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Abstract
Type2diabetesmellitus (DM) is anestablished risk factor forawide rangeof vasculardiseases, including ischemic stroke (IS).Glycated
hemoglobin A1c (HbA1c), a marker for average blood glucose levels over the previous 12 weeks, is used as a measure of glycemic
control andalsoasadiagnostic criterion fordiabetes (HbA1c levels≥ 6.5%). Epigeneticmechanisms, suchasDNAmethylation,maybe
associated with aging processes and with modulation of the risk of various pathologies, such as DM. Specifically, DNA methylation
could be one of themechanismsmediating the relation betweenDMandenvironmental exposures. Our goalwas to identify newCpG
methylation sites associated with DM. We performed a genome-wide methylation study in whole-blood DNA from an IS patient
cohorts. Illumina HumanMethylation450 BeadChip arraywas used tomeasure DNAmethylation in CpG sites. All statistical analyses
were adjusted for sex, age, hyperlipidemia, body mass index (BMI), smoking habit and cell count. Findings were replicated in two
independent cohorts, an IS cohort andapopulation-based cohort, using the samearray. In thediscoveryphase (N= 355),we identified
a CpG site, cg19693031 (located in the TXNIP gene) that was associated with DM (P=1.17 × 10−12); this CpG was replicated in two
independent cohorts (N=167 and N= 645). Methylation of TXNIP was inversely and intensely associated with HbA1c levels
(P= 7.3 × 10−16), specifically related to diabetic patients with poor control of glucose levels. We identified an association between the
TXNIP gene and DM through epigenetic mechanisms, related to sustained hyperglycemia levels (HbA1c≥ 7%).

Introduction
Type 2 diabetes mellitus (DM) is an established risk factor for a
wide range of vascular diseases, including ischemic stroke (IS),
independently of other conventional risk factors (1,2). The preva-
lence of DM in IS ranges from 15 to 44% (3–5).

In patients with DM, glucose accumulation results in en-
hanced glycation of many proteins. The glycated hemoglobin
A1c (HbA1c) is formed when glucose attaches specifically to the
NH2-terminal valine of the β-chain of hemoglobin A. Formation
of HbA1c is essentially irreversible, and its concentration in the
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blood depends on both the life span of the red blood cell, which
averages ∼120 days, and the blood glucose concentration.
HbA1c is firmly established as a biomarker of long-term blood
glucose concentrations and represents the average of glucose le-
vels over the preceding 8 to 12 weeks. This biomarker has many
favorable attributes, including no requirement that the patient be
fasting, the possibility of collecting the sample at any time of the
day, and the lack of any association between its concentration in
the blood and acute factors such as stress or exercise (6). As our
group has previously published, HbA1c determination provides
prognostic information in IS patients without known DM (7). Ele-
vated blood glucose is common in the acute phase of stroke,mak-
ing HbA1c determination useful to diagnose new DM cases (8).

Diabetes is a complex disease, and both genetic and environ-
mental factors contribute to its development. However, despite
the depth of available research in the genetic area, all the identi-
fied DM risk variants explain only ∼10% of its estimated heritabil-
ity (9,10). Environmental factors, such as diet and exposure to
hyperglycemia, contribute to the etiology of DM and its associated
microvascular and macrovascular complications. Thus, research-
ers have begun to examine the role of epigenetics in DM (11,12).
DNAmethylation could be one of the epigeneticmechanismsme-
diating the relation between DM and environmental exposures.
There is great interest in methylation profiling in peripheral
blood to find disease-related associations, as specific methylation
regions could be used as potent biomarkers (13). Indeed, recent
studies have proposed that specific changes in the epigenoma
are associated with the onset and progression of diabetes and
serve as markers of DM risk (14–16).

DNA methylation is an epigenetic mechanism regulating
high-order DNA structure and gene expression. It is a heritable
but also reversible addition of a methyl group to the 5-carbon
position of cytosine in a cytosine-phosphate-guanine (CpG) con-
text. This dinucleotide is quite rare in mammalian genomes
(∼1%) and clusters in regions known as CpG islands. The methy-
lation of the CpG island is associated with gene silencing (17).

The aim of the present study was to determine the association
between DM andDNAmethylation. For this purpose, we screened
DNAmethylation changes using an epigenome-wide approach in
our IS cohort; first, comparing non-DMpatientswith patientswith
DM; and second, we classified DM patients in two groups depend-
ing on their control of glucose levels: well-controlled DM with
HbA1c< 7% (DM-good control) or poorly controlled DMwith HbA1c
≥ 7% (DM-poor control).We identified and validated a newmethyla-
tion CpG site associated with DM and HbA1c levels.

