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Although Genome Wide Association Studies (GWAS) have identified many susceptibility loci for common dis-
eases, they only explain a small portion of heritability. It is challenging to identify the remaining disease loci be-
cause their association signals are likely weak and difficult to identify among millions of candidates. One
potentially useful direction to increase statistical power is to incorporate functional genomics information, es-
pecially gene expression networks, to prioritize GWAS signals. Most current methods utilizing network informa-
tion to prioritize disease genes are based on the ‘guilt by association’ principle, in which networks are treated as
static, and disease-associated genes are assumed to locate closer with each other than random pairs in the net-
work. In contrast, we propose a novel ‘guilt by rewiring’ principle. Studying the dynamics of gene networks be-
tween controls and patients, this principle assumes that disease genes more likely undergo rewiring in patients,
whereas most of the network remains unaffected in disease condition. To demonstrate this principle, we con-
sider the changes of co-expression networks in Crohn’s disease patients and controls, and how networkdynam-
ics reveals information on disease associations. Our results demonstrate that network rewiring is abundant in
the immune system, and disease-associated genes are more likely to be rewired in patients. To integrate this net-
work rewiring feature and GWAS signals, we propose to use the Markov random field framework to integrate net-
work information to prioritize genes. Applications in Crohn’s disease and Parkinson’s disease show that this
framework leads to more replicable results, and implicates potentially disease-associated pathways.

INTRODUCTION

Genome Wide Association Studies (GWAS) have uncovered
many susceptible loci underlying common genetic disorders,
and provided new insights into disease aetiology (1). Since the
whole genome is scanned to identify signals in GWAS, many
novel pathways/genes have been found to affect disease risk.
For example, 140 loci have been found associated with
Crohn’s disease (CD) (2,3), including many belonging to path-
ways not suspected to be involved in CD before. In spite of
these successes, much more research is needed to most compre-
hensively analyse and extract information from these rich data.
First, it is believed that many loci remain to be discovered,
because association signals are often weak and difficult to be
separated from background noise (4). These undiscovered loci
are likely to be as important as those already identified to

understand disease aetiology and identify treatment strategies.
Second, the replication rate between studies is low, especially
for those markers with marginal statistical evidence of associ-
ation. Third, although the hypothesis free nature of GWAS has
led to many unexpected discoveries, it is challenging to relate
the associated markers with disease mechanism (5). Thus,
there is a great need to develop gene prioritization methods
that generate more replicable results and biologically plausible
candidates by incorporation of biological prior information.

A number of computational frameworks have been proposed
to prioritize candidate genes by incorporating functional genom-
ics data, including linkage analysis results, gene annotations, se-
quence features, eQTLs, protein interaction networks and
biological pathways (6–8). These methods have been shown
to have advantages in identifying SNPs/genes with increased
biological relevance, and enriching signals in GWAS of the
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disease. However, the replication rate of prioritization results
between independent studies has not been thoroughly evaluated.
In this manuscript, our primary interest is to integrate network in-
formation in post-GWAS prioritization of candidate genes. In
networks, nodes represent genes or proteins, and edges can be
physical protein interactions, gene co-expressions (which can
be inferred), or functional interactions derived from computa-
tional models (9,10). Regardless of the network used, all existing
network-based approaches are built on the ‘guilt by association’
principle (11,12), which assumes that the state of association can
be propagated through connections in the network. In other
words, genes that are within close proximity with a disease
gene in the network are likely related to the disease themselves
as well. Various algorithms have been developed to predict or
prioritize disease genes by this ‘guilt by association’ approach
(13–15). Chen et al. used page-rank algorithm to prioritize can-
didate genes in a protein interaction network (6); Lee et al. (10)
built a functional gene interaction network, and used a label
propagation algorithm to prioritize candidate genes. In their
paper, the overall functional interaction was defined by a
weighted sum of log likelihood scores, with each score derived
from the naı̈ve Bayesian classifier trained for one of the four
data sources: mRNA expression, protein–protein interaction,
protein complex, and comparative genomics.

This ‘guilt by association’ approach has proved useful in gene
prioritizations. Yet, the major drawback of this line of work is that
a network is treated as a static reference, which does not reflect the
dynamic nature of biological networks. In yeast, for instance, in-
terrogating the transcriptional regulatory network under multiple
conditions uncovered extensive rewiring of the network architec-
ture (16). Indeed, cellular networks are frequently rewired to
respond to different stimuli, and valuable insight can be gained
by studying networks from a dynamics perspective (17). Bandyo-
padhyay et al. (18) reported experiments that studied the genetic
interaction network of the budding yeast in normal conditions
and that in DNA damage stimuli. Novel gene functions and
links in DNA repair pathways were uncovered by contrasting
these two networks, which could not be detected by looking at
static networks alone. Particularly to our interest in complex
disease genetics, network changes in disease samples might
provide clues of disease aetiology. However, the study of
network dynamics in higher eukaryotes is hindered by the com-
plexity of the genome, which makes genome scale interrogation
of interactions through experimental approaches at multiple con-
ditions extremely labour-intensive and expensive. Alternatively,
we can infer co-expression network, an indirect interaction
network, from mRNA expression data sets in both patient and
control samples. Microarray experiments are robust and afford-
able, and many data sets are available in public databases like
GEO (19) for many diseases, thus providing a rich data source
to investigate the dynamic perspective of networks. To identify
network components that differ between the affected and
healthy individuals, co-expression networks in disease samples
and control samples can be constructed separately through
co-expressionanalysis andcontrasted to identify thechangingele-
ments betweenthenetworks.Forexample,by investigatingdiffer-
ential wiring between transcription factors and target genes in two
groups of cattle crosses, researchers were able to pinpoint a DNA
mutation in myostatin as the causal mutation for muscle change in
cattle (20). Another example was the study by Taylor et al. (21)

who used changes of Pearson correlation coefficients (PCC)
between genes to study the dynamic structure of protein inter-
action networks, and found alterations in modularity are related
with breast cancer prognosis.

