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Gaucher disease is caused by defective acid b-glucosidase (GCase) function. Saposin C is a lysosomal
protein needed for optimal GCase activity. To test the in vivo effects of saposin C on GCase, saposin C
deficient mice (C2/2) were backcrossed to point mutated GCase (V394L/V394L) mice. The resultant mice
(4L;C�) began to exhibit CNS abnormalities �30 days: first as hindlimb paresis, then progressive tremor
and ataxia. Death occurred �48 days due to neurological deficits. Axonal degeneration was evident in
brain stem, spinal cord and white matter of cerebellum accompanied by increasing infiltration of the brain
stem, cortex and thalamus by CD68 positive microglial cells and activation of astrocytes. Electron
microscopy showed inclusion bodies in neuronal processes and degenerating cells. Accumulation of p62
and Lamp2 were prominent in the brain suggesting the impairment of autophagosome/lysosome function.
This phenotype was different from either V394L/V394L or C2/2 alone. Relative to V394L/V394L mice,
4L;C� mice had diminished GCase protein and activity. Marked increases (20- to 30-fold) of glucosylsphingo-
sine (GS) and moderate elevation (1.5- to 3-fold) of glucosylceramide (GC) were in 4L;C� brains. Visceral tis-
sues had increases of GS and GC, but no storage cells were found. Neuronal cells in thick hippocampal slices
from 4L;C� mice had significantly attenuated long-term potentiation, presumably resulting from substrate
accumulation. The 4L;C� mouse mimics the CNS phenotype and biochemistry of some type 3 (neuronopathic)
variants of Gaucher disease and is a unique model suitable for testing pharmacological chaperone and sub-
strate reduction therapies, and investigating the mechanisms of neuronopathic Gaucher disease.

INTRODUCTION

Gaucher disease is caused by inherited deficiency of acid
b-glucosidase (GCase). The mutations in the GCase gene

[human (GBA), mouse (gba)] lead to defective hydrolysis of
glucosylceramide (GC) that results in the storage of GC in
the liver, spleen, bone marrow and central nervous system
(1,2). Clinically, two major categories of Gaucher disease
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have been delineated, non-neuronopathic and neuronopathic.
Type 1 includes the non-neuropathic variants, whereas types
2 and 3 encompass the acute and subacute neuronopathic var-
iants (2). Type 2 is rare (,1/500 000 live births) and manifests
progressive neuronopathic disease within the first 2–3 months
with median survival of ,1 year (3–5). Death results from
severe progressive CNS and lung involvement. Type 3 is
more slowly progressive, rare (1/100 000 live births) and has
a wide spectrum of phenotypes extending from early severe
visceral and mild neuropathic variants to mild visceral
disease with uncontrollable seizures later in adolescence (2).
In the neuronopathic variants, GC and glucosylsphingosine
(GS) accumulations have been documented in the brain (6–
8). Unlike the visceral disease, pathogenesis in the CNS is
not related to large storage cell (macrophages) accumulations
but, rather, to neuronal death/drop-out that is propagated by
toxic effects of GS and/or GC (3,9,10).

Saposins (A, B, C and D) are small (80 amino acids) protein
enhancers of specific glycosphingolipid (GSL) hydrolase
activities (11). They derive from a single precursor protein,
prosaposin, by proteolysis in the late endosome and lysosome
(12). Among the four saposins, only saposin C has activation
and anti-proteolytic protective effects toward GCase (13).
Deficiency of saposin C leads to a variant form of Gaucher
disease with GC accumulation in macrophages and in the
CNS (14). Saposin C’s mode of GCase activation is related
to induced alterations of the membrane bilayer that facilitate
enzyme and substrate interaction (15). Although the involve-
ment of saposin C in the degradation of GC is well-established
in vitro (11,16), the in vivo mechanisms of its action are not
fully understood.

