Abstract

The epigenetic machinery in conjunction with the transcriptional machinery is responsible for maintaining genome-wide chromatin states and dynamically regulating gene expression. Mendelian disorders of the epigenetic machinery (MDEMs) are genetic disorders resulting from mutations in components of the epigenetic apparatus. Though individually rare, MDEMs have emerged as a collectively common etiology for intellectual disability (ID) and growth disruption. Studies in model organisms and humans have demonstrated dosage sensitivity of this gene group with haploinsufficiency as a predominant disease mechanism. The epigenetic machinery consists of three enzymatic components (writers, erasers and chromatin remodelers) as well as one non-enzymatic group (readers). A tally of the entire census of such factors revealed that although multiple enzymatic activities never coexist within a single component, individual enzymatic activities often coexist with a reader domain. This group of disorders disrupts both the chromatin and transcription states of target genes downstream of the given component but also DNA methylation on a global scale. Elucidation of these global epigenetic changes may inform our understanding of disease pathogenesis and have diagnostic utility. Moreover, many therapies targeting epigenetic marks already exist, and some have proven successful in treating cancer. This, along with the recent observation that neurological dysfunction in these disorders may in fact be treatable in postnatal life, suggests that the scientific community should prioritize this group as a potentially treatable cause of ID. Here we summarize the recent expansion and major characteristics of MDEMs, as well as the unique therapeutic prospects for this group of disorders.

Introduction

With the advent of clinical exome sequencing, Mendelian disorders of the epigenetic machinery (MDEMs)—also known as chromatin modifying disorders—have emerged as one of the most rapidly expanding groups (1,2). In 2014, we compiled a list of 34 conditions due to mutations in 28 genes (1). By 2015, there were 44 such disorders (2), and the list continues to expand. Here, we have taken a more systematic approach that builds on recent work (www.epigeneticmachinery.org) (3) and have included only those components of the epigenetic machinery with an identifiable domain conferring one or more of the above functions—writer, eraser, reader or remodeler—and have identified 82 human conditions resulting from mutations in 70 epigenetic machinery genes. Notably, this approach excludes some related conditions, and for this reason and ongoing discovery, will always be an underestimate. Despite this, our observations reveal common phenotypes and highlight the fact that many of the enzymatic factors also contain a reader domain, conferring dual function. In addition, we briefly review new developments related to molecular pathogenesis and outline potential novel therapeutic strategies.