In this study, we propose a ‘guilt by rewiring’ approach, which
explores the dynamic aspect of the network, i.e. network rewiring,
by comparing the gene co-expression networks in disease samples
andcontrol samples.UsingCDas a proof ofprinciple example,we
demonstrate that disease-related genes are more frequently
rewired as opposed to a random gene in the genome. Furthermore,
we propose a Markov random field model to incorporate network-
rewiring information to prioritize GWAS signals. The applica-
tions of this approach to CD and Parkinson’s disease (PD) show
that our approach generates more replicable results. Moreover,
the proposed method identified known pathways associated
with these diseases, and also implicated potential pathways that
have not been suggested by existing methods.

RESULTS

Network rewiring is abundant in disease-related pathways

We use CD as an example to demonstrate that network rewiring
occurs more frequently for disease-related genes than other
genes in the whole genome. In our analysis, the whole genome
refers to the intersection set of genes in the GWAS study and
the microarray study of CD, consisting of 12 007 genes (see Sup-
plementary Material, Table S2).

CD is an immune-mediated disease, thus we investigated the
frequency of rewiring within genes in the immune processes, and
that in the whole genome. The CD microarray data set (GEO ac-
cession number: GSE20881) profiled mRNA expressions of 172
intestine biopsies from CD patients and control subjects. To
measure network rewiring, gene co-expression networks in CD
samples and control samples were constructed separately by cal-
culating the pairwise PCC of gene expression profiles. A pair of
genes was considered to be rewired if they were co-expressed
under one condition, and not under the other condition. More
specifically, we used Fisher’s method to test the significance of
the difference between PCCs (see Materials and Methods), and
the degree of rewiring was defined as one minus the P-value
of the test. Thus, the degree of rewiring ranges between 0 and
1, and a larger value indicates a more significant change of
co-expression between disease and control conditions. The re-
wiring network is a weighted network, and edges are weighted
by the degree of rewiring between disease and healthy condi-
tions. Several thresholds were considered (the thresholds were
chosen so that the density of the discrete network was 0.1, 0.05
and 0.01, see Supplementary Material, Table S3 for the corre-
sponding thresholds) to dichotomize the rewiring network.

To investigate the density of rewiring edges in immune-related
pathways, we defined the gene set of ‘immune system’ based on
the Reactome annotation (22). In Reactome, 933 genes are docu-
mented in this category, and 603 genes remained after intersection
with thegenes thatpassedqualitycontrol in the microarraydata set
(see Materials and Methods). When we dichotomized the network
at various thresholds, the density in the subnetwork of the immune
system was consistently higher than that of the overall network
(see Fig. 1). Thus, the immune system was significantly enriched
with rewiring edges at varying thresholds (binomial test,
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P-value ≤ 0.001).Forexample, the numberof rewiring edges was
2465, as opposed to 1815 expected by chance, when the density of
the rewiring network was 0.01. Interestingly, in the co-expression
networkdefined by the healthy controls, the networkdensityof the
immune-related subnetwork was lower than that of the overall
network.

Network rewiring is more informative than static
co-expression network

To investigate the difference between the ‘guilt by association’
approach and ‘guilt by rewiring’ approach, we performed the fol-
lowing empirical analysis. A rewiring network, as described pre-
viously, and a static network was constructed separately for the
same set of genes. To keep the two networks at comparable size
after dichotomization, we varied the threshold for defining edges
so that the two networks had the same network density (0.1, 0.05
and 0.01, respectively where the corresponding thresholds are
shown in Supplementary Material, Table S3). In the static
network, two genes were connected if they were co-expressed
in the control samples (absolute PCC greater than the cut-off).
Similarly in the rewiring network, two genes were connected if
the degree of rewiring was greater than the cut-off. Genes were
labelled, either ‘associated’ or ‘not associated’, based on the stat-
istical evidence of their associations with CD, which was derived
from the WTCCC GWAS study of CD (see Materials and
Methods). A gene was labelled ‘associated’ (+1) if its associ-
ation P-value was ,0.05, and ‘not associated’ (21) otherwise.
Thus, in both networks, there were three types of edges, (+1,
+1), (+1, 21) and (21, 21). We posed the following question:
which one of these two networks, static network or rewiring
network, was more informative for association status? More pre-
cisely, were edges of types (+1, +1) and (+1, 21) enriched
compared with that expected by chance? Since our proposed ap-
proach was motivated to prioritize candidate genes in GWAS
instead of de novo prediction of disease genes, in all the analyses
below (if not mentioned otherwise), the background genes are
the set of genes with P-values ,0.5 in the corresponding
GWAS data set.