Results
Discovery analysis: genome-wide effect of diabetes
on methylation status

Agenome-wide DNAmethylation analysis fromwhole bloodwas
done in the discovery cohort (N = 355) with a DM prevalence of
42.5%. Clinical and demographic differences between DM and
non-DM patients are shown in Table 1. Of the initial 485 577
CpG sites, 426 036 passed the quality controls and were included
in the discovery analyses (Supplementary Material, Table S1).

There were no differences between the DM and non-DM
groups in sex, hypertension, smoking habit, atrial fibrillation,
stroke severity (assessed by the National Institutes of Health
Stroke Scale, NIHSS) (18) and TOAST classification of IS subtype
(19). Differences between patients with andwithout DM included
age (72.6 versus 75.0 years, P = 0.04), past history of ischemic heart
disease (17.9 versus 10.8%, P = 0.06), mean bodymass index (BMI)

[28 kg/m2 (SD = 4.5) versus 27.1 kg/m2 (SD = 4.7), P = 0.09], and
hyperlipidemia (55.0% versus 40.2%, P = 0.006), respectively. As
expected, HbA1c values differed significantly [means of 7.7 (SD =
1.9) versus 5.4 (SD = 0.5), respectively; P < 0.001]. In the first blood
glucose determination during hospitalization, diabetic patients
had significantly highermean values [183.9 mg/dl (SD = 86.4) ver-
sus 114.2 mg/dl (SD = 26.2) in patients without DM, P < 0.001]. A
total of 104 (68.9%) DM patients were receiving treatment (16.3%
insulin, 70.2% oral medication and 13.5% both therapies).

Regression models fitted to test the differences in DNA
methylation levels between DM and non-DM patients showed a
significant CpG site corresponding to cg19693031 located in
TXNIP, which was hypomethylated in the DM group [P = 1.17 ×
10−12, with a false discovery rate (FDR) correction adjusted
P-value of 5.0 × 10−7], and a 5% difference inmethylation between
the two groups (Fig. 1). A Manhattan plot of the distribution of
P-values and quantile–quantile plot for expected versus observed
χ2 values are shown in Figure 2.

To further validate our genome-wide DNA methylation pipe-
line, we also assessed the highly replicated DNAmethylation as-
sociation with smoking habit (current versus non-current
smokers), in the genes AHRR, cg05575921 (P = 1.21 × 10−33) and
F2RL3, cg03636183 (P = 3.03 × 10−24) within our dataset (20,21).

Replication analysis of the novel CpG site associated
with diabetes

Vascular risk factors and demographic data of the BASICMAR_2
and REGICOR cohorts, used to replicate the CpG identified in
our analysis, are shown in Supplementary Material, Table S2
and S3. BASICMAR_2 contains 167 samples with methylation
data from patients with IS, 108 non-DM and 59 DM (DM preva-
lence ∼35.3%). The REGICOR data are from a population-based
cohort with a total of 645 samples with methylation data, 582
non-DM and 63 DM (DM prevalence of ∼10%).

The regression analysis between methylation and DM status
was adjusted for sex, age, smoking habit, hyperlipidemia, BMI

Table 1. Descriptive characteristics of IS patients of BASICMAR_1
cohort by diabetic status

BASICMAR_1 cohort Non-DM DM P-value
N = 355 N = 204 N = 151

Age, yearsa 75.0 (11.4) 72.6 (4.5) 0.04
Sex, female, n (%) 88 (43.1) 61 (40.4) 0.61
Hypertension, n (%) 141 (69.1) 111 (73.5) 0.37
Smoking habit, n (%) 53 (26.0) 40 (26.5) 0.61
BMI (kg/m2)a 27.1 (4.7) 28.0 (4.5) 0.09
Hyperlipidemia, n (%) 82 (40.2) 83 (55.0) 0.006
Blood glucose (mg/dl)a 114.2 (26.2) 183.9 (86.4) <0.001
Hemoglobin A1c %a 5.4 (0.5) 7.7 (1.9) <0.001
DM treatment, n (%) – 104 (68.9) <0.001
Insulin treatment, n (%) – 17 (16.3) <0.001
Oral DM medication, n (%) – 73 (70.2) <0.001
Oral and insulin treatment, n (%) – 14 (13.5) <0.001
Atrial fibrillation, n (%) 55 (27.0) 40 (26.5) 0.92
Ischemic heart disease, n (%) 22 (10.8) 27 (17.9) 0.06
NIHSSb 5 (2–10) 5 (3–9) 0.90
Ischemic stroke etiology, n (%) 0.57
Large-artery atherosclerosis 63 (31.0) 54 (36.2)
Small-artery disease 82 (40.4) 54 (36.2)
Cardioembolism 59 (28.6) 43 (27.5)

aMean (standard deviation).
bMedian (interquartile range).
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and cell count. The significant cg19693031 CpG site in TXNIP ob-
served in the discovery analysis was attempted to replication,
and it was successfully replicated in both cohorts. The BASIC-
MAR_2 cohort showed mean methylation values of 0.74 (SD =
0.06) in non-DM patients and 0.69 (SD = 0.09) in DM patients,
with an absolute methylation difference of 0.05 or 5% between
groups (P = 1.37 × 10−6). The REGICOR cohort had mean methyla-
tion values of 0.71 (SD = 0.06) in non-DM patients and 0.68 (SD =
0.07) in DM patients, with a 3% methylation difference between
groups (P = 6.08 × 10−5) (Table 2).