The MDEMs

Table 1

Summary of disease-causing components of the epigenetic machinery

GeneConditionFunctionInheritanceCognitionGrowthHeightHeadCraniofacial dysmorphismOther phenotypesChr
SMARCA4Coffin–Siris syndrome 4
Rhabdoid tumor
predisposition syndrome
Remodeler/ReaderAD
AD
ID
Normal
Abnormal
Normal
Short stature
Normal
Microcephaly
Normal
Y
N
Neurobehavioral, hypotonia, limb, hair.
None
Auto
SMARCA2Nicolaides–Baraitser syndromeRemodeler/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hair, limbAuto
ATRXATRX syndromeRemodeler/ReaderX-linked dominant (XLD)IDAbnormalShort statureMicrocephalyYNeurobehavioral, musculoskeletal (MSK), thalassemia, hypotonia, genitourinary (GU)X
CHD2Epileptic encephalopathy, childhood onsetRemodeler/ReaderADIDAbnormalNormalMicrocephalyNNeurobehavioralAuto
CHD8Autism susceptibility 8/overgrowth and IDRemodeler/ReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioralAuto
CHD4Sifrim–Hitz–Weiss syndromeRemodeler/ReaderADIDAbnormalNormalMacrocephalyYNeurobehavioral, hearing loss (HL), GU, MSK, congenital heart disease (CHD)Auto
CHD1Pilarowski–Bjornsson syndromeRemodeler/ReaderADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotoniaAuto
CHD3Snijders Blok–Campeau syndromeRemodeler/ReaderADIDAbnormalNormalMacrocephalyYNeurobehavioralAuto
CHD7CHARGERemodeler/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, eye, CHD, GU, HL, limbAuto
Hypogonadotropic hypogonadismADNormalNormalNormalNormalYHL, endocrine (endo)/GU, hypo-/anosmia, cleft lip/palate
SRCAPFloating–Harbor syndromeRemodelerADIDAbnormalShort statureNormalYNeurobehavioral, MSKAuto
SETD5Mental retardation autosomal dominant (MRAD) 23WriterADIDNormalNormalNormalYNeurobehavioral, abdominal wall/gastrointestinal (GI) anomalies, MSKAuto
PRDM12Hereditary sensory and autonomic neuropathy 8WriterARNormalNormalNormalNormalNInsensitivity to pain/temperatureAuto
PRDM16Dilated cardiomyopathyWriterADNormalNormalNormalNormalNOther cardiac findingsAuto
PRDM5Brittle cornea syndromeWriterARNormalNormalNormalNormalNEye, MSK, skinAuto
KMT5BMRAD 51WriterADIDAbnormalTall statureMacrocephalyYNeurobehavioral, eye, MSKAuto
SETD2Luscan–Lumish syndromeWriterADIDAbnormalTall stature (short stature)MacrocephalyYNeurobehavioral, MSKAuto
EZH2Weaver syndromeWriterADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, limbAuto
DNMT3ATatton-Brown-Rahman syndromeWriter/ReaderADIDAbnormalTall StatureMacrocephalyYNeurobehavioral, hypotonia, MSKAuto
Microcephalic dwarfismAbnormalShort statureMicrocephalyNAMSK
NSD1Sotos syndromeWriter/ReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, CHD, GUAuto
DNMT1AD cerebellar ataxia deafness and narcolepsy/Hereditary sensory neuropathy 1EWriter/ReaderADNormal initially,
neurodegeneration
NormalNormalNormalNNeurobehavioral, HLAuto
KMT2BChildhood-onset dystonia 28Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, eyeAuto
EHMT1Kleefstra syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, CHD, GU, HL, immune dysfunction (dys)Auto
KMT2CKleefstra syndrome 2Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSKAuto
CREB-binding protein (CREBBP)Rubinstein–Taybi syndrome 1Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, limb, immune dys/recurrent infections, MSK, eye, CHD, GIAuto
EP300Rubinstein-Taybi syndrome 2Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, limb, MSK, eye, GI, skin, CHD, immune dys/recurrent infectionsAuto
KAT6AMRAD 32Writer/ReaderADIDAbnormalNormalMicrocephalyYNeurobehavioral, abnormal (abnl) muscle tone, CHD, GIAuto
KAT6BSay–Barber–Biessecker–Young–Simpson syndromeWriter/ReaderADIDAbnormalNormalMicrocephalyYNeurobehavioral, hypotonia, MSK, GU, CHD, HL, eyeAuto
Genitopatellar syndromeADIDAbnormalNormalMicrocephalyYNeurobehavioral, hypotonia, MSK, GU, CHD
WHSC1Wolf–Hirschhorn syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, CHD, HLAuto
KMT2EKMT2E deficiencyWriter/ReaderADIDAbnormalUnknownMacro/microcephalyYNeurobehavioral, hypotoniaAuto
ASH1LMRAD 52Writer/ReaderADIDNormalNormalNormalYNeurobehavioral, eye, MSK, GUAuto
DNMT3BImmunodeficiency-centromeric instability-facial anomalies syndromeWriter/ReaderARIDAbnormalShort statureMicrocephalyYNeurobehavioral, immune dys/recurrent infectionsAuto
KMT2AWiedemann–Steiner syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, skeletal, immune dys, hair, eyeAuto
KMT2DKabuki syndrome 1Writer/readerADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSK, immune dys, CHD, limbAuto
KDM6AKabuki syndrome 2EraserXLDIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSK, immune dys, CHD, limbX
histone deacetylase (HDAC)4Brachydactyly mental retardationEraserADIDAbnormalShort statureNormalYNeurobehavioral, limb, MSKAuto
HDAC6Chondrodysplasia with platyspondyly, distinctive brachydactyly, hydrocephaly and microphthalmiaEraserXLDIDAbnormalShort statureMacrocephalyYNeurobehavioral, MSK, eyeX
HDAC8Cornelia De Lange syndrome, type 5EraserXLDIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, limb, hair, HL, GI, GU, CHDX
HRAlopecia universalis
Atrichia with papular lesions
Hypotrichosis type 4
EraserAR
AR
AD
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
N
N
N
All 3 limited to reduced hair growthAuto
KDM1ACleft palate, psychomotor retardation, and distinctive facial featuresEraserADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotonia, MSK, eyeAuto
KDM6BKDM6B deficiencyEraserADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotoniaAuto
KDM5CClaes–Jensen X-linked mental retardation (XLMR)Eraser/ReaderX-linked recessive (XLR)IDAbnormalShort statureMicro/MacrocephalyYNeurobehavioral, MSK, hair, GUX
KDM5BMental retardation autosomal recessive 65Eraser/ReaderAD/ARIDNormalNormalNormalYNeurobehavioral, eye, limbAuto
PHF8Siderius XLMREraser/ReaderXLRIDNormalNormalNormalYMSK (cleft lip/palate)X
TAF1XLMR 33ReaderXLRIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, ear, eye, MSKX
RAI1Smith–Magenis syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, ear, eye, MSK, CHD, GUAuto
AIREAutoimmune polyendocrinopathy syndrome 1ReaderAD/ARNormalNormalNormalNormalNImmune dys, endo, ectodermal, GI, vascularAuto
ALG13Eary infantile epileptic encephalopathy 36ReaderXLDIDNormalNormalNormalNNeurobehavioralX
ASXL1Bohring–Opitz syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, skin/vascular/hairAuto
ASXL2Shashi–Pena syndromeReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, skin/vascular, endo (hypoglycemia), CHDAuto
ASXL3Bainbridge–Ropers syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSKAuto
BPTFNeurodevelopmental disorder with dysmorphic facies and distal limb anomaliesReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, limbAuto
BRPF1Intellectual developmental disorder with dysmorphic facies and ptosisReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, eyeAuto
BRWD3XLMR 93ReaderXLRIDAbnormalTall statureMacrocephalyYNeurobehavioral, GUX
CBX2Sex reversalReaderARNormalNormalNormalNormalUnknownSex reversalAuto
EEDCohen–Gibson syndromeReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, skinAuto
LBRPelger–Huet anomaly (PHA)ReaderADNormalNormalNormalNormalNHematologic onlyAuto
PHA with muskuloskeletal findingsARIDAbnormalShort statureMacro/microcephalyNNeurobehavioral, MSK, limb
Greenberg skeletal dysplasiaARUnknownAbnormalShort statureMacrocephalyYPerinatal lethal, hydrops, MSK, severe limb
MBD5MRAD 1ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSKAuto
MECP2Rett syndrome and related disordersReaderXLD (XLR)IDAbnormalShort statureMicrocephalyNNeurobehavioral, abnl muscle tone, MSKX
MORC2Charcot–Marie–Tooth disease 2ZReaderADID in someNormalNormalNormalNNeuromuscular/neurobehavioralAuto
MSH6Hereditary nonpolyposis colorectal cancer 5ReaderADNormalNormalNormalNormalNCancer predispositionAuto
Mismatch repair cancer syndromeARNormalNormalNormalNormalNCancer predisposition, skin, brain
ORC1Meier–Gorlin syndrome 1ReaderARIDAbnormalShort statureMicrocephalyYMSK, HL, GU, respiratoryAuto
PHF6Borjeson–Forssman–Lehmann syndromeReaderXLRIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, MSK, limbX
PHIPDevelopmental delay, ID, obesity, and dysmorphic featuresReaderADIDUnknownUnknownUnknownYNeurobehavioral, hypotonia, eye, limb, skinAuto
RAG2Omenn syndrome and severe combined immunodeficiencyReaderARNormalNormalNormalNormalNImmune dys/recurrent infectionsAuto
RERENeurodevelopmental disorder with or without other anomaliesReaderADIDAbnormalShort statureUnknownYNeurobehavioral, hypotonia, eye, heart, GUAuto
SMN1Spinal muscular atrophyReaderARNormalNormalNormalNormalNNeuromuscularAuto
SP110Hepatic venoocclusive disease and immune deficiencyReaderARNormalUnknownUnknownUnknownNImmune dys, vascularAuto
TDRD7Cataract 36ReaderARNormalNormalNormalNormalNEyeAuto
ZMYND11MRAD 30ReaderADIDUnknownUnknownUnknownYNeurobehavioralAuto
DPF2Coffin Siris 7ReaderADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotonia, limb, hair, MSK (craniosynostosis)Auto
