribution that complicate mechanistic
inferences for common, low-penetrance variants. A typical
experiment might resequence several hundreds of individuals
(selected to represent both extremes of the phenotypic trait
distribution, to capture both protective and risk-increasing
low-frequency alleles). Such experiments might reasonably
target the most functionally important components (exons,
promoters, UTRs, highly-conserved sequences) of each gene
within or adjacent to the region of maximal association. The
advent of high-throughput resequencing technologies, often
combined with careful DNA pooling strategies, has simplified
both the economics and logistics of such studies. While it
might appear desirable (since some causal variants will
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surely lie outside sequences of premium functional import-
ance) to extend deep-resequencing efforts to the entire associ-
ation signal, it remains unclear, given the limitations of
interpreting and evaluating the likely functional impact of
many intergenic and intronic variants, how sequence infor-
mation from such regions could be used effectively. Indeed,
the difficulty now is not so much the capacity to discover
low frequency variants, but the ability to establish robust cri-
teria for their evaluation. Those criteria can be based on in
silico parameters [such as limiting analyses to rare, non-
conservative, missense mutations (71)], large-scale association
testing (when adequately powered), co-segregation in pedi-
grees, or where feasible, high-throughput functional assays.

If resequencing efforts are successful, they will identify inde-
pendent causal variants (subsequently confirmed by association
or co-segregation), or demonstrate differences in mutational
load [such as a shift in the synonymous to non-synonymous
ratio for coding variants (68)] between subject groups that
clearly mirror the phenotype of interest. In this case, fine-
mapping of the index association may no longer be as critical,
because the relevant gene will have been identified, enabling
subsequent translational progress. An additional and important
benefit of the deep-resequencing approach is the potential to
uncover alleles with more severe effects at the molecular and
clinical levels: such variants are likely to be more attractive sub-
strates for functional and clinical investigation than the common
variant which was originally detected.

CONCLUSION

For many different common diseases and quantitative traits,
GWA studies have successfully identified multiple loci with
associated common variants. Because the loci rarely encom-
pass previously-noted candidate genes, these discoveries
have generally shown that previously unsuspected biology is
important in leading to disease. These insights have the poten-
tial to open new routes to novel treatments and preventive
measures. However, in most cases, only a small fraction of
the known genetic contribution to phenotype has been
accounted for by these associated variants. Additional GWA
studies, in larger samples and multiple ethnicities, will
almost certainly lead to new discoveries and incremental
gains in the amount of risk accounted for by identified
genetic variants. In addition, exploration of these novel loci
will very likely uncover additional alleles, both common and
rare, that explain additional variance in phenotype, help pin-
point which gene(s) are responsible for the association and
provide better clinical and molecular tools for assessing func-
tion and mechanism of disease. Looking ahead, new method-
ologies and approaches may be needed to discover the
remaining as yet unidentified genetic contributors to disease
risk. At associated loci, fine mapping can help narrow down
the list of possible causal variants and simplify future
functional studies. Finally, the challenges of moving from
associated variant to mechanism of action are substantial,
especially where the identity of the relevant gene(s) is uncer-
tain or genome annotation is not helpful. Thus, GWA studies
have already generated significant advances, but much of the
potential impact of these advances has yet to be felt. Fulfilling

the promise of GWA studies to improve our understanding of
human disease and biology will require additional tools and
resources (Box 1), and a coordinated effort from not only
geneticists but also a broader range of biologists.

Box 1 Resources needed to progress from current findings
of GWA studies.

† Large samples in diverse populations for multiple
diseases/traits.

† Complete knowledge of common variation across the
genome in multiple populations.

† Methods to interrogate efficiently structural variation
in large samples.

† Improved sequencing technology and/or other
methods for interrogating low frequency variation.

† Computational methods to interpret sequence data
from large samples.

† Expression data from densely genotyped human
samples and covering diverse tissue types.

† Improved genome annotation, especially of non-
coding regions.

† Relevant and validated functional assays for associ-
ated genes.

† Tractable animal models or highly relevant in vitro

models in which human causal variants can be
assessed.

† Coordinated assessment of environmental exposures
and disease outcomes in large cohorts with DNA
samples available.

† Computational tools for comprehensive assessment of
G�G and G�E joint effects.

† Assessment of the role of epigenetics in the inherited
risk of disease.
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