Analysis of the role of HbA1c determination
in methylation status at TXNIP

In order to explore the relationship between TXNIPhypomethyla-
tion and DM, we tested whether this association is more related
to exposure to sustained hyperglycemia than to DM status.
Therefore, we analyzed the association between DNA methyla-
tion and HbA1c (%), which reflects average glucose levels over
the previous 12 weeks.

After FDR correction for multiple testing, we identified four
CpG sites with differential methylation levels (Table 3). The
most significant site was again cg19693031 in TXNIP locus, P = 7.3
× 10−16. The Manhattan plot of P-value distribution and quantile–
quantile plot for expected versus observed χ2 values are shown in
Figure 3. HbA1c (%) were negatively correlated with percentage of
methylation in this locus, with a correlation coefficient of −0.13
(95% CI: −0.16, −0.88, P < 0.001) (Fig. 4). Of the four CpGs identified,
we replicated one of them in the BASICMAR_2 cohort, the previ-
ously mentioned cg19693031 in TXNIP locus (P = 5.11 × 10−9)
(Table 3).

Ordinal regression analysis betweenmethylation andDM sta-
tus based on HbA1c values—non-DM, DM-good control (HbA1c <
7%) and DM-poor control (HbA1c ≥ 7%)—confirmed the signifi-
cant association in cg19693031 of TXNIP locus (P-value = 7.93 ×
10−11). Non-DM group was considered the reference group in lo-
gistic regression analyses, and the significant association in
cg19693031 of TXNIP locus was due to DM patients with poor

control of glucose levels (P-value = 1.89 × 10−13) (Table 4). DM pa-
tients with poor control of glucose levels showed a mean hypo-
methylation of 6% in this CpG than the non-DM group (Fig. 5). A
modest association was observed between DM-poor control and
DM-good control (P-value = 2.6 × 10−5), with a mean methylation
difference of 3%, DM-poor control group was hypomethylated
compared with DM-good control group. No association was ob-
served between non-DM and DM-good control groups, but a ten-
dency is observed with a mean methylation difference between
groups of 3%. All these resultswere replicated in the BASICMAR_2
cohort (Table 4).

Analysis of the role of DM medication

To explore possible effects of DMmedication on our findings, we
tested the association between methylation and DM medication
at the time of blood sampling in DMpatients (N = 151).We did not
find a significant association with cg19693031 in TXNIP locus
(P-value = 0.29), demonstrating that DM treatment is not a con-
founder in our analysis.

EpiTYPER validation

The differential methylation for cg19693031 in TXNIP was vali-
dated via Sequenom EpiTYPER approach in 283 randomly se-
lected samples with HbA1c (%) available from the discovery
cohort. The characteristics are summarized in Supplementary
Material, Table S4. Sequenom EpiTYPER confirmed differential
methylation in cg19693031 in TXNIP between DM status groups
andHbA1c (%) as continuous variable (P < 0.001).Moreover, an ad-
jacent CpG in the same PCR product (chr1:145441393–145441394)
in TXNIP locus showed comparable behavior than cg19693031
(chr1:145441552–145441553) (Supplementary Material, Table S5).

The association of patients in the DM-poor control group and
cg19693031 from the Illumina HumanMethylation 450 BeadChip
array was technically validated with this technique, demonstrat-
ing the reliability of the array in general.

Discussion
In the present study, DM was associated with hypomethylation
in the TXNIP gene in peripheral blood DNA of patients with IS
and in a healthy population. Hypomethylation of this gene is re-
lated mainly to the average glucose levels in previous months
(measured through HbA1c), suggesting an epigenetic conse-
quence of hyperglycemia exposure rather than a cause of DM.