GeneConditionFunctionInheritanceCognitionGrowthHeightHeadCraniofacial dysmorphismOther phenotypesChr
SMARCA4Coffin–Siris syndrome 4
Rhabdoid tumor
predisposition syndrome
Remodeler/ReaderAD
AD
ID
Normal
Abnormal
Normal
Short stature
Normal
Microcephaly
Normal
Y
N
Neurobehavioral, hypotonia, limb, hair.
None
Auto
SMARCA2Nicolaides–Baraitser syndromeRemodeler/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hair, limbAuto
ATRXATRX syndromeRemodeler/ReaderX-linked dominant (XLD)IDAbnormalShort statureMicrocephalyYNeurobehavioral, musculoskeletal (MSK), thalassemia, hypotonia, genitourinary (GU)X
CHD2Epileptic encephalopathy, childhood onsetRemodeler/ReaderADIDAbnormalNormalMicrocephalyNNeurobehavioralAuto
CHD8Autism susceptibility 8/overgrowth and IDRemodeler/ReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioralAuto
CHD4Sifrim–Hitz–Weiss syndromeRemodeler/ReaderADIDAbnormalNormalMacrocephalyYNeurobehavioral, hearing loss (HL), GU, MSK, congenital heart disease (CHD)Auto
CHD1Pilarowski–Bjornsson syndromeRemodeler/ReaderADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotoniaAuto
CHD3Snijders Blok–Campeau syndromeRemodeler/ReaderADIDAbnormalNormalMacrocephalyYNeurobehavioralAuto
CHD7CHARGERemodeler/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, eye, CHD, GU, HL, limbAuto
Hypogonadotropic hypogonadismADNormalNormalNormalNormalYHL, endocrine (endo)/GU, hypo-/anosmia, cleft lip/palate
SRCAPFloating–Harbor syndromeRemodelerADIDAbnormalShort statureNormalYNeurobehavioral, MSKAuto
SETD5Mental retardation autosomal dominant (MRAD) 23WriterADIDNormalNormalNormalYNeurobehavioral, abdominal wall/gastrointestinal (GI) anomalies, MSKAuto
PRDM12Hereditary sensory and autonomic neuropathy 8WriterARNormalNormalNormalNormalNInsensitivity to pain/temperatureAuto
PRDM16Dilated cardiomyopathyWriterADNormalNormalNormalNormalNOther cardiac findingsAuto
PRDM5Brittle cornea syndromeWriterARNormalNormalNormalNormalNEye, MSK, skinAuto
KMT5BMRAD 51WriterADIDAbnormalTall statureMacrocephalyYNeurobehavioral, eye, MSKAuto
SETD2Luscan–Lumish syndromeWriterADIDAbnormalTall stature (short stature)MacrocephalyYNeurobehavioral, MSKAuto
EZH2Weaver syndromeWriterADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, limbAuto
DNMT3ATatton-Brown-Rahman syndromeWriter/ReaderADIDAbnormalTall StatureMacrocephalyYNeurobehavioral, hypotonia, MSKAuto
Microcephalic dwarfismAbnormalShort statureMicrocephalyNAMSK
NSD1Sotos syndromeWriter/ReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, CHD, GUAuto
DNMT1AD cerebellar ataxia deafness and narcolepsy/Hereditary sensory neuropathy 1EWriter/ReaderADNormal initially,
neurodegeneration
NormalNormalNormalNNeurobehavioral, HLAuto
KMT2BChildhood-onset dystonia 28Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, eyeAuto
EHMT1Kleefstra syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, CHD, GU, HL, immune dysfunction (dys)Auto
KMT2CKleefstra syndrome 2Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSKAuto
CREB-binding protein (CREBBP)Rubinstein–Taybi syndrome 1Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, limb, immune dys/recurrent infections, MSK, eye, CHD, GIAuto
EP300Rubinstein-Taybi syndrome 2Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, limb, MSK, eye, GI, skin, CHD, immune dys/recurrent infectionsAuto
KAT6AMRAD 32Writer/ReaderADIDAbnormalNormalMicrocephalyYNeurobehavioral, abnormal (abnl) muscle tone, CHD, GIAuto
KAT6BSay–Barber–Biessecker–Young–Simpson syndromeWriter/ReaderADIDAbnormalNormalMicrocephalyYNeurobehavioral, hypotonia, MSK, GU, CHD, HL, eyeAuto
Genitopatellar syndromeADIDAbnormalNormalMicrocephalyYNeurobehavioral, hypotonia, MSK, GU, CHD
WHSC1Wolf–Hirschhorn syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, CHD, HLAuto
KMT2EKMT2E deficiencyWriter/ReaderADIDAbnormalUnknownMacro/microcephalyYNeurobehavioral, hypotoniaAuto
ASH1LMRAD 52Writer/ReaderADIDNormalNormalNormalYNeurobehavioral, eye, MSK, GUAuto
DNMT3BImmunodeficiency-centromeric instability-facial anomalies syndromeWriter/ReaderARIDAbnormalShort statureMicrocephalyYNeurobehavioral, immune dys/recurrent infectionsAuto
KMT2AWiedemann–Steiner syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, skeletal, immune dys, hair, eyeAuto
KMT2DKabuki syndrome 1Writer/readerADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSK, immune dys, CHD, limbAuto
KDM6AKabuki syndrome 2EraserXLDIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSK, immune dys, CHD, limbX
histone deacetylase (HDAC)4Brachydactyly mental retardationEraserADIDAbnormalShort statureNormalYNeurobehavioral, limb, MSKAuto
HDAC6Chondrodysplasia with platyspondyly, distinctive brachydactyly, hydrocephaly and microphthalmiaEraserXLDIDAbnormalShort statureMacrocephalyYNeurobehavioral, MSK, eyeX
HDAC8Cornelia De Lange syndrome, type 5EraserXLDIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, limb, hair, HL, GI, GU, CHDX
HRAlopecia universalis
Atrichia with papular lesions
Hypotrichosis type 4
EraserAR
AR
AD
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
N
N
N
All 3 limited to reduced hair growthAuto
KDM1ACleft palate, psychomotor retardation, and distinctive facial featuresEraserADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotonia, MSK, eyeAuto
KDM6BKDM6B deficiencyEraserADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotoniaAuto
KDM5CClaes–Jensen X-linked mental retardation (XLMR)Eraser/ReaderX-linked recessive (XLR)IDAbnormalShort statureMicro/MacrocephalyYNeurobehavioral, MSK, hair, GUX
KDM5BMental retardation autosomal recessive 65Eraser/ReaderAD/ARIDNormalNormalNormalYNeurobehavioral, eye, limbAuto
PHF8Siderius XLMREraser/ReaderXLRIDNormalNormalNormalYMSK (cleft lip/palate)X
TAF1XLMR 33ReaderXLRIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, ear, eye, MSKX
RAI1Smith–Magenis syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, ear, eye, MSK, CHD, GUAuto
AIREAutoimmune polyendocrinopathy syndrome 1ReaderAD/ARNormalNormalNormalNormalNImmune dys, endo, ectodermal, GI, vascularAuto
ALG13Eary infantile epileptic encephalopathy 36ReaderXLDIDNormalNormalNormalNNeurobehavioralX
ASXL1Bohring–Opitz syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, skin/vascular/hairAuto
ASXL2Shashi–Pena syndromeReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, skin/vascular, endo (hypoglycemia), CHDAuto
ASXL3Bainbridge–Ropers syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSKAuto
BPTFNeurodevelopmental disorder with dysmorphic facies and distal limb anomaliesReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, limbAuto
BRPF1Intellectual developmental disorder with dysmorphic facies and ptosisReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, eyeAuto
BRWD3XLMR 93ReaderXLRIDAbnormalTall statureMacrocephalyYNeurobehavioral, GUX
CBX2Sex reversalReaderARNormalNormalNormalNormalUnknownSex reversalAuto
EEDCohen–Gibson syndromeReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, skinAuto
LBRPelger–Huet anomaly (PHA)ReaderADNormalNormalNormalNormalNHematologic onlyAuto
PHA with muskuloskeletal findingsARIDAbnormalShort statureMacro/microcephalyNNeurobehavioral, MSK, limb
Greenberg skeletal dysplasiaARUnknownAbnormalShort statureMacrocephalyYPerinatal lethal, hydrops, MSK, severe limb
MBD5MRAD 1ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSKAuto
MECP2Rett syndrome and related disordersReaderXLD (XLR)IDAbnormalShort statureMicrocephalyNNeurobehavioral, abnl muscle tone, MSKX
MORC2Charcot–Marie–Tooth disease 2ZReaderADID in someNormalNormalNormalNNeuromuscular/neurobehavioralAuto
MSH6Hereditary nonpolyposis colorectal cancer 5ReaderADNormalNormalNormalNormalNCancer predispositionAuto
Mismatch repair cancer syndromeARNormalNormalNormalNormalNCancer predisposition, skin, brain
ORC1Meier–Gorlin syndrome 1ReaderARIDAbnormalShort statureMicrocephalyYMSK, HL, GU, respiratoryAuto
PHF6Borjeson–Forssman–Lehmann syndromeReaderXLRIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, MSK, limbX
PHIPDevelopmental delay, ID, obesity, and dysmorphic featuresReaderADIDUnknownUnknownUnknownYNeurobehavioral, hypotonia, eye, limb, skinAuto
RAG2Omenn syndrome and severe combined immunodeficiencyReaderARNormalNormalNormalNormalNImmune dys/recurrent infectionsAuto
RERENeurodevelopmental disorder with or without other anomaliesReaderADIDAbnormalShort statureUnknownYNeurobehavioral, hypotonia, eye, heart, GUAuto
SMN1Spinal muscular atrophyReaderARNormalNormalNormalNormalNNeuromuscularAuto
SP110Hepatic venoocclusive disease and immune deficiencyReaderARNormalUnknownUnknownUnknownNImmune dys, vascularAuto
TDRD7Cataract 36ReaderARNormalNormalNormalNormalNEyeAuto
ZMYND11MRAD 30ReaderADIDUnknownUnknownUnknownYNeurobehavioralAuto
DPF2Coffin Siris 7ReaderADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotonia, limb, hair, MSK (craniosynostosis)Auto
Table 1