Knockout of the gba locus in mice abolishes GCase activity
and leads to neonatal death (17). In brains of these GCase
knockout mice, GS levels are increased by �100-fold (8)
along with the increases of GC (18). Although neuronal loss
is not observed, some GC storage in neurons is observed in
spinal cord and brain stem (18). Recently, more viable
GCase mouse models with acute neuronopathic Gaucher
disease have been generated (19,20). By either rescue of the
skin of mice that are null in all other cells or specifically
knocking out gba only in neurons, longer lived (2–3 weeks)
acute neuronopathic variants were created as mimics of
human type 2 Gaucher disease (19,20). However, the foreshor-
tened lifespan limits biochemical and neuronopathological
studies of the disease progression. Additional efforts were
taken to create Gaucher disease models include knock-ins of
point mutations (e.g. V394L, D409H or D409V) with or
without combinations with hypomorphic prosaposins (14).
The latter models develop storage cells in visceral and GC
accumulation in visceral, but have complex GSL accumulations
in the CNS due to prosaposin deficiency (21). A principle impe-
diment to understanding the pathophysiology and therapeutic
developments for the CNS variants has been the lack of
viable neuronopathic mouse models with sufficient lifespans.

In this study, a new mouse model was generated by
cross-breeding of the V394L GCase homozygote into the
saposin C null (C2/2) mouse. Deficiency of saposin C led
to additional reductions of the V394L GCase and increases of
GC and GS levels. This viable model developed neurological
deficits analogous to subacute neuronopathic Gaucher disease.

RESULTS

Generation of 4L;C� mice

The 4L/4L mice have �10% WT GCase activity and no
apparent CNS abnormalities (22). Saposin C2/2 mice
showed �60% of WT GCase activity and protein in several
tissues and developed a CNS phenotype around 1 year of
age (23).

Figure 1. Phenotypes and lifespan of 4L;C� mice. (A) 4L;C� mouse showed
hindlimb paresis and duck waddling by 47 days. They weighed 25% less
than control mice. (B) Kaplan–Meier survival curves for 4L;C� and control
(WT and Cþ/2) mice. Average lifespan of 4L;C� mice was 48 days.

Figure 2. Electrophysiology analyses of long-term potentiation (LTP). The
slope of resulting EPSPs from the parasagittal sections (350 mm) of hippocam-
pal CA1 region was recorded. The slopes of the EPSP (LTP) in 35 days 4L;C�

(black circle) was significantly (P , 0.05) decreased compared with WT
(open circle) mice after recording for 90 min following stimulation. WT,
n ¼ 6 mice; 4L;C�, n ¼ 8 mice.
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The 4L;C� mice were born in normal sized litters with
expected Mendelian ratios for the offspring. They began
showing phenotypic abnormalities and neurological deficits
�30 days and died by �48 days (Fig. 1) due to inability to
eat and drink. At �35 days, the 4L;C� mice had outwardly
splayed hind limbs and their stomachs dragged when
walking. The gait of 4L;C� mice was a duck-like waddling
due to the splaying of their hindlimbs and apparent stiffness
and progressive bradykinesia, relative to WT, that progressed
until death when the 4L;C� mice were nearly immobile
(Fig. 1). Also, grip weakness of the 4L;C� mice was progress-
ive. By age 43–48 days, they weighed 25% less than the
control groups (Cþ/2, 4L/4L, 4L/4L;Cþ/2 and wt/wt;
wt/wt) with an average of 17.2 g compared with 23.0 g in
controls. All control mice had weights and lifespans similar
to WT.

Electrophysiology analyses

The neuronal cells of hippocampal sections in the brain were
recorded as excitatory postsynaptic potential (EPSP) slope
potentiation (LTP, long-term potentiations) on a MED64 array
chamber in the warm artificial cerebral spinal fluid. After
accounting for a baseline of activity, the hippocampi from
4L;C� mice at 35 days showed significant (P , 0.05) decreases
of LTP, compared with the WT mice (Fig. 2), suggesting an
overall reduction of hippocampal plasticity in 4L;C� mice.

Histological analyses

In the hematoxylin and eosin (H&E) stained sections, axonal
degeneration (Fig. 3 arrow) was evident in the brain stem,
spinal cord and white matter of cerebellum of 4L;C� mice at
46 days. The anti-CD68 positive microglial cells were numer-
ous in the brainstem, basal ganglion, thalamus, hypothalamus,
cerebral cortex and spinal cord (Fig. 4A). Moderate astroglio-
sis as evidenced by anti-GFAP positivity was observed in the
midbrain, brainstem, multiform layer of cerebral cortex, thala-
mus, corpus collosum, cerebellum and spinal cord (Fig. 4B).
The enhanced microglial cell activation and astrogliosis indi-
cates proinflammation in 4L;C� CNS. Lamp2 is a membrane
protein located in the late endosome and lysosome (24).
Lamp2 immunoreactivity was increased in thalamus (Fig. 5),
brain stem, basal ganglion and white matter of cerebellum.
P62/sequestosome 1 is involved in autophagic clearance of
ubiquitinated proteins (25). Enhanced p62 signals were
intense in the thalamus (Fig. 5) and scattered p62 positive
cells were in brain stem, basal ganglion and cortex. Accumu-
lation of p62 was found in the neurons and astrocytes, but not
in the microglial cells (Fig. 5B). These results suggest impair-
ment of autophagosome and lysosome apparatus in 4L;C�

brain. Tunnel assays in 4L;C� CNS tissues were negative.
No histological abnormalities were found in the visceral
tissues of 4L;C� mice. The brain and spinal cord morphology
in saposin C2/2 and 4L/4L mice were normal at 46 days.

Figure 3. Neuropathology in 4L;C� mice. The sections from 46-day 4L;C� mice were stained with H&E. Axonal degeneration (arrows) was present in brain
stem, spinal cord and white matter of cerebellum in 4L;C� mice. WT brain stem, spinal cord and cerebellum had normal morphology.
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Ultrastructural studies of CNS regions revealed the
inclusion materials in the neuronal cell processes from brain
stem, spinal cord, white matter of cerebellum and midbrain
regions of 43-day-old mice (Fig. 6). The inclusions were visu-
alized as electron dense and lucent materials in axonal pro-
cesses. The storage materials were heterogeneous and
coarsely granular. The ultrastructure shows axonal cell pro-
cesses expanded by numerous tightly packed single-membrane
bound bodies consistent with phagolysosomes (Fig. 6C, E and
F). The sequestered materials range from dense osmiophilic
undigested material to partially digested electron-lucent
material. In the hippocampus, dendritic processes contained
membrane-like material. Separation of myelin sheath was
evident in spinal cord (Fig. 6C), brainstem and midbrain
regions of 43-day 4L;C� mice. Degenerating cells and
swollen cell processes were identified in cortex and hippocam-
pal regions. In many processes, the subcellular organelles were

compressed to the periphery by the accumulating storage
materials. The general appearance of the soma of neurons
was normal in 4L;C� mice (Fig. 6D).

GCase levels in 4L;C� mice

The GCase activity in 4L;C� was reduced to ,10% of WT in
liver, lung, spleen, brain and cultured skin fibroblasts. These
levels were 40–60% of those in the respective tissues of 4L/
4L mice (Fig. 7A). The GCase activity (WT enzyme) in
saposin C2/2 mice was �60% of those in saposin Cþ/þ
mice (Fig. 7A). Liver GCase protein was determined by
immunoblot using anti-mouse GCase antibody. Consistent
with the activity data, 4L;C� mice had �40% of 4L/4L
levels GCase protein levels (Fig. 7B). These results indicate
that the deficiency of saposin C led to a concordant reduction
in mutant V394L GCase protein and activity.

GSL analyses

Relative to WT mice, marked increases of GS were present in
cerebral cortex (�20-fold) and midbrain (�30-fold) from
43-day-old 4L;C� mice. Levels of GS also were massively
increased in 43-day-old 4L;C� mouse lung and liver
(Fig. 8A). GC levels were increased �3-fold in the liver and
lung, and by �1.5-fold in the cortex and midbrain relative
to WT. Increases of ceramide (1.6-fold) and sphingosine
(3.4-fold) were found only in the liver of 4L;C�. Lactosylcer-
amide levels was not significantly altered in 4L;C� mice. No
excess accumulations of GC and GS were detected in 10
weeks 4L/4L and 13 months C2/2 mouse brains (data not
shown). Elevated GC (1.3-fold) and GS (6.5-fold) were
detected in 4L;C� skin at 14 days.

GSL was analyzed in hippocampal tissue from 44-day-old
mice. Both GC (3.4-fold) and GS (132-fold) were elevated
in 4L;C� mice (Fig. 8C). Galactosylceramide (GalCer) levels
in 4L;C� were at WT levels, indicating normal GalCer metab-
olism in 4L;C� mice. This result suggests a correlation of sub-
strate accumulation with abnormal LTP in 4L;C� mice.