DNA methylation is an epigenetic mechanism regulating
high-order DNA structure and gene expression. Usually DNA hy-
pomethylation is associated with higher gene expression (17).
Theoretically, the binding affinity of transcription factors may
be affected by either local alteration of their DNA target se-
quences or throughmore global changes in chromatin accessibil-
ity (22–25). In silico analysis of cg19693031, located in the 3′UTR of
TXNIP, showed that is a likely bindingmotive associatedwith glu-
cose import and/or chaperone binding site (5′ ACCCCAGAAGGT
GA 3′). Thus, methylation differences in this locus may modify
the binding affinity of methylation-sensitive transcription regu-
lators, which are related to the mechanism of glucose exposure.
In general, regulatory regions tend to be DNase-sensitive;
cg19693031 is located in a DNAse-hypersensitive area assayed
in three blood cell lines (CMK, GM12878 and HL-60), as reported
from the ENCODE project (http://www.epigenomebrowser.org),
which reinforces our assumption.

Figure 1. Boxplot of β values of methylation in cg19693031 in TXNIP locus in non-

DM and DM patients (N = 355). P-value = 1.17 × 10−12, adjusted for sex, age,

hyperlipidemia, BMI, smoking habit and cell count.
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TXNIP encodes for thioredoxin-interacting protein and has
multiple functions. It plays an important role in redox homeosta-
sis and as a physiologic regulator of peripheral glucose uptake in
humans induced by hyperglycemia and inhibits glucose uptake
into fat and muscle (26–28). The phenotype of TXNIP knock-
out (KO) mice demonstrated that TXNIP plays a crucial role in sev-
eral pathological conditions, including metabolic syndrome,
inflammation and cancer (29,30). Moreover, these KO mice were
markedly more insulin-sensitive than controls and augmented
glucose transportwas identified in both adipose and skeletalmus-
cles (31). TXNIP expression is glucose-responsive and its expres-
sion is consistently elevated in the muscle of pre-diabetic and
diabetic patients (28). However, there is no evidence for an associ-
ationbetweenDMandcommongenetic variations inTXNIP (28). In
a recent GWAS publication (32), some variants at multiple loci
were associatedwithHbA1c. However, these loci seemto be linked
to erythrocyte parameters rather than to glucose metabolism,
which may explain why TXNIP did not appear to be associated

and also points to a TXNIP role in glycemia regulation. TXNIP
expression is widely regulated by nutritional status, signals and
enzymes (e.g., feeding-fasting, obesity, high glucose, amino acids
andnuclear receptor signals). It has been reported as an important
protein in glucose regulation and lipid homeostasis (29,33,34). In a
recent publication, cg19693031 in TXNIP was associated with chy-
lomicrons (class A) and known metabolic markers of DM, such as
hexose and alpha-hydrobutyrate (35). While finalizing this manu-
script, three studies were published and observed an association
of DNA methylation at cg19693031 in TXNIP, and type 2 diabetes
(36–38). Kulkarni et al (36) identified an association between
cg19693031methylationandDM, fastingblood glucose and insulin
resistance in 850 pedigreed Mexican-American individuals using
the Illumina HumanMethylation450 Beadchip. Chambers et al.
(37) in a large, prospected, nested case–control study (N = 25,372),
identified an association between differential methylation at five
genetic loci, including TXNIP, and risk of future DM incidence
among Indian Asians and Europeans. Finally, Florath et al. (38)

Figure 2.Manhattan plot shows the distribution of the P-values of the association betweenmethylation probes inDManalysis in BASICMAR_1 discovery cohort (A) andQQ

plot (B).

612 | Human Molecular Genetics, 2016, Vol. 25, No. 3

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/25/3/609/2384636 by guest on 24 April 2024



showed the same association between cg19693031 methylation
and DM in an elderly cohort from Germany (N = 988). Altogether,
this information confirms a role for TXNIP in DM pathogenesis.
DNA methylation could be the mechanism through which TXNIP
expression is controlled and regulates glucose homeostasis.

Epidemiological evidence and data from clinical studies sug-
gest the persistence of a ‘metabolicmemory’ of past exposures to
environmental factors or glycemic control (39). Results from two
different clinical trials [Diabetes Control and Complications Trial
(DCCT) in DM type 1 and Epidemiology of Diabetes Interventions
and Complications in DM type 2] showed that early glycemic con-
trol after diagnosis contributes to decreased incidence of cardio-
vascular events, compared with late control. These observations
led to the ‘metabolic memory’ hypothesis (40). DNAmethylation
may be one of the mechanisms involved in this phenomenon.

In this study, we analyzed one of the largest available series of
participantswith genome-widemethylationdata, thefirst epigen-
ome-wide association study analysis of IS patients. We replicated
our results in two independent cohorts and validated themwith a
different technique. Moreover, we identified a CpG site related to
type 2 DM patients and sustained hyperglycemia levels and vali-
dated it with different approaches. Additionally, we identified a
new association of a nearby CpG in TXNIP (chr1:145441393–
145441394). Recent publications have observed the same associ-
ation between cg19693031 methylation and DM, validating and
confirming our own research.