To answer this question, we calculated the proportion of asso-
ciated genes, and the frequencies of the three types of edges in

these two networks (Fig. 2). Under the null hypothesis, edge
assignments are independent of association states of the two
nodes, the proportions of edges (+1, +1), (21, +1) and (21,
21) should be a2, 2a(1 2 a) and (1 2 a)2, respectively, where
a is the proportion of associated genes. For each network, we
tested whether edges (+1, +1) and (+1, 21) were enriched
with a binomial test (see Materials and Methods). When the
network density was 0.01 (see Fig. 2), the fold change of (+1,
+1) edges was 1.02 and 1.17 for the static and rewiring networks,
respectively, both statistically more abundant than expected
(P-values are 0). Similarly, the fold change of (+1, 21) edges
was 1.01 and 1.07 for the static and rewiring networks
(P-values are 0). A disease-associated gene might be affected
in disease condition in different ways, such as expression
level, phosphorylation status, structural conformation, so its
interactions with the rest of the genome, regardless of the
disease association status, would be subject to change. These
results support the principles of both ‘guilt by association’ and
‘guilt by rewiring’; however, the enrichment was more pro-
nounced in the rewiring network. We also note that a modest in-
crease of association signals in the rewiring network compared
with the static network was consistently observed at various
thresholds (see Supplementary Material, Table S4 for results at
other thresholds).

Markov random field modelling approach

We adapted the Markov random field framework previously pro-
posed by Chen et al. (23), which aimed at incorporating known
pathway structure in GWAS analysis, to model the configuration
distribution of the rewiring network. There are two advantages of
the Markov random field model. First, the model can incorporate
network structures, which account for long distance dependen-
cies in associate states. Secondly, the computational framework
through Markov chain Monte Carlo is well established. Basic-
ally, a Markov random field model is characterized by three ele-
ments: the state of each node in the network, the edges between
nodes and the weights of the edges. In our framework, each node

Figure 1. Network rewiring is abundant in immune system (defined in the Reac-
tome pathway). The y-axis is the fold change of density in the subnetwork of the
immune system to the total network. Network density is the number of edges in
the observed network over the number of all possible edges.

Figure 2. Comparisons of edge frequency in static network and rewiring
network. (+1, +1) denotes an edge that connects two associated genes, while
(+1, 21) denotes an edge that connects one associated gene and one non-
associated gene. The y-axis is the fold change between observed number of
edges and that of random expectation. Both the static and rewiring network
were dichotomized at a threshold so that the corresponding network density is
0.01.
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is a gene, and the state is either +1 or 21, indicating ‘associated’
or ‘not associated’. Two genes are connected by an edge if they
were co-expressed either in the disease samples or healthy
samples. The edges are weighted by rewiring information. The
model is specified to ensure that genes with more rewiring
edges are more likely to be disease associated. Details of the
model are provided in Materials and Methods.

Application to CD

We applied the proposed method to previously published CD
GWAS. A good prioritization algorithm should generate
results that are more replicable in independent cohorts. To test
the performance of our method, we analysed one CD GWAS
data set (denoted as NIDDK GWAS hereafter), and assessed
the replication rate in a second one (denoted as WTCCC
GWAS hereafter). In the NIDDK GWAS data set, the DNA
samples were collected by the North American National Institute
of Diabetes and Digestive and Kidney Diseases (NIDDK) IBD
Genetics Consortium (IBDGC), and genotyped using Illumina
HumanHap300 Genotyping BeadChip (24). The WTCCC CD
data set was collected by The Wellcome Trust Control Consor-
tium, and genotyped using Affymetrix GeneChip 500K. We
used the cohort with fewer samples (NIDDK) to prioritize
GWAS signals, and assessed the replication rate of the priori-
tized genes using the cohort with more samples (WTCCC
GWAS).

Initially, there were 20 427 genes in the NIDDK GWAS, and
12 007 of them overlapped with qualified probe sets in CD
microarray data. Only genes with association P-value ,0.5
were included in the model, since our interest was to prioritize
GWAS signals instead of de novo prediction, and the final
number of genes included in the network was 5583. The posterior
probability that a node is associated with CD can be calculated
through Eq. (9). Genes can be ranked either by their association
P-values from GWAS (from smallest to largest) or by their pos-
terior probabilities of being associated with CD through incorp-
orating rewiring information (from largest to smallest). By
comparing the two rankings, we define the set of prioritized
genes as those that are ranked higher in the latter one.

The performance of the prioritization approach was evaluated
by the replication rate in the WTCCC GWAS. For the top-k list of
genes with the smallest P-values in the NIDDK GWAS, we eval-
uated the replication rate of all k genes, the prioritized genes, and
those genes not prioritized. We define a gene as ‘replicable’ if its
association P-value in the WTCCC GWAS (validation cohort)
was ,0.05. The baseline replication rate is the proportion of rep-
licable genes among the top-k genes. The replication rate of the
prioritized genes is defined as the number of prioritized genes
that are replicable, divided by the number of prioritized genes.
The replication rate of not prioritized genes is similarly
defined. The replication rate was calculated from the top 50 to
500 genes (with a step size of 50, see Fig. 3A). We can see that
there is an increase of replication rate in the prioritized set of
genes. It is worth noting that the prioritized genes at a moderate
cut-off can achieve similar replication rate as genes at a more
stringent cut-off without prioritization, so that genes with mod-
erate P-values can be recovered by our prioritization method,
without sacrificing the replication rate.