Summary of disease-causing components of the epigenetic machinery

GeneConditionFunctionInheritanceCognitionGrowthHeightHeadCraniofacial dysmorphismOther phenotypesChr
SMARCA4Coffin–Siris syndrome 4
Rhabdoid tumor
predisposition syndrome
Remodeler/ReaderAD
AD
ID
Normal
Abnormal
Normal
Short stature
Normal
Microcephaly
Normal
Y
N
Neurobehavioral, hypotonia, limb, hair.
None
Auto
SMARCA2Nicolaides–Baraitser syndromeRemodeler/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hair, limbAuto
ATRXATRX syndromeRemodeler/ReaderX-linked dominant (XLD)IDAbnormalShort statureMicrocephalyYNeurobehavioral, musculoskeletal (MSK), thalassemia, hypotonia, genitourinary (GU)X
CHD2Epileptic encephalopathy, childhood onsetRemodeler/ReaderADIDAbnormalNormalMicrocephalyNNeurobehavioralAuto
CHD8Autism susceptibility 8/overgrowth and IDRemodeler/ReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioralAuto
CHD4Sifrim–Hitz–Weiss syndromeRemodeler/ReaderADIDAbnormalNormalMacrocephalyYNeurobehavioral, hearing loss (HL), GU, MSK, congenital heart disease (CHD)Auto
CHD1Pilarowski–Bjornsson syndromeRemodeler/ReaderADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotoniaAuto
CHD3Snijders Blok–Campeau syndromeRemodeler/ReaderADIDAbnormalNormalMacrocephalyYNeurobehavioralAuto
CHD7CHARGERemodeler/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, eye, CHD, GU, HL, limbAuto
Hypogonadotropic hypogonadismADNormalNormalNormalNormalYHL, endocrine (endo)/GU, hypo-/anosmia, cleft lip/palate
SRCAPFloating–Harbor syndromeRemodelerADIDAbnormalShort statureNormalYNeurobehavioral, MSKAuto
SETD5Mental retardation autosomal dominant (MRAD) 23WriterADIDNormalNormalNormalYNeurobehavioral, abdominal wall/gastrointestinal (GI) anomalies, MSKAuto
PRDM12Hereditary sensory and autonomic neuropathy 8WriterARNormalNormalNormalNormalNInsensitivity to pain/temperatureAuto
PRDM16Dilated cardiomyopathyWriterADNormalNormalNormalNormalNOther cardiac findingsAuto
PRDM5Brittle cornea syndromeWriterARNormalNormalNormalNormalNEye, MSK, skinAuto
KMT5BMRAD 51WriterADIDAbnormalTall statureMacrocephalyYNeurobehavioral, eye, MSKAuto
SETD2Luscan–Lumish syndromeWriterADIDAbnormalTall stature (short stature)MacrocephalyYNeurobehavioral, MSKAuto
EZH2Weaver syndromeWriterADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, limbAuto
DNMT3ATatton-Brown-Rahman syndromeWriter/ReaderADIDAbnormalTall StatureMacrocephalyYNeurobehavioral, hypotonia, MSKAuto
Microcephalic dwarfismAbnormalShort statureMicrocephalyNAMSK
NSD1Sotos syndromeWriter/ReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, CHD, GUAuto
DNMT1AD cerebellar ataxia deafness and narcolepsy/Hereditary sensory neuropathy 1EWriter/ReaderADNormal initially,
neurodegeneration
NormalNormalNormalNNeurobehavioral, HLAuto
KMT2BChildhood-onset dystonia 28Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, eyeAuto
EHMT1Kleefstra syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, CHD, GU, HL, immune dysfunction (dys)Auto
KMT2CKleefstra syndrome 2Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSKAuto
CREB-binding protein (CREBBP)Rubinstein–Taybi syndrome 1Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, limb, immune dys/recurrent infections, MSK, eye, CHD, GIAuto
EP300Rubinstein-Taybi syndrome 2Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, limb, MSK, eye, GI, skin, CHD, immune dys/recurrent infectionsAuto
KAT6AMRAD 32Writer/ReaderADIDAbnormalNormalMicrocephalyYNeurobehavioral, abnormal (abnl) muscle tone, CHD, GIAuto
KAT6BSay–Barber–Biessecker–Young–Simpson syndromeWriter/ReaderADIDAbnormalNormalMicrocephalyYNeurobehavioral, hypotonia, MSK, GU, CHD, HL, eyeAuto
Genitopatellar syndromeADIDAbnormalNormalMicrocephalyYNeurobehavioral, hypotonia, MSK, GU, CHD
WHSC1Wolf–Hirschhorn syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, CHD, HLAuto
KMT2EKMT2E deficiencyWriter/ReaderADIDAbnormalUnknownMacro/microcephalyYNeurobehavioral, hypotoniaAuto
ASH1LMRAD 52Writer/ReaderADIDNormalNormalNormalYNeurobehavioral, eye, MSK, GUAuto
DNMT3BImmunodeficiency-centromeric instability-facial anomalies syndromeWriter/ReaderARIDAbnormalShort statureMicrocephalyYNeurobehavioral, immune dys/recurrent infectionsAuto
KMT2AWiedemann–Steiner syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, skeletal, immune dys, hair, eyeAuto
KMT2DKabuki syndrome 1Writer/readerADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSK, immune dys, CHD, limbAuto
KDM6AKabuki syndrome 2EraserXLDIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSK, immune dys, CHD, limbX
histone deacetylase (HDAC)4Brachydactyly mental retardationEraserADIDAbnormalShort statureNormalYNeurobehavioral, limb, MSKAuto
HDAC6Chondrodysplasia with platyspondyly, distinctive brachydactyly, hydrocephaly and microphthalmiaEraserXLDIDAbnormalShort statureMacrocephalyYNeurobehavioral, MSK, eyeX
HDAC8Cornelia De Lange syndrome, type 5EraserXLDIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, limb, hair, HL, GI, GU, CHDX
HRAlopecia universalis
Atrichia with papular lesions
Hypotrichosis type 4
EraserAR
AR
AD
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
N
N
N
All 3 limited to reduced hair growthAuto
KDM1ACleft palate, psychomotor retardation, and distinctive facial featuresEraserADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotonia, MSK, eyeAuto
KDM6BKDM6B deficiencyEraserADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotoniaAuto
KDM5CClaes–Jensen X-linked mental retardation (XLMR)Eraser/ReaderX-linked recessive (XLR)IDAbnormalShort statureMicro/MacrocephalyYNeurobehavioral, MSK, hair, GUX
KDM5BMental retardation autosomal recessive 65Eraser/ReaderAD/ARIDNormalNormalNormalYNeurobehavioral, eye, limbAuto
PHF8Siderius XLMREraser/ReaderXLRIDNormalNormalNormalYMSK (cleft lip/palate)X
TAF1XLMR 33ReaderXLRIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, ear, eye, MSKX
RAI1Smith–Magenis syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, ear, eye, MSK, CHD, GUAuto
AIREAutoimmune polyendocrinopathy syndrome 1ReaderAD/ARNormalNormalNormalNormalNImmune dys, endo, ectodermal, GI, vascularAuto
ALG13Eary infantile epileptic encephalopathy 36ReaderXLDIDNormalNormalNormalNNeurobehavioralX
ASXL1Bohring–Opitz syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, skin/vascular/hairAuto
ASXL2Shashi–Pena syndromeReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, skin/vascular, endo (hypoglycemia), CHDAuto
ASXL3Bainbridge–Ropers syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSKAuto
BPTFNeurodevelopmental disorder with dysmorphic facies and distal limb anomaliesReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, limbAuto
BRPF1Intellectual developmental disorder with dysmorphic facies and ptosisReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, eyeAuto
BRWD3XLMR 93ReaderXLRIDAbnormalTall statureMacrocephalyYNeurobehavioral, GUX
CBX2Sex reversalReaderARNormalNormalNormalNormalUnknownSex reversalAuto
EEDCohen–Gibson syndromeReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, skinAuto
LBRPelger–Huet anomaly (PHA)ReaderADNormalNormalNormalNormalNHematologic onlyAuto
PHA with muskuloskeletal findingsARIDAbnormalShort statureMacro/microcephalyNNeurobehavioral, MSK, limb
Greenberg skeletal dysplasiaARUnknownAbnormalShort statureMacrocephalyYPerinatal lethal, hydrops, MSK, severe limb
MBD5MRAD 1ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSKAuto
MECP2Rett syndrome and related disordersReaderXLD (XLR)IDAbnormalShort statureMicrocephalyNNeurobehavioral, abnl muscle tone, MSKX
MORC2Charcot–Marie–Tooth disease 2ZReaderADID in someNormalNormalNormalNNeuromuscular/neurobehavioralAuto
MSH6Hereditary nonpolyposis colorectal cancer 5ReaderADNormalNormalNormalNormalNCancer predispositionAuto
Mismatch repair cancer syndromeARNormalNormalNormalNormalNCancer predisposition, skin, brain
ORC1Meier–Gorlin syndrome 1ReaderARIDAbnormalShort statureMicrocephalyYMSK, HL, GU, respiratoryAuto
PHF6Borjeson–Forssman–Lehmann syndromeReaderXLRIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, MSK, limbX
PHIPDevelopmental delay, ID, obesity, and dysmorphic featuresReaderADIDUnknownUnknownUnknownYNeurobehavioral, hypotonia, eye, limb, skinAuto
RAG2Omenn syndrome and severe combined immunodeficiencyReaderARNormalNormalNormalNormalNImmune dys/recurrent infectionsAuto
RERENeurodevelopmental disorder with or without other anomaliesReaderADIDAbnormalShort statureUnknownYNeurobehavioral, hypotonia, eye, heart, GUAuto
SMN1Spinal muscular atrophyReaderARNormalNormalNormalNormalNNeuromuscularAuto
SP110Hepatic venoocclusive disease and immune deficiencyReaderARNormalUnknownUnknownUnknownNImmune dys, vascularAuto
TDRD7Cataract 36ReaderARNormalNormalNormalNormalNEyeAuto
ZMYND11MRAD 30ReaderADIDUnknownUnknownUnknownYNeurobehavioralAuto
DPF2Coffin Siris 7ReaderADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotonia, limb, hair, MSK (craniosynostosis)Auto