Some limitations of the study should be considered. First, we
measuredDNAmethylation in peripheral blood cells. Methylation
levels of some CpGs/regions are tissue-specific (41), and wemight
have lost some signals by not choosing specific tissues where glu-
cose concentration could have a higher impact on DNA methyla-
tion. However, methylation patterns of whole blood have been
reported as a good proxy for methylation levels from a specific
site of action (13,21). Second, the design of the study is cross-
sectional and we can only suspect but not infer causality of the
reported associations.

In conclusion, hypomethylation of the TXNIP gene is related
to type 2 DM. The inverse relationship between TXNIP

methylation and HbA1c values suggests that TXNIP hypomethy-
lation is a consequence of sustained hyperglycemia levels. It has
been reported that TXNIP expression is highly sensitive to glucose
concentrations, and DNA methylation may be a key mechanism
tomodulate its expression and likely to be an early biomarker for
impaired glucose homeostasis.

Materials and Methods
Study participants

The study included three independent prospective cohorts
of Caucasian patients recruited in Spain (N = 355, N = 167 and
N = 645), analyzed retrospectively.

The discovery cohort, BASICMAR_1 cohort, was recruited in
Hospital del Mar in Barcelona, Spain, and included a subsample
of IS patients (N = 355), recruited from 2005 to 2009, from those
enrolled in BasicMar Register (Ministerio de Sanidad y Consumo,
Instituto de Salud Carlos III; FIS No. PI051737), an ongoing pro-
spective registry of stroke patients (42). The BASICMAR_2 cohort,
a second subsample of IS patients (N = 167) from those enrolled in
the BasicMar Register, was used as one of the replication cohorts
recruited from 2009 to 2012. The BasicMar Register prospectively
recruited all consenting patients who were admitted to our hos-
pital from2005 to 2012 (n = 4291; response rate, 80.8%)with adiag-
nosis of stroke fulfilling World Health Organization criteria.
Inclusion criteria in BASICMAR cohorts were as follows: (1) first-
ever IS, (2) brain imaging with CT or MRI, (3) availability of the
clinical data supporting the assigned stroke subtype according
to TOAST classification (19), (4) availability of the clinical data
of HbA1c and BMI and (5) absence of intracranial hemorrhage,
neoplasms, demyelinating and autoimmune diseases and vascu-
litides. All patients were assessed and classified by a neurologist
and were included in the study by consecutive order of recruit-
ment. The decision of using an IS cohort as the discovery cohort
to study DM was based on several reasons. It has a higher preva-
lence of DM (∼44%), compared with the healthy population,
which may improve the discovery power, and also the well

Table 2. Methylation differences in the discovery BASICMAR_1 cohort identified in the discovery analysis and validated in BASICMAR_2 and
REGICOR cohorts in peripheral blood between non-DM and DM in TXNIP gene

cg19693031 Cohorts N Non-DMa DMa Effect size (%) P-value Coef.

Discovery BASICMAR_1 355 0.71 (0.06) 0.66 (0.08) 5 1.17 × 10−12 −0.35
Validation BASICMAR_2 167 0.74 (0.06) 0.69 (0.09) 5 1.37 × 10−6 −0.30

REGICOR 645 0.71 (0.06) 0.68 (0.07) 3 6.08 × 10−5 −0.53

Effect size (%): absolute difference in themean beta values between groups expressed in percentage. P-value adjusted by sex, smoking habit, age, hyperlipidemia, BMI and

cell count. Coef.: Regression coefficient.
aObserved mean β values (standard deviation).

Table 3. CpG sites with significantly differential methylation in relation to HbA1c (%) in the discovery cohort

CpG ID Chr:position Gene Discovery BASICMAR_1 Replication BASICMAR_2
β valuea P-value FDR P-value Coef. β valuea P-value FDR P-value Coef.

cg19693031 1: 145441552 TXNIP 0.69 (0.07) 7.30 × 10−16 3.11 × 10−10 −0.129 0.72 (0.08) 5.11 × 10−9 2.05 × 10−8 −0.144
cg01676795 7: 75586348 POR 0.80 (0.06) 1.05 × 10−7 0.019 0.061 0.51 (0.08) 0.413 0.818 0.018
cg07805383 2: 74346210 . . . 0.89 (0.10) 1.32 × 10−7 0.019 −0.162 0.89 (0.08) 0.345 0.783 0.039
cg26262157 10: 6214079 PFKFB3 0.48 (0.04) 4.41 × 10−7 0.047 −0.061 0.28 (0.07) 0.048 0.505 −0.037

The global significance level of 0.05% corrected formultiple comparisonswas established at P-value = 0.05/6 = 0.008 to define adifference as statistically significant. CpG ID;

Chr:position, chromosome location (hg17); Gene: associated gene; P-value adjusted by sex, smoking habit, age, hyperlipidemia, BMI and cell count; FDR P-value: FDR

adjusted P-value; Coef.: regression coefficient.
aObserved mean β value (standard deviation).
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characterized and accurate phenotyped individuals add value to
the discovery phase.