DISCUSSION

Neuronopathic Gaucher disease variants present with brain-
stem, cerebellar, thalamic, cerebral cortical and substantia
nigra involvement, but the degrees of involvement and affected
regions vary among the patients (26–28). The neuropathologi-
cal involvement has been correlated with the accumulation of
GS and GC (6,26) with increased GS mostly associated with
the widespread neuron loss in Gaucher disease type 2
(7,29,30). This neuronal loss is also associated with astrogliosis
and microglial nodules (6,27). Additionally, GS suppresses
neuritogenesis (31). In vitro GC addition to microsomes from
type 1, 2 or 3 Gaucher patients stimulated agonist-induced
Ca2þ release and this alteration correlated with the level of
GC accumulation (32). GS also directly augments the Ca2þ

release in an agonist-independent manner in such microsomes
(32,33). This Ca2þ release, presumably from endoplasmic
reticulum, has been speculated to be responsible for neuron
cell death due to GC or GS increases (34). Furthermore,

Figure 4. Neuroinflammation in 4L;C� mice. (A) CD 68 staining (brown) in
46-day 4L;C� and WT mice. [A1]WT brain stem had background levels of
CD68 staining. CD68 positive staining demonstrated activation of macro-
phage/microglial cells in 4L;C� brain stem [A2], spinal cord [A3] and thala-
mus [A4]. Methyl green (green) was used to stain cell nuclei. (B) GFAP
staining (green) in 46 days 4L;C� and WT mice. [B1] WT brain stem had
background level GFAP staining. Enhanced GFAP staining presented in
4L;C� brain stem [B2], thalamus [B3] and cerebellum [B4]. Cell nuclei
were stained with DAPI (blue).
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hippocampal CA2-4 regions are significantly involved by neur-
onal injury in neuronopathic Gaucher disease variants (30).
Here, the neuronal deficit in 4L;C� mice was likely caused by
excess levels of GS and GC as well as the striking inclusions
in axonal and neuronal processes. Furthermore, 4L;C� mice
showed impaired hippocampal LTP that correlated with sub-
strate accumulation and abnormal neuronal processes. Negative
Tunnel assays in 4L;C� CNS tissues indicate that apoptosis was
not the cause of neurodegeneration. The accumulation of p62,
an autophagic receptor that mediates autophagic degradation
of ubiquitinated proteins (25) and enhanced Lamp2 expression
suggest an impairment of protein degradation in the autophago-
some and lysosome system that could be the cause of neurode-
generation in this model.

Comparisons of the saposin C2/2 mice and the 4L;C�

mice provide insights into the function of saposin C and
GCase. Importantly, saposin C provides a proteolytic protec-
tive effect for GCase within the lysosome and that its presence
is required for the full activity of the enzyme. Here, the singu-
lar absence of saposin C led to further decreases in V394L
mutant GCase activity as measured in vitro. This GCase
protein level was also decreased indicating an increased
instability or susceptibility of the mutant protein to proteol-
ysis. Because of this decrease in GCase activity from �15
to �6% of WT levels, a new phenotype emerged with primar-
ily central nervous system disease and with biochemical evi-
dence of GC and GS storage in the viscera. Furthermore, the
reduced V394L GCase activity in the brain was below a
threshold to prevent the development of central nervous
system disease, since neither the V394L homozygote nor the
saposin C2/2 mice themselves develop progressive central
nervous system disease in the time frame of these studies.

A curious finding was that the level of GC in the brain had
only minor changes, unlike the level of GS that showed major
increases. GS is known to be highly toxic to cells, particularly
neurons (31), and the elevated GS levels led to selective deterio-
ration of the central nervous system in the 4L;C� mice.

Although, the levels of GS in visceral tissues, on a fold basis,
were similar to or greater than those in the CNS, the visceral
organs do not show any major histological abnormalities. The
lipid abnormalities were detectable only using MS. Thus, it
appears that the visceral tissues are relatively resistant or insen-
sitive to the toxic effects of GS. There is a much greater toxicity
to similarly raised levels of GS for CNS cells. This difference in
sensitivity may relate to the fact that neurons and glial cells in
central nervous system are more vulnerable to GSLs accumu-
lation than the cells in the liver and some other visceral
tissues. Within the central nervous system, this disease
process is also selective with specific involvement of neurons
and some cells within the spinal cord while leaving much of
the white matter uninvolved.