GeneConditionFunctionInheritanceCognitionGrowthHeightHeadCraniofacial dysmorphismOther phenotypesChr
SMARCA4Coffin–Siris syndrome 4
Rhabdoid tumor
predisposition syndrome
Remodeler/ReaderAD
AD
ID
Normal
Abnormal
Normal
Short stature
Normal
Microcephaly
Normal
Y
N
Neurobehavioral, hypotonia, limb, hair.
None
Auto
SMARCA2Nicolaides–Baraitser syndromeRemodeler/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hair, limbAuto
ATRXATRX syndromeRemodeler/ReaderX-linked dominant (XLD)IDAbnormalShort statureMicrocephalyYNeurobehavioral, musculoskeletal (MSK), thalassemia, hypotonia, genitourinary (GU)X
CHD2Epileptic encephalopathy, childhood onsetRemodeler/ReaderADIDAbnormalNormalMicrocephalyNNeurobehavioralAuto
CHD8Autism susceptibility 8/overgrowth and IDRemodeler/ReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioralAuto
CHD4Sifrim–Hitz–Weiss syndromeRemodeler/ReaderADIDAbnormalNormalMacrocephalyYNeurobehavioral, hearing loss (HL), GU, MSK, congenital heart disease (CHD)Auto
CHD1Pilarowski–Bjornsson syndromeRemodeler/ReaderADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotoniaAuto
CHD3Snijders Blok–Campeau syndromeRemodeler/ReaderADIDAbnormalNormalMacrocephalyYNeurobehavioralAuto
CHD7CHARGERemodeler/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, eye, CHD, GU, HL, limbAuto
Hypogonadotropic hypogonadismADNormalNormalNormalNormalYHL, endocrine (endo)/GU, hypo-/anosmia, cleft lip/palate
SRCAPFloating–Harbor syndromeRemodelerADIDAbnormalShort statureNormalYNeurobehavioral, MSKAuto
SETD5Mental retardation autosomal dominant (MRAD) 23WriterADIDNormalNormalNormalYNeurobehavioral, abdominal wall/gastrointestinal (GI) anomalies, MSKAuto
PRDM12Hereditary sensory and autonomic neuropathy 8WriterARNormalNormalNormalNormalNInsensitivity to pain/temperatureAuto
PRDM16Dilated cardiomyopathyWriterADNormalNormalNormalNormalNOther cardiac findingsAuto
PRDM5Brittle cornea syndromeWriterARNormalNormalNormalNormalNEye, MSK, skinAuto
KMT5BMRAD 51WriterADIDAbnormalTall statureMacrocephalyYNeurobehavioral, eye, MSKAuto
SETD2Luscan–Lumish syndromeWriterADIDAbnormalTall stature (short stature)MacrocephalyYNeurobehavioral, MSKAuto
EZH2Weaver syndromeWriterADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, limbAuto
DNMT3ATatton-Brown-Rahman syndromeWriter/ReaderADIDAbnormalTall StatureMacrocephalyYNeurobehavioral, hypotonia, MSKAuto
Microcephalic dwarfismAbnormalShort statureMicrocephalyNAMSK
NSD1Sotos syndromeWriter/ReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, CHD, GUAuto
DNMT1AD cerebellar ataxia deafness and narcolepsy/Hereditary sensory neuropathy 1EWriter/ReaderADNormal initially,
neurodegeneration
NormalNormalNormalNNeurobehavioral, HLAuto
KMT2BChildhood-onset dystonia 28Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, eyeAuto
EHMT1Kleefstra syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, CHD, GU, HL, immune dysfunction (dys)Auto
KMT2CKleefstra syndrome 2Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSKAuto
CREB-binding protein (CREBBP)Rubinstein–Taybi syndrome 1Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, limb, immune dys/recurrent infections, MSK, eye, CHD, GIAuto
EP300Rubinstein-Taybi syndrome 2Writer/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, limb, MSK, eye, GI, skin, CHD, immune dys/recurrent infectionsAuto
KAT6AMRAD 32Writer/ReaderADIDAbnormalNormalMicrocephalyYNeurobehavioral, abnormal (abnl) muscle tone, CHD, GIAuto
KAT6BSay–Barber–Biessecker–Young–Simpson syndromeWriter/ReaderADIDAbnormalNormalMicrocephalyYNeurobehavioral, hypotonia, MSK, GU, CHD, HL, eyeAuto
Genitopatellar syndromeADIDAbnormalNormalMicrocephalyYNeurobehavioral, hypotonia, MSK, GU, CHD
WHSC1Wolf–Hirschhorn syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, CHD, HLAuto
KMT2EKMT2E deficiencyWriter/ReaderADIDAbnormalUnknownMacro/microcephalyYNeurobehavioral, hypotoniaAuto
ASH1LMRAD 52Writer/ReaderADIDNormalNormalNormalYNeurobehavioral, eye, MSK, GUAuto
DNMT3BImmunodeficiency-centromeric instability-facial anomalies syndromeWriter/ReaderARIDAbnormalShort statureMicrocephalyYNeurobehavioral, immune dys/recurrent infectionsAuto
KMT2AWiedemann–Steiner syndromeWriter/ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, skeletal, immune dys, hair, eyeAuto
KMT2DKabuki syndrome 1Writer/readerADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSK, immune dys, CHD, limbAuto
KDM6AKabuki syndrome 2EraserXLDIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSK, immune dys, CHD, limbX
histone deacetylase (HDAC)4Brachydactyly mental retardationEraserADIDAbnormalShort statureNormalYNeurobehavioral, limb, MSKAuto
HDAC6Chondrodysplasia with platyspondyly, distinctive brachydactyly, hydrocephaly and microphthalmiaEraserXLDIDAbnormalShort statureMacrocephalyYNeurobehavioral, MSK, eyeX
HDAC8Cornelia De Lange syndrome, type 5EraserXLDIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, limb, hair, HL, GI, GU, CHDX
HRAlopecia universalis
Atrichia with papular lesions
Hypotrichosis type 4
EraserAR
AR
AD
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
N
N
N
All 3 limited to reduced hair growthAuto
KDM1ACleft palate, psychomotor retardation, and distinctive facial featuresEraserADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotonia, MSK, eyeAuto
KDM6BKDM6B deficiencyEraserADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotoniaAuto
KDM5CClaes–Jensen X-linked mental retardation (XLMR)Eraser/ReaderX-linked recessive (XLR)IDAbnormalShort statureMicro/MacrocephalyYNeurobehavioral, MSK, hair, GUX
KDM5BMental retardation autosomal recessive 65Eraser/ReaderAD/ARIDNormalNormalNormalYNeurobehavioral, eye, limbAuto
PHF8Siderius XLMREraser/ReaderXLRIDNormalNormalNormalYMSK (cleft lip/palate)X
TAF1XLMR 33ReaderXLRIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, ear, eye, MSKX
RAI1Smith–Magenis syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, ear, eye, MSK, CHD, GUAuto
AIREAutoimmune polyendocrinopathy syndrome 1ReaderAD/ARNormalNormalNormalNormalNImmune dys, endo, ectodermal, GI, vascularAuto
ALG13Eary infantile epileptic encephalopathy 36ReaderXLDIDNormalNormalNormalNNeurobehavioralX
ASXL1Bohring–Opitz syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSK, skin/vascular/hairAuto
ASXL2Shashi–Pena syndromeReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, skin/vascular, endo (hypoglycemia), CHDAuto
ASXL3Bainbridge–Ropers syndromeReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, MSKAuto
BPTFNeurodevelopmental disorder with dysmorphic facies and distal limb anomaliesReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, limbAuto
BRPF1Intellectual developmental disorder with dysmorphic facies and ptosisReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, eyeAuto
BRWD3XLMR 93ReaderXLRIDAbnormalTall statureMacrocephalyYNeurobehavioral, GUX
CBX2Sex reversalReaderARNormalNormalNormalNormalUnknownSex reversalAuto
EEDCohen–Gibson syndromeReaderADIDAbnormalTall statureMacrocephalyYNeurobehavioral, hypotonia, MSK, skinAuto
LBRPelger–Huet anomaly (PHA)ReaderADNormalNormalNormalNormalNHematologic onlyAuto
PHA with muskuloskeletal findingsARIDAbnormalShort statureMacro/microcephalyNNeurobehavioral, MSK, limb
Greenberg skeletal dysplasiaARUnknownAbnormalShort statureMacrocephalyYPerinatal lethal, hydrops, MSK, severe limb
MBD5MRAD 1ReaderADIDAbnormalShort statureMicrocephalyYNeurobehavioral, hypotonia, MSKAuto
MECP2Rett syndrome and related disordersReaderXLD (XLR)IDAbnormalShort statureMicrocephalyNNeurobehavioral, abnl muscle tone, MSKX
MORC2Charcot–Marie–Tooth disease 2ZReaderADID in someNormalNormalNormalNNeuromuscular/neurobehavioralAuto
MSH6Hereditary nonpolyposis colorectal cancer 5ReaderADNormalNormalNormalNormalNCancer predispositionAuto
Mismatch repair cancer syndromeARNormalNormalNormalNormalNCancer predisposition, skin, brain
ORC1Meier–Gorlin syndrome 1ReaderARIDAbnormalShort statureMicrocephalyYMSK, HL, GU, respiratoryAuto
PHF6Borjeson–Forssman–Lehmann syndromeReaderXLRIDAbnormalShort statureMicrocephalyYNeurobehavioral, GU, MSK, limbX
PHIPDevelopmental delay, ID, obesity, and dysmorphic featuresReaderADIDUnknownUnknownUnknownYNeurobehavioral, hypotonia, eye, limb, skinAuto
RAG2Omenn syndrome and severe combined immunodeficiencyReaderARNormalNormalNormalNormalNImmune dys/recurrent infectionsAuto
RERENeurodevelopmental disorder with or without other anomaliesReaderADIDAbnormalShort statureUnknownYNeurobehavioral, hypotonia, eye, heart, GUAuto
SMN1Spinal muscular atrophyReaderARNormalNormalNormalNormalNNeuromuscularAuto
SP110Hepatic venoocclusive disease and immune deficiencyReaderARNormalUnknownUnknownUnknownNImmune dys, vascularAuto
TDRD7Cataract 36ReaderARNormalNormalNormalNormalNEyeAuto
ZMYND11MRAD 30ReaderADIDUnknownUnknownUnknownYNeurobehavioralAuto
DPF2Coffin Siris 7ReaderADIDAbnormalShort statureMacrocephalyYNeurobehavioral, hypotonia, limb, hair, MSK (craniosynostosis)Auto