Girona Heart Registry (REGICOR, which stands for REgistre GIr-
oni del COR) is a population-based cohort recruited in the province
of Girona, in northeast Spain, ∼100 km from Hospital del Mar
(Barcelona). This register includes a randomized representative
sample ofmen andwomen of the province of Girona.We used fol-
low-up data from a population-based cohort originally enrolled in
2003–2005 (n = 6352; response rate, 71.5%) from towns that re-
present the urban and rural diversity of Girona Province (43). Dur-
ing 2009–2013, participants still residing in these towns were
invited to participate in a follow-up visit; institutionalized resi-
dents were excluded. The response rate was 78.4%. A subsample
of those attending their follow-up visit was selected for a replica-
tioncohort, 645 individuals (582 controls and63DM).The selection
of a population-based cohort for replication warrants the external
validity of the results to the general population.

All subjects were of European descent. The study was ap-
proved by the local ethics committee, CEIC-Parc de Salut Mar,

and participants gave written informed consent. The study was
conducted according to the principles expressed in the Declar-
ation of Helsinki and relevant legislation in Spain.

Demographic and vascular risk factor variables

As defined by international guidelines, data on vascular risk
factors analyzed were obtained from direct interview of the
patient, relatives and caregivers, and from medical records.
Examinationswere performed and standardized questionnaires
administered by a team of neurologists and reviewer by an add-
itional neurologist.

We recorded age, sex and vascular risk factors, which were
collected in a structured questionnaire during hospitalization,
as follows: arterial hypertension, defined as systolic blood pres-
sure (SBP) ≥ 140 mmHg or diastolic (DPB) ≥ 90 mmHg previous to
the acute event in more than two determinations, a physician’s
diagnosis, or use ofmedication (collected during hospitalization);
hyperlipidemia, defined as a physician’s diagnosis, use of

Figure 3. Manhattan plot shows the distribution of the P-values of the association between methylation probes in Hemoglobin A1c analysis in BASICMAR_1 discovery

cohort (A) and QQ plot (B).
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medication, serum cholesterol concentration >220 mg/dl, low-
density lipoprotein cholesterol (LDL) > 130 mg/dl, or serum trigly-
ceride concentration > 150 mg/dl (collected during hospitaliza-
tion); first measure glucose value (non-fasting) during
hospitalization; ischemic heart disease (documented history of
angina pectoris or myocardial infarction); and atrial fibrillation
(documented history or diagnosis during hospitalization) and
self-reported smoking habit. During hospitalization lymphocyte
count, BMI, stroke severity was measured by the NIHSS (18), and
TOAST criteria was used to classify IS subtype (19), is recorded
through standardized protocol.

No missing data were observed for the variables age, sex,
hypertension, hyperlipidemia, atrial fibrillation and ischemic
heart disease. The percentage of participants in BASICMAR_1 co-
hort with missing values for smoking habit was 2% and BMI was
12.1%. The percentage of participants in BASICMAR_2 cohort
with missing values for BMI was 9.7%.

Diagnosis of diabetes mellitus type 2

DMdiagnosiswas based on evidence of two ormore fasting blood
glucose values ≥ 126 mg/dl, use of diabetes medication or

previous physician diagnosis. Hemoglobin A1c (HbA1c) values
were obtained during hospitalization, only from BASICMAR co-
horts, measured by high-performance liquid chromatography.
The percentage of participants in BASICMAR_1 cohort withmiss-
ing values for HbA1c was 25%, and 1.6% in BASICMAR_2 cohort.
Patients with unknownDMandHbA1c values of ≥6.5%were clas-
sified as DM patients independently of current blood glucose le-
vels. On the other hand, DM patients were classified in two
groups depending on their control of glucose levels: HbA1c < 7%
(DM-good control) or HbA1c≥ 7% (DM-poor control).

Peripheral blood collection and DNA extraction

DNA samples were extracted from whole peripheral blood col-
lected in 10 ml EDTA tubes. The Chemagic Magnetic Separation
Module I system (Chemagen) was used for DNA isolation in BA-
SICMAR cohorts, and The Autopure LS (Qiagen) in the REGICOR
cohort. Genome-wide DNA methylation was assessed using the
Illumina HumanMethylation450 Beadchip. DNA extractions
were performed at the same time and stored together at −20°C.
DNA concentrations were quantified using Picogreen assay and
Nanodrop technology. The quality of DNA samples was visua-
lized in agarose gels.