It is also clear that saposin C interacts functionally with
both WT and mutant GCases. In both the saposin C2/2
mouse with WT or with V394L GCases, the amount of
enzyme protein present in the central nervous system is dimin-
ished compared with saposin Cþ/þ animals. The amount of
WT GCase in saposin C2/2 mice appears to be sufficient
for the maintenance of central nervous system function in a
normal state for periods .12 months and that the eventual
phenotype is not clearly related to the accumulation of GC
or GS within the CNS. Thus, the axonal degeneration and
other histological abnormalities seen in the saposin C2/2
mouse must relate to other intrinsic functions of saposin C,
unrelated to its activity in promoting optimal GCase function
(23). In contrast, the additional decrease in V394L activity
caused by the absence of saposin C is below a threshold
necessary for the protection of the central nervous system
from GS toxicity. The early demise of the 4L;C� mice (48
days) compared with the longer lifespan of the saposin
C2/2 mice (.20 months), suggests that the toxic effects
may be attributed to GS.

An interesting question is the differential accumulation of GS
compared with GC in the brains of 4L;C� mice. Possible
explanations include either functions related to saposin C or to

Figure 5. Accumulation of p62 and Lamp2 in 4L;C� thalamus. (A) Frozen sections from 46-day 4L;C� and WT mice were stained with anti-p62 and anti-Lamp2
antibodies, respectively. Both p62 (green) and Lamp2 signals (green) were increased in thalamus of 4L;C� brain relative to the WT control. (B) Colocalization of
p62 in neuron, astrocyte or microglial cells in the thalamus of 4L;C� brain. Accumulation of p62 (red) was in neuron (green) stained by anti-NeuN antibody and
astrocyte (green) stained with anti-GFAP antibody. Arrows point the p62 containing cells. Yellow color cell shows the overlapping of p62 and GFAP or NeuN.
p62 (red) was not localized in CD 68 positive microglial cells (green). DAPI (blue) in anti-fade was used for cell nuclei staining.
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the mutant enzyme V394L or both. Saposin C could affect sub-
strate specificity and enhance the activity of GCase to a greater
degree toward the deacylated analog, GS, compared with GC.
This will be investigated in future studies. An alternative expla-
nation is that the V394L has a preference for GS or GC substrates.
GS has an affinity (as measured by Ki) for V394L that is �4- to
5-fold decreased compared with WT, and that GC has a normal
binding constant for this enzyme (Liou and Grabowski, unpub-
lished data). This suggests a potentially pure kinetic effect of a
diminished enzymatic activity in which, once below a threshold,
GS, because of its poor binding, cannot engage V394L GCase
and cannot be hydrolyzed, whereas GC can. Vaccaro et al. (35)
showed that the kcat for GS was �100-fold less than that for
GC using purified WT GCase. If this also applies to the V394L
enzyme and the binding constant is diminished, the accumulation
of GS could be explained on the basis of a kinetic phenomenon,

based on the decreased ability of V394L to cleave the less pre-
ferred substrate.

Finally, the studies here address the question of whether the
toxic agent in neuronopathic Gaucher disease is GC or GS. The
4L;C� mouse accumulates GS to greater relative levels than
GC; 4L;C� is nearly a pure GS storage disease that leads to
central nervous dysfunction and eventual death. As a pure GC
storage disease of CNS is not available, the question of this
lipid’s toxicity alone cannot be directly addressed. However,
the in vitro studies showing toxicity of galactosylsphingosine
and GS translate reasonably well to their CNS animal models,
i.e. the twitcher mouse and the 4L;C� mouse, respectively.
The in vivo toxicity of GS to neurons remains to be clarified.
It will be important to address whether a diminution in GS
can occur by the use of GC synthase inhibitors, and thereby
diminish toxicity of GS. If it is true that GC synthase is respon-
sible for all or most of the synthesis of GC and GS, compounds
that inhibit this synthase could be therapeutic to the neuropathic
forms of Gaucher disease.

MATERIALS AND METHODS

Materials

The following were from commercial sources: NuPAGE 4–12%
Bis-Tris gel, NuPAGE MES SDS running buffer, Anti-GFAP
mouse monoclonal antibody conjugated Alexa Fluor 488
(Invitrogen, Carlsband, CA, USA). 4-Methyl-umbelliferyl-
b-D-glucopyranoside (4MU-Glc; Biosynth AG, Switzerland).
Sodium taurocholate (Calbiochem, La Jolla, CA, USA). Rat anti-
mouse CD68 monoclonal antibodies (Serotec, Oxford, UK).
M-PER Mammalian Protein Extraction Reagent, ImmunoPure
immobilized Protein G and BCA Protein Assay reagent
(Pierce, Rockford, IL, USA). HybondTM-ECLTM nitrocellulose
membrane and ECL detection reagent (Amersham Biosciences,
Piscataway, NJ, USA). Anti-fade/DAPI, Methyl green, ABC
Vectastain and Alkaline Phosphatase Kit II (Black) (Vector Lab-
oratory, Burlingame, CA, USA). Anti-pig GFAP mouse
monoclonal antibody (Sigma, St Louis, MO, USA). Anti-recom-
binant p62/SQSTM1 mouse monoclonal antibody (Abnova,
Taipei, Taiwan). Anti-mouse NeuN mouse monoclonal antibody
conjugated Alex Fluor 488 (Millipore, Temecula, CA, USA).
Anti-mouse Lamp2 rat monoclonal antibody (Abcam,
Cambridge, MA, USA).