Previously there has been controversy regarding whether epigenetic modifications play a causal role in determining phenotypes (4). However, for this class of disorders causality is clear; a genetic defect causes loss of function of an epigenetic component resulting in epigenetic abnormalities (5–7), which lead to phenotypic changes. Most MDEMs are caused by heterozygous loss of function variants in the machinery that maintains epigenetic marks (Fig. 1; Table 1). The vast majority (83%) are associated with intellectual disability (ID, Fig. 1; Table 1) and many with abnormal growth (Fig. 1; Table 1), indicating that maintenance of normal epigenetic states is important for the fundamental processes of neurological development and growth (1,2). Many genes are associated with more than one disorder, and when all 82 disorders are considered, 60 (73%) exhibit ID.

The MDEMs. Seventy genes with defined epigenetic domains (reader, writer, eraser, remodeler, middle icons) have been linked to Mendelian phenotypes. The majority of genes cause disease in the heterozygous state (filled circle). Enzyme domains (writer, eraser, remodeler) are mutually exclusive in any given factor but many coexist with a reader domain (gray shading). ID is seen in the vast majority (blue), as are growth abnormalities (orange). A indicates genes on autosomes; X indicates genes on the X chromosome.
Figure 1

The MDEMs. Seventy genes with defined epigenetic domains (reader, writer, eraser, remodeler, middle icons) have been linked to Mendelian phenotypes. The majority of genes cause disease in the heterozygous state (filled circle). Enzyme domains (writer, eraser, remodeler) are mutually exclusive in any given factor but many coexist with a reader domain (gray shading). ID is seen in the vast majority (blue), as are growth abnormalities (orange). A indicates genes on autosomes; X indicates genes on the X chromosome.

The association between MDEMs and neurocognitive deficits in humans is well documented in the literature and has been the focus of much research (1,2,6). Less is known about the mechanistic links between MDEMs and abnormal growth, a second defining phenotype within this group (1,2). Tatton-Brown et al. showed that 45% of individuals with overgrowth and ID have mutations in epigenetic machinery genes (8), and studies of MDEMs associated with growth retardation in humans and mice support causality (1,2,9,10). Using our list of bioinformatically defined disease-causing epigenetic machinery genes (3), disruption of 50 (71%) lead to abnormal growth with 41 (58%) being associated with growth retardation (short stature and/or microcephaly) and 19 (27%) being associated with overgrowth (tall stature and/or macrocephaly; Table 1; Fig. 1).

We (1,2,5) and others (8,10) have observed high co-occurrence of the above phenotypes—ID and abnormal growth—in MDEMs. In fact, of the 60 MDEMs with ID, 52 (87%) also exhibit some form of abnormal growth (Table 1,Fig. 1). It may not be surprising that conditions that manifest microcephaly or macrocephaly also exhibit ID (Table 1). However, the connection between ID and tall or short stature is less clear, though mechanisms of altered balance between cellular proliferation and differentiation have been proposed (9,10,11).

In addition to the two most common phenotypes observed in MDEMs, we also note a striking number of additional tissue-diverse phenotypic manifestations in many disorders (2) (Table 1). These observations fit with the findings of Boukas et al. (3) in which epigenetic machinery genes tend to be highly expressed in all tissues but many are also co-expressed across individuals within those tissues. Co-expression of epigenetic machinery genes could help explain the high dosage sensitivity of these genes (3). If this co-expression reflects a delicate balance in the entire system of epigenetic components, even a small perturbation in the amount of protein product of one could disrupt this balance (3). In support of this, epigenetic machinery genes, particularly the coexpressed ones, exhibit high intolerance to loss-of-function variation as indicated by high probability of loss-of-function intolerance (pLI) scores (3), and the vast majority of conditions (55/82 or 67%) are inherited in an autosomal dominant (AD) manner (Table 1; Fig. 1) with de novo mutations leading to haploinsufficiency as the predominant mechanism. Coexpression appears to be particularly important in neurons as evidenced by neurological phenotypes predominating and the observation that AD inheritance is highly correlated with ID. In fact, these co-occur upon disruption of 63% of our bioinformatically determined list of 70 disease-causing epigenetic machinery genes. The observation that 43/55 (80%) of the genes linked to ID were previously found to be co-expressed (3) supports this as well. In contrast, most genes causing autosomal recessive (AR) conditions (71%) are not associated with ID and are instead associated with other tissue-specific features (Table 1, Fig. 1). In other words, of the 60 conditions with ID, 46 (77%) exhibit AD inheritance and only 4 (7%) exhibit AR inheritance with the remainder being X-linked. Thus, among the autosome-linked MDEMs, there appear to be two classes—dominant ID syndromes due to disruption of highly dosage-sensitive genes and recessive tissue-specific syndromes due to disruption of less dosage-sensitive genes.

We previously reported that multiple enzymatic activities (writer, eraser, remodeler) never coexist within a single epigenetic machinery component (3). However, a large proportion of genes with enzyme components do contain a reader domain. All but 15 genes—79% of all disease-causing epigenetic machinery genes—have a reader domain, and half of these have predicted dual enzymatic and reader functions (Table 1; Fig. 1). According to Boukas et al. (3), dual function epigenetic machinery genes appear to be extremely dosage sensitive with ~90% having a pLI score >0.9 and are also strongly enriched in the highly coexpressed subset (P = 0.05, OR = 10.2). Supporting this, very few dual function genes cause AR disease (Table 1; Fig. 1). Remarkably, all but one disease-causing dual function epigenetic machinery gene, when disrupted, lead to ID (Table 1; Fig. 1), and disruption of this gene (DNMT1) causes neurodegeneration after a period of normal cognitive development (12). This suggests that even small perturbations in activity of dual function components are not tolerated and disrupt normal neurological development and/or functioning.

Downstream consequences of MDEMs

We previously proposed that a delicate balance of writers and erasers and the marks they place and remove exist at target genes and that any disruption in this balance could lead to disease, implicating target genes as important in pathogenesis (1). In support of this, several studies have identified potential target genes and have shown that they and their associated altered relevant epigenetic marks play a key role in pathogenesis (13–17). For instance, in Sotos syndrome due to mutations in NSD1 (18,), two promising downstream target genes have emerged, MEIS1 and APC2 (14,15). Similarly in KS, which is due to deficiency of either the KMT2D histone methyltransferases (HMT) writer (19) or the KDM6A demethylase eraser (20), RAP1B, has been shown to be a promising downstream target gene (16). In neuronal (11) and chondrocyte (9) cellular models of KS1, altered H3K4me3 and gene expression in hypoxia-responsive genes in the former and Shox2 and other chondrocyte-associated genes in the latter reveal these as potential target genes relevant to ID and growth retardation, respectively (9,11). In addition to histone modifiers, mutations in chromatin remodelers have been shown to bind to specific target genes and alter chromatin marks. In a neuronal-specific conditional murine model of CHARGE (Coloboma, Heart defects, Choanal Atresia, Retardation of growth and development, Genitourinary abnormalities, and Ear anomalies) syndrome, multiple CHD7 target genes were identified (17). Finally, a recently described disorder of the DNA methylation machinery illustrates many downstream consequences of MDEMs (10). Heyn et al. (10) showed that specific mutations in DNMT3A within the proline–tryptophan–tryptophan–proline reader domain abrogate binding to H3K36me3, leading to mistargeting and aberrant DNA hypermethylation of regions normally containing distinct H3K27me3 and in some cases H3K4me3. This leads to altered expression of developmentally regulated Hox genes, among others, and may ultimately cause precocious differentiation at the expense of cell proliferation, resulting in smaller size of the brain and entire organism (10).

We now know that many human MDEMs are characterized by specific DNA methylation signatures present in blood (21–28). These include disorders of DNA methyltransferase writers like DNMT1-associated AD cerebellar ataxia, deafness and narcolepsy (22), as well as disorders of chromatin remodelers like Floating–Harbor syndrome (23) and disorders of dual function components like ATRX (Alpha-Thalassemia/Mental Retardation Syndrome, X-linked) syndrome (24). A highly sensitive and specific genome-wide DNA methylation signature was identified in individuals with Sotos syndrome (25), which differentiated individuals with molecularly confirmed Sotos syndrome from unaffected individuals, pathogenic NSD1 mutations from non-pathogenic variants, and individuals with Sotos syndrome from those with the distinct but closely related Weaver syndrome. Similarly two phenotypically related disorders, KS and CHARGE syndrome, were shown to have similarly altered DNA methylation at individual common downstream target genes to account for some of the clinical overlap; overall however, they had mostly distinct, disease-specific DNA methylation signatures, which allowed differentiation between the conditions and between affected individuals and unaffected controls (26). In the case of the X-linked disorder Claes–Jensen syndrome resulting from mutations in KDM5C, DNA methylation signatures were specific enough to differentiate between affected males, unaffected carrier females and unaffected non-carriers (27). These DNA methylation changes likely result from a combination of direct and indirect effects of loss of individual components of the epigenetic machinery and should provide insight into pathogenesis. Furthermore, their ability to characterize variants of uncertain significance in epigenetic machinery genes as pathogenic or non-pathogenic and to make diagnoses in previously unsolved cases illustrates diagnostic utility and has led to this DNA methylation array technology currently being offered as a clinically available diagnostic test (28).