Besides a higher replication rate in the WTCCC cohort, some
of the prioritized genes are mapped in CD susceptible loci that
have been documented as meeting genome-wide significance
level in the NHGRI GWAS Catalogue (25). More specifically,
DCLRE1B and TMEM17 were reported to be associated with
CD in a recent meta-analysis of inflammatory bowel disease
with .75 000 cases and controls (3); SOCS1 was shown to be
associated with inflammatory bowel disease in the same study
(3), and also reported in a large-scale meta-analysis of CD and
psoriasis (26); SMAD3 and MAMSTR were identified in a
meta-analysis of CD with 6333 cases and 15 056 controls (2);
RPL7 and CPAMD8 were reported in a GWAS study of CD
among individuals of Ashkenazi Jewish descent, with 907

Figure 3. Replication rates between independent cohorts in Crohn’s disease
study. A gene is called replicable if its association P-value in the replication
cohort is ,0.05. (A). Black circle: prioritized genes. Grey circle: non-prioritized
genes. Black diamond: baseline replication rates for the top k genes. Grey cross:
prioritized genes with microarray data set GSE8397 (a microarray data set of Par-
kinson’s disease). The numbers on the top of x-axis are the association P-value of
the kth genes in the discovery cohort. (B). Empirical P-values of the replication
rate of the prioritized gene set, derived from permutations. The dotted line indi-
cates significance level at 0.05. The y-axis is drawn at the log10 scale but labelled
with original P-values for ease of reading.
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cases and 2345 controls in the discovery stage, and 971 cases and
2124 controls in the replication study (27). Interestingly, none of
the above mentioned genes had significant differential expres-
sions in the microarray study (28).

These results demonstrate that our Markov random field
framework of incorporating rewiring information can help
better identify more replicable association signals. We now
address the significance of the improvement in the following sec-
tions. Theoretical justification of the improvement is not a trivial
task without specifying the underlying models of susceptible loci
for complex disease. Instead, we constructed null distributions
by randomizing rewiring network (29), and contrasted our
results with two permutation settings and a third negative
control by considering networks constructed from unrelated
microarray data.

In permutation setting I, we constructed a null distribution of
the rewiring network by permuting the case–control labels of
microarray samples and recalculating the rewiring degree (see
Materials and Methods). We did the permutations 1000 times.
For each permuted network, we performed the same analysis
as in the real data, including calculating the proportion of rewir-
ing edges of (+1, +1), (+1, 21) and (21, 21), enrichment of
rewiring edges in Reactome pathways, and prioritization of asso-
ciation signals, as detailed below.

First, we calculated the proportions of (+1,+1) and (+1, 21)
edges in the rewiring network, and the significance of enrich-
ment of each type of rewiring edge was evaluated by the empir-
ical P-value, defined as the number of permutations with the
corresponding proportion greater than that in the real data (Sup-
plementary Material, Table S4). The results show that the excess
of associated genes in rewiring edges in real data was statistically
significant compared with the 1000 networks generated in per-
mutation I (empirical P-values ranging from 0.013 to 0.022 at
varying network thresholds).

Second, in each permutation, we calculated the fold change of
rewiring edges in the ‘immune system’ as well as other pathways
documented in the Reactome database. The Reactome pathway
annotation has a hierarchical structure. To avoid redundancy in
pathway annotations, only the first layer of pathway nodes
were used, which has 17 general pathways (see Supplementary
Material, Table S5 for a full list of the 17 pathways). We calcu-
lated the rewiring density of subnetwork defined by each
pathway, and the corresponding fold change of density as
opposed to the overall network. The statistical significance of
the fold change was empirically evaluated by permutation I
(see Supplementary Material, Table S5). Two pathways,
‘immune system’ and ‘membrane trafficking’, were nominally
enriched with rewiring. The enrichment of rewiring edges in
‘immune system’ demonstrates that network rewiring is abun-
dant in disease-related pathways.

Third, we used the permuted rewiring network to prioritize the
association results of the NIDDK GWAS data and evaluated the
replication rate in the WTCCC GWAS data accordingly (see
Fig. 3B). When k was relatively small, although the replication
rate was increased compared with the baseline level, the im-
provement was not significant. The empirical P-value became
more significant as k increased. The permutation results demon-
strated that for genes with moderate association evidence, the
subset of genes prioritized by our method are indeed enriched
with replicable signals.

It is possible that the increase in replication rate we observed
might be attributed to differential expression of genes instead of
network rewiring. We performed a second type of permutations
to address this concern. In this setting, the disease samples and
the control samples were permuted separately (see Materials
and Methods), and as a result, the network structure was
changed while differential expression remained the same as
the real data. We did the permutation 1000 times, where the re-
wiring network was calculated and used for prioritization in
each permutation. By contrasting the replication rate from the
real data to the permutation results (see Fig. 3B), we can see
that the permutation results were inferior to those from the real
data even though differential expression was kept intact
between the permutated and real data. This demonstrates that
the improvement of replication rate was largely attributed to
the appropriate modelling and incorporation of rewiring infor-
mation, not to the overlapping information between rewiring
and differential expression.