Animal care

Saposin C deficient (C2/2) mice (23) were generated by
introducing a Cys! Pro substitution in the saposin C
region of prosaposin. Substitution of this conserved cysteine
(Cys) breaks one of the three disulfide bridges of saposin C
and resulted in the specific deficiency of saposin C. This strat-
egy has been used to produce several single and double
saposin deficient mice (36,37). Saposin C2/2 were
cross-bred with point mutated GCase V394L homozygotes
(4L/4L) (22) to generate C2/2;4L/wt and Cþ/2;4L/4L.
4L;C� mice (C2/2;4L/4L) were produced by intercrossing
C2/2; 4L/wt and Cþ/2;4L/4L. The strain background of
4L;C� was C57BL/6J/129SvEV. The mice were maintained
in microisolators in accordance with institutional guidelines

Figure 6. Ultrastructural features of 4L;C� CNS. (A) Normal midbrain mor-
phology in 43 day WT. (B) Axonal inclusions (arrows) were in 43-day
4L;C�. (C) 4L;C� spinal cord showed storage materials in axonal process
(arrow) and separation of myelin layers (arrowhead). (D) Brain stem of
4L;C� had normal neuron. (E) The white matter of cerebellum in 4L;C�

mice contained a complex accumulation materials in axonal process. (F)
Higher magnification of the complex accumulation in cerebellar axons
showed amorphous granular inclusions of variable density. The storage
materials are heterogeneous and coarsely granular.
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under IACUC approval at Cincinnati Children’s Hospital
Research Foundation.

Tissue collection and immunohistochemistry

The 4L;C� and strain-matched WT mice were subjected to
CO2 narcosis and then, perfused with saline followed by 4%

paraformaldehyde before tissue dissection. The tissues were
fixed in 10% formalin or 4% paraformaldehyde and processed
for paraffin or frozen blocks, respectively. Paraffin sections of
brain were stained with H&E. Karnovsky’s fixative was used
for ultrastructural studies. CD68 monoclonal antibody staining
was as described (14). Frozen sections were stained with
mouse anti-pig glial fibrillary acidic protein (GFAP) that

Figure 7. GCase activity and protein in 4L;C� mice. (A) The activities of GCase decreased significantly in 4L;C� liver, brain, lung, spleen and fibroblasts com-
pared with 4L/4L, C2/2 and WT tissues (n ¼ 3). (B) GCase protein was decreased in 4L;C� livers by immunoblot analyses using anti-mouse GCase antibody.
GCase protein level was normalized to b-actin signals in the same sample and presented as ratio relative to 4L/4L. A representative immunoblot is shown. The
data represented the means+SE for three mice assayed in duplicates. ��P , 0.01; ���P , 0.001.
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detects astrocytes, mouse anti-recombinant p62 that is an
autophagic receptor and rat anti-mouse Lamp2 that is a late
endosome and lysosomal membrane protein. Biotinylated
goat anti-mouse followed by streptavidin-conjugated fluor-
escent 488 (green) and goat anti-rat conjugated to FITC
were applied to the sections. Both mouse anti-pig GFAP and
mouse anti-recombinant p62 antibodies have reactivities in
the mouse tissues (38,39). Colocalization of p62 in neuron,
astrocyte or microglial cells was carried out on frozen sections
using mouse anti-recombinant p62 (1:100) followed by bioti-
nylated goat anti-mouse and streptavidin-conjugated fluor-
escent 610 (red). Mouse anti-NeuN conjugated to Alexa
Fluor 488 (1:100), mouse anti-GFAP conjugated to Alexa
Fluor 488 (1:100) or rat anti-CD68 (1:100) were applied as

marker for neuron, astrocyte or microglial cells, respectively.
Rat anti-CD68 was detected by biotinylated goat anti-rat and
streptavidin-conjugated fluorescent 488 (green). DAPI (blue)
in anti-fade were used for cell nuclei staining.