Molecular pathogenesis, malleability and therapeutic considerations for the MDEMs. (Top panel) Epigenetic machinery maintains open (Gene 1; green triangles, acetylation; green hexagons, H3K4me3) and closed (Gene 2; red hexagons, H3K9me3 or H3K27me3; red lollipops, DNA methylation) chromatin states, which influence transcriptional programs in cells. Specifically, an expressed target of the writer (Gene 1) has associated writers of activating marks (green highlighters; HAT; HMT), erasers of silencing marks (erasers; KDMs, lysine demethylases), dual-function chromatin remodelers (bull dozer) and other readers (green glasses; bromodomain and chromodomain proteins). A silenced non-target of the writer (Gene 2) has associated writers of silencing marks (red highlighters; HMT; DNMT, DNA methyltransferases), erasers of activating marks (erasers; KDM, lysine demethylases; HDAC) and readers (red glasses; chromodomain proteins and methyl-CpG binding proteins). (Bottom panel) Upon loss of a writer of an open chromatin modification (broken highlighter) due to an MDEM, direct target genes may lose the relevant activating marks and transition to an abnormally closed chromatin state with associated DNA hypermethylation and aberrant gene silencing (Gene 1). Non-targets (Gene 2) may adopt an abnormal open chromatin state and become aberrantly expressed. Multiple potential therapeutic strategies exist to revert the abnormal chromatin and transcription states back to normal and are described in the text (arrow, inset box).
Figure 2

Molecular pathogenesis, malleability and therapeutic considerations for the MDEMs. (Top panel) Epigenetic machinery maintains open (Gene 1; green triangles, acetylation; green hexagons, H3K4me3) and closed (Gene 2; red hexagons, H3K9me3 or H3K27me3; red lollipops, DNA methylation) chromatin states, which influence transcriptional programs in cells. Specifically, an expressed target of the writer (Gene 1) has associated writers of activating marks (green highlighters; HAT; HMT), erasers of silencing marks (erasers; KDMs, lysine demethylases), dual-function chromatin remodelers (bull dozer) and other readers (green glasses; bromodomain and chromodomain proteins). A silenced non-target of the writer (Gene 2) has associated writers of silencing marks (red highlighters; HMT; DNMT, DNA methyltransferases), erasers of activating marks (erasers; KDM, lysine demethylases; HDAC) and readers (red glasses; chromodomain proteins and methyl-CpG binding proteins). (Bottom panel) Upon loss of a writer of an open chromatin modification (broken highlighter) due to an MDEM, direct target genes may lose the relevant activating marks and transition to an abnormally closed chromatin state with associated DNA hypermethylation and aberrant gene silencing (Gene 1). Non-targets (Gene 2) may adopt an abnormal open chromatin state and become aberrantly expressed. Multiple potential therapeutic strategies exist to revert the abnormal chromatin and transcription states back to normal and are described in the text (arrow, inset box).

Postnatal malleability of MDEMs

From a translational standpoint this group is interesting for several reasons. Forty-three of the 70 disease-associated genes (61%) encode enzymes, which have traditionally been therapeutically targetable (29). In addition, a large number of agents are available that can modify function of these enzymes (30). Moreover, promising pre-clinical data available for multiple members of this group indicate that they may be treatable in postnatal life, including for Rett, Rubinstein-Taybi and Kabuki syndromes. For Rett syndrome, conditional ablation of Mecp2 in mice led to a Rett-like phenotype, which was ameliorated upon genetic restoration of Mecp2 function (31). In two distinct mouse models of the MDEM RTS resulting from deficiency of the histone acetyltransferase (HAT) CREBBP, long-term memory deficits were observed and subsequently improved upon treatment with HDAC inhibitors (32,33), suggesting postnatal reversibility of neurological phenotypes upon restoration of disrupted histone marks (in this case acetylation) using epigenetic therapies. For KS1, heterozygous mutant mice exhibited visual-spatial learning deficits in association with defective hippocampal neurogenesis and loss of hippocampal H3K4 trimethylation (H3K4me3), and all were restored upon treatment with the HDAC inhibitor AR-42, which also increases H3K4 methylation levels (5). In addition to pharmacological inhibition, therapy with a ketogenic diet—with effects due mostly to the HDAC properties of beta-hydroxybutyrate—led to similar therapeutic effects in KS1 mice (34). These studies suggest that restoration of broad chromatin states, as opposed to simply restoring a single disrupted histone mark, is an effective additional treatment approach for MDEMs. Harnessing this malleability with epigenetic therapies like those above and others could lead to novel therapeutic approaches.

In that regard, many potential epigenetic, and non-epigenetic, therapeutic approaches exist for MDEMs (Fig. 2), though the above studies all used HDAC inhibitors (Fig. 2, therapy 6). CRISPR gene editing to correct the mutation is a non-epigenetic potential future option for these and other genetic disorders that exhibit postnatal malleability (Fig. 2, therapy 1); however, off-target effects leading to mutations in unintended genomic targets remain a big concern (35). The recent discovery that CRISPR-deadCas9 (CRISPR-dCAs9) linked to an epigenetic domain (EP300, KRAB) can open up or close chromatin at specific locations (36,37) is intriguing and may be particularly appealing as a therapeutic strategy because it can be targeted to specific sites but carries minimal risk of changing the germline (Fig. 2, therapy 2). Another related but more directed approach is to specifically target one or more key downstream genes (Fig. 2, therapy 7); however, this approach may only ameliorate a subset of symptoms due to the many additional target genes involved. Regarding the broader group of epigenetic therapies, many HMT inhibitors targeting writers of repressive marks exist (Fig. 2, therapy 3), and relevant aberrant marks could include H3K27me3 or others. Indeed, a variety of small molecule inhibitors of EZH2, the HMT writer of H3K27me3 and member of the polycomb repressive complex 2 (PRC2), exist (38) and could be utilized as a therapeutic approach alone or in combination with select targeting approaches. In addition, chromodomain inhibitors (Fig. 2, therapy 4) have been developed, which can compete with PRC2 for recognition of H3K27me3 and de-repress genes (39). One of the best known and longest running epigenetic therapies are the DNA methyltransferase inhibitors (Fig. 2, therapy 5) (40). These could be particularly and broadly useful in treating MDEMs, especially in light of the fact that many of these conditions have characteristic DNA methylation signatures. More specifically, this class of drugs might be particularly useful in treating microcephalic dwarfism due to DNMT3A mutations, as genome-wide aberrant DNA hypermethylation has been demonstrated (10). In addition to the aforementioned single-therapy approaches, combination therapies could also be considered. For example, any particular epigenetic enzymatic domain could be combined with the CRISPR-dCAS9 approach, or alternatively, one could theoretically mix and match a variety of reader and enzymatic domains to achieve the desired specificity. Many other potential therapies exist, including bromodomain inhibitors (41), HAT inhibitors (42), histone demethylase inhibitors (43) and others. The choice of therapy depends not only on the epigenetic mark that is directly disrupted, but also on downstream consequences, including alterations of other chromatin marks and of target gene expression. The possibility exists that despite the diversity of directly altered epigenetic marks, multiple disorders could converge on one (or a few) particular distinct marks, namely DNA methylation or others. This may allow for treatment of multiple disorders with a single therapy and has important implications for therapeutic development, particularly in the case of rare diseases. Despite evidence of postnatal malleability in these conditions, one obstacle facing all therapies will be delivery to a relevant cell type at an appropriate developmental stage. In summary, based on the availability of therapeutic approaches and ample evidence from pre-clinical studies of postnatal malleability and amelioration of neurological phenotypes, there is now more hope than ever that devastating neurodevelopmental disorders and associated ID, as well as other phenotypes like abnormal growth, may in fact be treatable.

Other disorders and looking ahead

Our list of epigenetic machinery genes and associated MDEMs has expanded immensely over the past 5 years but is likely still an underestimate due to ongoing discovery and objective limitations described above. We have intentionally focused on factors that have strong evidence for direct involvement in determining epigenetic marks, but this stringency prohibited the inclusion of highly related disorders resulting from mutations in genes encoding other components of chromatin-modifying complexes that do not have one of the defined epigenetic machinery domains. A case in point is the genetically heterogeneous Coffin–Sirus syndrome with many causative genes encoding protein components of the SWI/SNF (switch/sucrose non-fermenting) complex, which unequivocally cause disease but in many cases do not have one of the bioinformatically determined domains that we focused on here (44). Additional examples are those resulting from mutations in histone genes (HIST1H1E, HIST1H4B and HIST3H3) (8,45) and the insulator CTCF (46). These genes and their associated disorders share many features with the disorders discussed above and should be thought of as members of the broader group but for simplicity were not included here. Future discussion is needed within the translational genetics and epigenetics communities regarding how to precisely define this important and expanding group of disorders; improved understanding of disease pathogenesis may help us to elucidate the true role of epigenetics and chromatin states in health and disease.