It is interesting to investigate what types of genes are rewired
but not differentially expressed between disease and control con-
ditions, and how they are related to disease aetiology. One pos-
sibility is that the protein activities of these genes are regulated
by post-translational modifications, which may change in
disease condition. For example, reduced phosphorylation level
of SMAD3, which was prioritized by our method, was observed
in mucosal samples from CD (30), while phosphorylation of
SMAD3 is important for TGFB1 induced anti-inflammatory ac-
tivities (31). Many in the prioritized gene set have documented
post-translational modifications, although their relatedness
with CD aetiology is not yet established.

Application to PD

Although our method was motivated and validated using data
from CD, the computational framework can be applied to other
diseases. To demonstrate its more general applicability, we
applied the method to non-immune phenotypes. In this paper,
we considered PD because of the availability of two GWAS
data sets and one relevant microarray data set. The first PD
GWAS data set (dbGaP study accession: phs000126.v1.p1) is
an NIH funded genetic study aiming to identify risk loci for
PD, which had a cohort of 857 cases and 867 controls. The
second cohort (dbGaP study accession: phs000089.v3.p2) had
1713 PD cases and 3978 controls with Caucasian ancestry
(32). We used the first one as discovery cohort and the second
cohort (of larger sample size) as replication. We used a micro-
array data set (GEO accession: GSE8397) consisting of 47
brain tissue samples of PD cases and controls (33) to construct
the PD rewiring network.

The PD GWAS signals were prioritized and the replication
rate was evaluated in the same way as we did for CD (see
Fig. 4). Although the replication rate of PD was lower than
that in CD, there was indeed an increase of replication rate in
the prioritized genes.

Moreover, some of the prioritized genes are mapped in loci
with genome-wide significant association with PD (25). The as-
sociation of MMRN1 was reported in a two-stage GWAS study
of PD, with 1713 cases and 3978 controls in the discovery stage,
and 3361 cases and 4573 controls in the replication stage (32).
The loci were also reported in a recent meta-analysis of PD,
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with up to 16 452 cases and 48 810 controls (34). RIT2 and
ZNF646 were identified in a GWAS study of PD with 4238
cases and 4239 controls in the discovery cohort, and 3738
cases and 2111 controls in the replication cohort (35). SIX1B
was recently reported in a two-stage meta-analysis of PD, with
12 386 cases and 21 026 controls combining the two stages
(36). These genes were not found to be differentially expressed
in the microarray study (33).

Using the first type of permutations discussed above, the im-
provement of replication rate was not significant for the top
150 GWAS signals, but the improvement became significant
as k increased. On the other hand, the statistical significance of
the improvement based on the second type of permutations

described above was significant for different k values. The com-
parable performance in gene prioritizations in PD demonstrates
the generality of our method in prioritizing GWAS signals for
non-immune-related phenotypes.

Disease-specific expression data are valuable
for prioritization

Having demonstrated that incorporating rewiring information
inferred from a case–control microarray data set of
disease-related tissue could improve replication rate in both
CD and PD GWAS studies, we now discuss the importance of
the disease-specific information for prioritization. That is,
whether we can still achieve improved replication rates if the
network information is derived from an expression study unlike-
ly related to disease of interest.

To investigate this question, we flipped the CD and PD micro-
array data sets, and applied the Markov random field model in
prioritization. That is, we used the CD microarray data set to pri-
oritize the GWAS signal of PD, and used the PD microarray data
set to prioritize the GWAS signal of CD. The disease-related
tissues are different (intestine for CD and brain for PD), thus
the CD microarray data set would not be informative for associ-
ation of PD, and vice versa. We would not expect that our method
would lead to more replicable results, which was what we
observed in the CD data (Fig. 3A). In the PD application, the rep-
lication rate was improved at several points (k ¼ 150, 250 and
400) by incorporating the CD microarray data set (Fig. 4A), al-
though none of those genes were replicable when a more strin-
gent replication criterion was applied (P-value ,0.01 in the
replication cohort, see Supplementary Material, Fig. S3). Con-
versely, the improvement of the replication rate with disease-
specific microarray data sets and its significance was retained
for both CD and PD (see Supplementary Material, Figs S2 and
S3). These results underscore the fact that the increase of repli-
cation rate was likely attributed to the rewiring information in
the disease-specific rewiring network, instead of the common
network connections in the human genome.

Functional gene set enrichment analysis
of the prioritized genes

GWAS studies have revealed many disease-related pathways,
especially in CD (37,38). Here, our purpose is to test whether
the prioritized genes can be more enriched in disease-related
pathways compared with the genes that are selected by GWAS
signals alone. Thus, we used the hyper-geometric test for enrich-
ment analysis (see Materials and Methods), where the test set is
the prioritized genes in a disease, and the background set consists
of genes with significant GWAS signals (P-value ,0.05). We
tested the gene set enrichment of the prioritized genes of CD
and PD. The pathway database used is Reactome and GO bio-
logical process.