Tissue GSL analyses

GSLs in the tissues lysate (cortex, midbrain, liver and lung)
were extracted and analyzed by LC/MS at the Lipidomic
Core in Medical University of South Carolina. The GSL
content was normalized to phosphate content in the same
sample after lipid extraction. (GC and GalCer were not separ-
ated by LC/MS analysis.) Because 4L;C� mice had normal
levels of saposin A and galactosylceramidase, 4L;C� and

Figure 8. LC/MS analyses of GC and GS. (A) GS levels showed marked increases (20- to 600-fold) by 43 days in 4L;C� cortex, midbrain, liver and lung. (B)
Increases of GC (1.5- to 3-fold) were detected in 4L;C cortex, midbrain, liver and lung. These GC and GS levels were normalized to phosphate content in the
same sample and presented as fold change relative to WT controls. (C) Both GC (3.4-fold) and GS (132-fold) levels were significantly increased in 4L;C� hip-
pocampus relative to WT. GalCer in 4L;C� hippocampus was at WT level. The hippocampal GC, GS and GalCer levels were normalized to mg protein in the
same sample. The data were analyzed by Student’s t-test. �P , 0.05; ��P , 0.01, ���P , 0.001 (n ¼ 3 mice).
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WT mice would have the same levels of GalCer. The altera-
tions of GC and GalCer in the analysis will reflect the
changes for GC. The data are presented as fold-change of
GC in 4L;C� relative to WT after being normalized to phos-
phate content in the same sample. Hippocampal tissues were
analyzed by a modified method in order to separate GC
from GalCer at the Lipidomic Core in University of South
Carolina. GC, GS and GalCer content in hippocampus were
normalized to mg protein in the same samples. Three
animals for each genotype were included in the analyses.
Data were analyzed by Student’s t-test.

GCase activity and protein analyses

Mouse tissues were homogenized and their GCase activities
were determined fluorometrically with 4MU-Glc in 0.25%
Na taurocholate and 0.25% Triton X-100 in the presence
and absence of CBE (40). Assay mixtures were incubated
for 60 min (378C). WT control tissues were analyzed in paral-
lel. Mouse liver GCase protein detection by immunoblot was
as described (14). The amounts of GCase protein were quanti-
tated by ImageQuant software relative to the amount of
b-actin in the same sample. Data were analyzed by Student’s
t-test.

Electrophysiology

LTP was measured using the MED64 multielectrode array
(Alpha Med Sciences, Kadoma, Japan) (41) as described pre-
viously (39). Animals were anesthetized using isofluorane and
decapitated. Brains were removed and placed in an ice cold
solution of aCSF. Parasagittal sections (350 mm) of the hippo-
campus were collected using a vibrotome and transferred to a
warm (328C), constantly oxygenated aCSF bath for a
minimum of 1 h. Slices were transferred to the recording
chamber, which consists of an 8 � 8 electrode array. Electro-
des are 50 mm and are spaced 150 mm apart. Slices were
placed so that the CA1 region of the hippocampus was
placed across the grid, with recordings coming from the Schaf-
fer collateral pathway. The section was constantly perfused
with warmed (328C) aCSF at a flow rate of 2 mL/min and sup-
plied with humidified 95% O2/5% CO2. A stimulation and
recording channel were selected out of the 64 possible electro-
des. Single-pulse stimuli were delivered from the stimulation
channel and the slope of the line from the resulting EPSPs
was measured from the defined recording channel. Stimulus
amplitude was selected by determining maximum response
slope and then selecting a stimulus amplitude that produced
a response that was �40% of the maximal response. Baseline
recordings were collected for a minimum of 10 min. Follow-
ing baseline, a theta burst stimulus (TBS; 5 Hz for 2 s) was
applied to the slice from the stimulation channel. Single-pulse
stimuli were again delivered and the resulting EPSPs were col-
lected 1/min for 90 min following TBS. LTP was calculated
by taking the percent increase in slope following TBS. Data
were analyzed using Performer 2.0 software (Alpha Med
Sciences). Six WT and eight 4L;C� mice were used in this
study with two slices used per animal. The average of the
two slices per animal was used in the subsequent analysis.
Data were analyzed using a general linear model ANOVA

with gene as a between subject factor and time as a repeated
factor.
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