Array-based DNA methylation analysis with Infinium
Human Methylation450k

Genomic DNA (1 µg) was bisulfite-converted using the EZ-96DNA
Methylation Kit (Zymo Research, Orange, CA, USA) according to
the manufacturer’s procedure, with the alternative incubation
conditions recommended when using the Illumina Methylation
Assay.

Genome-wide DNA methylation was assessed using the Illu-
mina HumanMethylation450 Beadchip (Illumina Netherlands,
Eindhoven, Netherlands) following the manufacturer’s protocol
with no modifications. This array covers 485 577 methylation
CpG sites in 99% of RefSeq genes (21 231 genes). The arrays
were scanned with the Illumina HiScan SQ scanner. These pro-
cesses were carried out in Progenika Biopharma in Bizkaia,
Spain, for the BASICMAR cohorts and in two different laborator-
ies of the Spanish National Genotyping Centre for the REGICOR
cohort: the Centre for Genomic Regulation in Barcelona and the
Centro Nacional de Investigaciones Oncológicas in Madrid. Two
repeated samples were included in all the plates to take into ac-
count batch effects. In the REGICOR cohort was performed a sen-
sitivity analysis, normalizing the data by laboratory batch effect
(Supplementary Material, Table S6).

Figure 4. Scatterplot of β values of methylation in cg19693031 in TXNIP locus and

Hemoglobin A1c in BASICMAR_1 discovery cohort (%). P-value = 7.30 × 10−16,

adjusted for sex, age, hyperlipidemia, BMI, smoking habit and cell count.

Table 4. Genome-wide differentially methylated CpG cg19693031 in TXNIP locus between non-DM and DM patients based on HbA1c values,
DM-good control (HbA1c < 7%) and DM-poor control (HbA1c ≥ 7%), from discovery BASICMAR_1 cohort and replication BASICMAR_2 cohort

cg19693031 N HbAc1 (SD) β values (SD) Effect size (%) P-value Coef.

Discovery BASICMAR_1 Non-DM 151 5.41 (0.53) 0.70 (0.01) Ref Ref Ref
DM-good control 52 6.22 (0.49) 0.67 (0.01) 3 0.460 −0.05
DM-poor control 65 8.83 (1.81) 0.64 (0.01) 6 1.89 × 10−13 −0.45

Validation BASICMAR_2 Non-DM 103 5.26 (0.53) 0.74 (0.02) Ref Ref Ref
DM-good control 22 6.25 (0.49) 0.71 (0.02) 3 0.570 0.057
DM-poor control 37 8.44 (1.35) 0.67 (0.02) 7 3.80 × 10−8 −0.256

Non-DMwas considered the reference group in the statistical analysis (Ref). HbAc1% (standard deviation, SD): mean HbAc1 values (standard deviation); β values: observed

mean β value in this CpG site (SD); effect size (%): absolute difference in themean beta valueswith respect to reference group expressed in percentage. P-value, adjusted by

sex, smoking habit, age, hyperlipidemia, BMI and cell count. Coef.: regression coefficient.
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Data preprocessing and normalization

Data were preprocessed using standardized pipelines (44,45).

Sample quality control
Initial quality control of sample data was conducted using Geno-
meStudio version 2011.1 (Illumina, San Diego, CA, USA) with the
methylation module (version 1.9.0) to determine the status of
staining, extension, hybridization, target removal, bisulfite con-
version, specificity, non-polymorphic and negative controls
(without background correction or normalization). We used all
the samples that had a detection rate over 95%. Then, we tested
whether we could group samples by sex according to their DNA
methylation levels on the X-chromosome using the methylumi R
package (46). Samples that performed poorly in these quality
controls were excluded from further analysis (Supplementary
Material, Table S1).

Cpg quality control
We excluded all probes that were represented by a bead count
under three in at least 5% of the samples. CpG sites having 1%
of samples with a detection P-value of >0.05 were removed and
cross-reactive probes were excluded (47) using the wateRmelon R
package (44). To avoid SNP (single-nucleotide polymorphism) ef-
fects on methylation measures and sex bias, we excluded CpGs
with SNPs present inside the probe body and at the CpG site,
and all probes associated with an allosomal position (Supple-
mentary Material, Table S1).

Before analysis of BASICMARcohorts,methylation valueswere
corrected for background values and then normalized by SWAN
usingminfi Bioconductor package (48,49). REGICOR cohort normal-
ized by dasen method (44,50) using the RnBeads package (51).