In the CD study, there were 780 genes with association
P-values ,0.05 (the contrast set) in the NIDDK cohort, while
124 of them were prioritized (test set, see Supplementary Mater-
ial, Table S6 for the list of prioritized genes). Gene sets with
P-values ,0.05 are reported (see Supplementary Material,
Table S8). Among the enriched gene sets, ‘membrane lipid meta-
bolic process’ and ‘phospholipid metabolism’, part of lipid

Figure 4. Replication rates between independent cohorts in Parkinson’s disease
study. A gene is called replicable if its association P-value in the replication
cohort is ,0.05. (A) Black circles: prioritized genes. Grey circles: non-
prioritized genes. Black diamonds: baseline replication rates for the top k
genes. Grey crosses: prioritized genes with microarray data set GSE20881 (a
microarray data set of Crohn’s disease). The numbers on the top of x-axis are
the association P-value of the kth genes in the discovery cohort. (B) Empirical
P-values of the replication rate of the prioritized gene set derived from permuta-
tions. The dotted line indicates significance level at 0.05. The y-axis is drawn at
the log10 scale but labelled with original P-values for ease of reading.

Human Molecular Genetics, 2014, Vol. 23, No. 10 2785

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/23/10/2780/615627 by guest on 25 April 2024

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt668/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt668/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt668/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt668/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt668/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt668/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt668/-/DC1


metabolism, were previously found to be enriched in GWAS
signals in CD by Ballard et al (37) and Torkamani, et al (38).
The enrichment of the ‘Beta defensins’ pathway appears to be
new and not reported elsewhere. Beta defensins can promote
adaptive immune response to micro-organisms by interaction
with CCR6 (39). Meta-analysis of CD GWAS have established
the association of CCR6 with CD at genome-wide significance
level (3), but the underlying biological mechanism is yet
unknown. Our results might be helpful in placing CCR6 in CD
aetiology.

For PD, there were 379 genes with association P-values
,0.05 (background set) and 74 were prioritized (test set, see
Supplementary Material, Table S7). The prioritized genes
were enriched in ‘neurological system process’, which is
expected since PD is a neurological disorder. Nonetheless, the
results can be helpful to pinpoint candidate genes involved in
PD aetiology in this process (see Supplementary Material,
Table S9). In addition, this pathway is not enriched for GWAS
signals alone, where the test set is the genes with association
P-values ,0.05, and the background set includes all the genes
in the study. However, none of the above gene sets could reach
statistical significance after multiple test correction.

DISCUSSION

In this paper, we proposed a Markov random field approach to
prioritizing GWAS signals by incorporating network rewiring
information. Real-data analyses in CD and PD demonstrate
that our method improves the replication rate between independ-
ent studies. Gene set enrichment analysis showed that the pro-
posed method identified known pathways associated with
these diseases, and also implicated potential pathways that
have not been suggested by existing methods.

Our method differs from other network-based prioritization
approachs by principle. While most other methods are based
on the ‘guilt by association’ assumption, we propose a ‘guilt
by rewiring’ approach, which prioritizes genes with network re-
wiring by comparing the co-expression networks in disease
samples and control samples. There are several advantages of
the proposed approach. First, the network information incorpo-
rated here is inferred from microarray experiments, which are
less biased and more comprehensive than protein interaction net-
works and pathway knowledge databases. The bias in the latter
data sources might weaken the power of GWAS in uncovering
novel loci with disease association, since they put more weight
on well-studied genes. In the network rewiring analysis, each
gene is represented as long as expression information is avail-
able. Second, the prioritized genes in our method have
dynamic behaviour in disease state, and this is valuable
because they may be potential biomarkers or drug targets.
Third, the prioritization results may be helpful in designing rep-
lication, so that selected genes or loci with moderate GWAS
signals can be included in follow-up studies, while not sacri-
ficing the replication rate. The software, an R package named
‘GBR’, applying our method is available at http://bioinforma
tics.med.yale.edu/group/.

Despite the advantages of our guilt by rewiring approach, the
prioritized genes bear an inherent limitation: possible inflations

due to physical proximity of genes in the genome. For example,
the enrichment of biological pathways might be a consequence
of proximal genes annotated in the same pathway instead of
the prioritization scheme. This is inherited from the input
GWAS signals, which might be inflated by gene proximity as
well. However, in the application to CD and PD, the prioritized
genes in the enriched pathways are scattered in different chromo-
some arms (see Supplementary Material, Tables S8 and S9), thus
excluding inflation as a confounding factor here. Nonetheless,
the interpretation of the prioritized genes should be made with
awareness of the potential problem in future application of this
method.

To study the interplay between genotype and network rewir-
ing pattern, the best approach would be to investigate samples
where both GWAS and expression data are available.
However, in the current study, the microarray data and GWAS
data were from different samples. More insight can be gained
when matched data are available. In the future, we would like
to extend the model to incorporate other network information
such as eQTL and transcription factor binding, to uncover the re-
lationship between the rewiring diagram of transcriptional regu-
latory network and complex disease.

MATERIALS AND METHODS

Data sets of Genome Wide Association Studies

The GWAS data sets of CD and PD are described in Supplemen-
tary Material, Table S1, including sample size, genotyping plat-
form and other information.

Gene assignment

To determine disease association at the gene level, we used two
methods based on data availability level (see Supplementary
Material, Table S1 for detail). Principal component analysis
(PCA) was applied when the genotype data were available
(40). Among all markers that are within 10 kb upstream or down-
stream of the gene start/end region, we first performed PCA, and
then used the top l principal components (PC1, PC2, . . ., PCl) that
explained at least 95% of the total variance for logistic regression
[see Eq. (1)]. Besides, a model with only population structure
components was fitted [Eq. (2)], and the P-value of the gene
was determined by the likelihood ratio test between these two
models.

log
p

1 − p
= a0 +

∑l

i=1

aiPCi+
∑4

i=1

biPSi. (1)

log
p

1 − p
= a0 +

∑4

i=1

biPSi. (2)

For data sets where individual genotype data were not available,
the minSNP method was employed (40). Suppose n SNPs are
assigned to the gene, with association P-values, p1, p2, . . ., pn,
and p(1) is the minimum. In the minSNP method, the gene
level association P-value is

p = 1 − (1 − p(1))n. (3)
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Gene expression

The gene expression data set was downloaded from GEO
(GSE20881, GSE8397 see Supplementary Material, Table S2
for details). In the CD data set (GSE20881), the gene expression
levels of 172 biopsies from 53 CD patients and 31 control
samples were measured on the Agilent Whole Human Genome
Microarray (28). There were originally 44 290 probe sets on the
Agilent platform, and we pre-processed the data in the following
steps: one sample was excluded because the corresponding ex-
pression profile differed substantially from the others (Supple-
mentary Material, Fig. S1); for genes that were mapped by
multiple probe sets, we excluded the gene if the Pearson correl-
ation coefficient between the multiple probe sets was ,0.27,
which corresponds to the 0.99 quantile of Student t-distribution
[Eq. (4), nm is the number of microarray samples]. Otherwise,
one single probe set was selected to represent the gene (see Sup-
plementary Material, Method S1 for details). In total, 15 041
genes remained in our analysis, and 12 007 of them overlapped
with those in the CD GWAS studies.

T = r

��������
nm − 2

1 − r2

√
� tnm−2. (4)

The PD microarray data set (GSE8397) was processed similarly
with 11 106 genes remaining after quality control, and the
number of genes overlapping with the GWAS studies was 8987.

Measurement of network rewiring by differential
co-expression

The PCC was calculated for each pair of genes in CD samples and
control samples, separately. Let rCD

ij denote the PCC of genes i and
j in the CD samples, and rcontrol

ij that in the control samples. Previ-
ously, the difference between PCCs was used to measure differen-
tial rewiring (20). Hu et al. (41) showed, by simulation, applying
Fisher transformation[Eq. (5)] improved thepower to identifydif-
ferentially rewired genes. Here, we used Fisher’s test of difference
between two correlation coefficients, which considers both the
change of PCC level and effect of sample size [Eq. (6)]. The test
statistic approximately follows standard normal distribution
under the null hypothesis of no difference between the PCC
levels between patients and controls. Thus, the rewiring informa-
tion, rewireij, is defined as a value between 0 and 1, with larger
value indicating more dramatic rewiring effect.

F(r) = 1

2
ln

1 + r

1 − r
. (5)

rewireij = P(|X |

≤ | F(rCD) − F(rcontrol)������������������������
1

nCD − 3
+ 1

ncontrol − 3

√ |),X � N (0, 1). (6)

Network dichotomization

The rewiring and co-expression networks are both weighted
networks, with weights ranging between 0 and 1. However, the
weights, rewiring information and absolute PCC value, are

distinct concepts and not comparable by nature. To facilitate
the comparison, we dichotomized the two networks in such a
way that they had the same network density. In detail, the rewir-
ing information of all gene pairs was ranked, and the 0.9, 0.95 and
0.99 quantiles were chosen as the hard threshold. The resultant
network densities were 0.1, 0.05 and 0.01, respectively. The
static co-expression network is dichotomized likewise by hard-
thresholding on the absolute PCC values.

Markov random field modelling

To prioritize disease-associated genes with network rewiring,
we utilized an Hidden Markov random field model to formulate
the problem. In the network, each node is a gene, with an associ-
ation label vi, either +1 (associated) or 21 (not associated). A
network configuration is the label vector of all nodes in the
network, (v1, v2, . . ., vN), where N is the number of genes con-
sidered. Two genes are connected (eij ¼ 1) if they were
co-expressed either in the disease state or healthy state. The
threshold used to dichotomize the co-expression network was
chosen by power law distribution (see Supplementary Material,
Methods). The degree of rewiring (rewireij) is described in the
previous section. The distribution of network configuration is
defined as follows:

P(v1,v2, · · · ,vN ) =
1

Z
exp(−h

∑N

i=1

I(vi = 1)

+ t1

∑
eij=1

rewireij · I(vi = 1,vj = 1)

− t2

∑
eij=1,rewireij.d

rewireij · I(vi = −1,vj = −1), (7)

where (h, t1, t2) are hyper-parameters, I(·) is an indicator func-
tion and Z is the partition function. In Eq. (7), the t. is weighting
parameters with positive values, which determine the influences
of different types of edges. The impacts of these parameters can
be better explained with Eq. (8), which shows the conditional
probability of association state of gene i. This probability is com-
posed of three parts: (i) h is a constant defining the probability of
being disease associated if the gene is isolated thus no network
information can be incorporated; (ii) t1 indicates the contribu-
tion of rewiring degree of ‘associated’ neighbours; while (3) t2

indicates those of ‘non-associated’ neighbours. Suppose the as-
sociation states of the neighbours of gene i are fixed, the larger t1

and t2 are, the more likely gene i is disease associated.

log
p(vi = 1|v−i)

p(vi = −1|v−i)
= −h + t1

∑
eij=1,vj=1

rewireij

+ t2

∑
eij=1,vj=−1,rewireij.d

rewireij. (8)

Here v2i stands for all genes in the network except gene i. In our
analysis,dwas set to0.95, anda rewiringdegree less than that indi-
cates that the difference of PCC between patients and control
samples is not significant. The odds of a gene to be associated
with disease will increase with larger rewiring degree with its
neighbours. The underlying biological assumption is that a
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group of erroneous gene interactions, which are present in one
condition and absent in the other, probably reflect organizational
changes of the cellular networks under different disease condi-
tions.