In statistical models, β values were transformed using a vari-
ance stabilization transformation tomethylationM-values (52). β
value ranges between 0 (completely unmethylated) and 1 (com-
pletelymethylated), expressed as percentages (range 0–100%). Ef-
fect size refers to the absolute difference in the mean β values

between the groups analyzed; it can be expressed as percentage.
Owing to its good statistical properties, M-value was the main
outcome variable used in our analyses (51,53). We used a previ-
ously published algorithm to infer white blood cell counts from
DNAmethylation data (53). Prior to statistical analyses, M-values
were adjusted to remove batch effect using the SVA R package
(54). We used the array annotations provided by Illumina to as-
sign probes to the corresponding genes. Finally, a total of 355
samples and 426 036 autosomal probes in the BASICMAR_1 co-
hort were included in the analysis, 167 samples from the BASIC-
MAR_2 cohort and 645 samples from the REGICOR cohort. The
significant CpG site was analyzed in each cohort.

Sequenom EpiTYPER analysis: technical validation

The differential methylation for the most significant locus,
cg19693031 in TXNIP (chr1:145 438 438–145 442 635), was validated
with EpiTYPER assay (Sequenom, San Diego, CA) on 283 samples
of the BASICMAR_1 cohort with HbAc1 data available. Following
the manufacturer’s instructions, 10 ng of bisulfite-treated DNA
were PCR-amplified and processed. At least two replicate amplifi-
cationswere performed in all instances. The primers usedwere as
follows: forward, 5′ TGATTTTTTAATGTAGGAGGTGGTT 3′ and
reverse, 5′ AATTCAAAATCCAAAATTCCTATCA 3′.

Analysis of in silico binding affinities

TheMEME Suiteweb server was used to discover and analyze the
sequencemotifs representing features such as DNA binding sites
and protein interaction domains in TXNIP locus (55). Conserved
motif analyses were performed using the online MEME system
version 4.10. The maximum motif width, the minimal motif
width and the number of different motifs were set to 50, 5 and
8, respectively (56). The remaining parameters are the default va-
lues. Transcription factor motifs (discovered using MEME) were
further analyzed for putative function by association with Gene
Ontology (GO) terms using the motif-GO term association tool
GOMO (57).

Statistical analysis

Baseline characteristics were compared using t-test for continu-
ous, and chi-squared for categorical variables.

First, we analyzed the association between DNA methylation
at all the individual CpG sites and DM in BASICMAR_1 cohort.We
included all the individuals and CpG sites that passed quality
controls and had the adjustment variables available (BASIC-
MAR_1 cohort N = 355). The global significance level of 0.05% in
the discovery cohort, corrected formultiple comparisons,was es-
tablished at P-value < 1 × 10−7 to define adifference as statistically
significant. We analyzed for differences in methylation at the
CpG sites between the group of individuals without DM and the
group with diagnosed DM, using amultivariate linear regression.
The CpGs with P-values < 5 × 10−7 were analyzed in BASICMAR_2
and REGICORcohorts to replicate the results of the discovery ana-
lysis, to include significant CpGs in the EWAS analysis (P-value <
1 × 10−7) and CpGs close to significance.

Second, after the replication of the results, and in order to bet-
ter understand the relationship between DM and methylation
changes, we analyzed the association between DNAmethylation
and HbAc1 values in BASICMAR cohorts. HbAc1 values were
available in 268 patients in BASICMAR_1 and in 162 patients in
BASICMAR_2.

Figure 5. Boxplot of β values of methylation in cg19693031 in TXNIP locus in

BASICMAR_1 discovery cohort. Non-DM group (N = 151), diabetics with a good

control of glucose levels (DM-good control, N = 52) and diabetics with a poor

control of glucose levels (DM-poor control, N = 65). P-values = 7.93 × 10−11,

adjusted for sex, age, hyperlipidemia, BMI, smoking habit and cell count.
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We relied on methylation β values for the presentation of the
scatterplots and boxplots, as they allow an easier interpretation
of the results. In the linear models with covariates, we used the
M-value because it offers better statistical capacity.

The validation of methylation values in cg19693031 obtained
with Sequenom EpiTYPER assay included comparison of DM sta-
tus using two-tailed Student t-test and Spearman correlation test
with HbAc1 as continuous variable.

The analyses were performed using the R statistical package,
version 3.1.2 (58). The following packages were utilized: minfi, sva
and limma (48,54,59). The same statistical methods were used in
the replication phase. Methylation M-values were analyzed using
multivariate linear regression. All the analyses were adjusted for
age, sex, smoking habit, hyperlipidemia, BMI and cell count. The
variables age, sex, smoking habit and cell count are known con-
founders in DNA methylation analysis and must be considered in
the statistical analysis (Supplementary Material, Fig. S1) (60–66).

Accession numbers

Methylation data have been submitted to the Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE69138.

Supplementary Material
Supplementary Material is available at HMG online.
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