Given the network structure and the association signals, the
posterior probability of the network configuration can be in-
ferred through Bayesian framework:

P(V|Y )/ P(Y |V)P(V). (9)

The observed data Y = (y1, y2, ..., yN ) are the normalized
scores corresponding to the P-values in GWAS studies:
yi = F−1(1 − pi), where F is the cumulative distribution func-
tion of a standard normal variable. Under the null hypothesis that
the gene is not associated with the disease, its P-value follows a
Uniform(0,1) distribution. Thus, P(yi|vi = −1) � N(0, 1).
Under the alternative hypothesis, i.e. the association state is
‘+1’, we follow Chen et al. by assuming P(yi|vi = 1) �
N (mi,s

2
i ), and assign F conjugate priors for mi and s2

i

[Eq. (10)].

mi|si2�N (�m,s2
i /a),s2

i � InverseGamma(y/2, yd/2). (10)

The hidden states can be inferred by the iterated conditional
modes algorithm (42).

Although this modelling framework is similar to that by Chen
et al. (23), the proposed approach is different in principle. First,
the previous approach assumes connected genes in a pathway
tend to share association states, which is a ‘guilt by association’
approach in the general sense. Second, the current approach
incorporates the network structure at a systems level, and not
restricted to connections defined within annotated pathways as
proposed in the previous approach. Indeed, dynamic changes
tend to involve genes between pathways, rather than within
known pathways.

Choice of hyper-parameters

There are two sets of hyper-parameters in our model, including
network parameters (h, t1, t2) and GWAS parameters
(�m, a, y, d), respectively. The parameters (t1, t2) reflect the
context-dependent contribution of network rewiring to the config-
uration distribution. The change of energy function caused by
assigning node i to ‘+1’ from ‘21’ [Eq. (11)] can be easily
derived from [Eq. (7)]. We fixed both t1 and t2 as 1, since we
assume the rewiring with both associated and non-associated
genes increase the probability that this gene is associated.

t1

∑
vj=1,eij=1

rewireij + t2

∑
vj=−1,eij=1,rewireij.d

rewireij − h. (11)

The parameter h, a negative value, determines the distribution of
network configuration when neither GWAS nor gene expression
data are available. When (t1, t2) are fixed, a larger value of h
favours network configurations with more nodes labelled as ‘not
associated’. We choose h empirically (see details in Supplemen-
tary Material, Method). The GWAS parameters have been previ-
ously discussed (23), where the authors noted the results are not
sensitive to these parameters based on simulation studies. In this
article, we adopted the same set-up (1,3,10).

Permutations

In permutation I, we reshuffled the case–control labels of the
microarray samples. In permutation II, the case and control
samples were shuffled separately. In the microarray data set of
control samples, the expression profile of gene i is {xi1, xi2, . . .,
xis}. Let {ri1, ri2, . . ., ris} denote a permutation of {1, 2, . . ., s},
the expression profile of gene i in control samples was permuted
to {xiri1

, xiri2
, · · · , xiris

}. The expression profiles of disease
samples were shuffled in the same way. In the real data, xik and
xjk are expression levels of gene i and gene j from the kth
patient, but the pairing is broken in the permutation due to the
randomization process. In this way, the rewiring pattern is
shuffled while the differential expression is preserved for each
gene. In both permutation settings I and II, 1000 networks
were generated based on the permuted data.

Gene set enrichment analysis

Suppose that there are M genes in the background set, and m of
those genes are prioritized. The number of overlap genes of the
background set and the prioritized set with a functional gene
set is Mp and mp, respectively. In the hyper-geometric test, the en-
richment P-value was calculated as follows:

PHG =
C

mp

Mp
C

m−mp

M−Mp

Cm
M

. (12)

For permutations, we randomly sampled m genes from the back-
ground set for 1000 times, and calculated the intersection of the
random set and the functional gene set. Empirical P-value was

defined as

∑1000

i=1

I(mi ≥ mp)

1000
, where mi is the number of overlap-

ping genes in the random set.

Binomial test

The significance of enrichment of (+1, +1) and (+1, 21) edges
in the rewiring and the static network was addressed by the bino-
mial test. Supposed the expected proportion of (+1, +1) is u, the
number of all edges and (+1, +1) edges are NT and N11, respect-

ively, the significance of enrichment is
∑

k≥N11

Ck
NT
uk(1 − u)NT−k

.

The P-values were reported as 0 when they fell
,2.220446e-16, which is the smallest floating-point number
in R environment.

Software

The software of the guilt by rewiring approach is available at
http://bioinformatics.med.yale.edu/group/.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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