Acknowledgements

We would like to thank Leandros Boukas for statistical help and critical reading of the manuscript and Catherine Kiefe for help with illustrations.

Conflict of Interest statement. H.T.B is a consultant for Millennium Therapeutics.

Funding

Louma G. Foundation (research award to H.T.B.); Icelandic Research Fund (Grant#:195835-051 to H.T.B.); The Hartwell Foundation (Individual Biomedical Research Award to J.A.F.); National Institutes of Health (K08HD086250 to J.A.F.).

References

1.

Fahrner
,
J.A.
and
Bjornsson
,
H.T.
(
2014
)
Mendelian disorders of the epigenetic machinery: tipping the balance of chromatin states
.
Annu. Rev. Genomics Hum. Genet.
,
15
,
269
293
.

2.

Bjornsson
,
H.T.
(
2015
)
The Mendelian disorders of the epigenetic machinery
.
Genome Res.
,
25
,
1473
1481
.

3.

Boukas
,
L.
,
Havrilla
,
J.M.
,
Hickey
,
P.F.
,
Quinlan
,
A.R.
,
Bjornsson
,
H.T.
and
Hansen
,
K.D.
(
2019
)
Coexpression patterns define epigenetic regulators associated with neurological dysfunction
.
Genome Res.
,
29
,
532
542
.

4.

Birney
,
E.
,
Smith
,
G.D.
and
Greally
,
J.M.
(
2016
)
Epigenome-wide association studies and the interpretation of disease-omics
.
PLoS Genet.
,
12
,
e1006105
.

5.

Bjornsson
,
H.T.
,
Benjamin
,
J.S.
,
Zhang
,
L.
,
Weissman
,
J.
,
Gerber
,
E.E.
,
Chen
,
Y.C.
,
Vaurio
,
R.G.
,
Potter
,
M.C.
,
Hansen
,
K.D.
and
Dietz
,
H.C.
(
2014
)
Histone deacetylase inhibition rescues structural and functional brain deficits in a mouse model of Kabuki syndrome
.
Sci. Transl. Med.
,
6
,
256ra135
.

6.

Iwase
,
S.
,
Bérubé
,
N.G.
,
Zhou
,
Z.
,
Kasri
,
N.N.
,
Battaglioli
,
E.
,
Scandaglia
,
M.
and
Barco
,
A.
(
2017
)
Epigenetic etiology of intellectual disability
.
J. Neurosci.
,
37
,
10773
10782
.

7.

Faundes
,
V.
,
Newman
,
W.G.
,
Bernardini
,
L.
,
Canham
,
N.
,
Clayton-Smith
,
J.
,
Dallapiccola
,
B.
,
Davies
,
S.J.
,
Demos
,
M.K.
,
Goldman
,
A.
,
Gill
,
H.
et al. (
2018
)
Histone lysine methylases and demethylases in the landscape of human developmental disorders
.
Am. J. Hum. Genet.
,
102
,
175
187
.

8.

Tatton-Brown
,
K.
,
Loveday
,
C.
,
Yost
,
S.
,
Clarke
,
M.
,
Ramsay
,
E.
,
Zachariou
,
A.
,
Elliott
,
A.
,
Wylie
,
H.
,
Ardissone
,
A.
,
Rittinger
,
O.
et al. (
2017
)
Mutations in epigenetic regulation genes are a major cause of overgrowth with intellectual disability
.
Am. J. Hum. Genet.
,
100
,
725
736
.

9.

Fahrner
,
J.A.
,
Lin
,
W.
,
Riddle
,
R.C.
,
Boukas
,
L.
,
DeLeon
,
V.B.
,
Chopra
,
S.
,
Lad
,
S.E.
,
Luperchio
,
T.R.
,
Hansen
,
K.D.
and
Bjornsson
,
H.T.
(
2019
)
Precocious chondrocyte differentiation disrupts skeletal growth in Kabuki syndrome mice
.
bioRxiv 599878
;.

10.

Heyn
,
P.
,
Logan
,
C.V.
,
Fluteau
,
A.
,
Challis
,
R.C.
,
Auchynnikava
,
T.
,
Martin
,
C.A.
,
Marsh
,
J.A.
,
Taglini
,
F.
,
Kilanowski
,
F.
,
Parry
,
D.A.
et al. (
2019
)
Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions
.
Nat. Genet.
,
51
,
96
105
.

11.

Carosso
,
G.A.
,
Boukas
,
L.
,
Augustin
,
J.J.
,
Nguyen
,
H.N.
,
Winer
,
B.L.
,
Cannon
,
G.H.
,
Robertson
,
J.D.
,
Zhang
,
L.
,
Hansen
,
K.D.
,
Goff
,
L.A.
et al. (
2019
)
Precocious neuronal differentiation and disrupted oxygen responses in Kabuki syndrome
.
bioRxiv 484410
; .

12.

Winkelmann
,
J.
,
Lin
,
L.
,
Schormair
,
B.
,
Kornum
,
B.R.
,
Faraco
,
J.
,
Plazzi
,
G.
,
Melberg
,
A.
,
Cornelio
,
F.
,
Urban
,
A.E.
,
Pizza
,
F.
et al. (
2012
)
Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy
.
Hum. Mol. Genet.
,
21
,
2205
2210
.

13.

Ronan
,
J.L.
,
Wu
,
W.
and
Crabtree
,
G.R.
(
2013
)
From neural development to cognition: unexpected roles for chromatin
.
Nat. Rev. Genet.
,
14
,
347
359
.

14.

Almuriekhi
,
M.
,
Shintani
,
T.
,
Fahiminiya
,
S.
,
Fujikawa
,
A.
,
Kuboyama
,
K.
,
Takeuchi
,
Y.
,
Nawaz
,
Z.
,
Nadaf
,
J.
,
Kamel
,
H.
,
Kitam
,
A.K.
et al. (
2015
)
Loss-of-function mutation in APC2 causes Sotos syndrome features
.
Cell Rep.
,
10
,
1585
1598
.

15.

Berdasco
,
M.
,
Ropero
,
S.
,
Setien
,
F.
,
Fraga
,
M.F.
,
Lapunzina
,
P.
,
Losson
,
R.
,
Alaminos
,
M.
,
Cheung
,
N.K.
,
Rahman
,
N.
and
Esteller
,
M.
(
2009
)
Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma
.
Proc. Natl. Acad. Sci. U S A.
,
106
,
21830
21835
.

16.

Bögershausen
,
N.
,
Tsai
,
I.C.
,
Pohl
,
E.
,
Kiper
,
P.Ö.
,
Beleggia
,
F.
,
Percin
,
E.F.
,
Keupp
,
K.
,
Matchan
,
A.
,
Milz
,
E.
,
Alanay
,
Y.
et al. (
2015
)
RAP1-mediated MEK/ERK pathway defects in Kabuki syndrome
.
J. Clin. Invest.
,
125
,
3585
3599
.

17.

Hurd
,
E.A.
,
Poucher
,
H.K.
,
Cheng
,
K.
,
Raphael
,
Y.
and
Martin
,
D.M.
(
2010
)
The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear
.
Development
,
137
,
3139
3150
.

18.

Kurotaki
,
N.
,
Imaizumi
,
K.
,
Harada
,
N.
,
Masuno
,
M.
,
Kondoh
,
T.
,
Nagai
,
T.
,
Ohashi
,
H.
,
Naritomi
,
K.
,
Tsukahara
,
M.
,
Makita
,
Y.
et al. (
2002
)
Haploinsufficiency of NSD1 causes Sotos syndrome
.
Nat. Genet.
,
30
,
365
366
.

19.

Ng
,
S.B.
,
Bigham
,
A.W.
,
Buckingham
,
K.J.
,
Hannibal
,
M.C.
,
McMillin
,
M.J.
,
Gildersleeve
,
H.I.
,
Beck
,
A.E.
,
Tabor
,
H.K.
,
Cooper
,
G.M.
,
Mefford
,
H.C.
et al. (
2010
)
Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome
.
Nat. Genet.
,
42
,
790
793
.

20.

Lederer
,
D.
,
Grisart
,
B.
,
Digilio
,
M.C.
,
Benoit
,
V.
,
Crespin
,
M.
,
Ghariani
,
S.C.
,
Maystadt
,
I.
,
Dallapiccola
,
B.
and
Verellen-Dumoulin
,
C.
(
2012
)
Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome
.
Am. J. Hum. Genet.
,
90
,
119
124
.

21.

Sobreira
,
N.
,
Brucato
,
M.
,
Zhang
,
L.
,
Ladd-Acosta
,
C.
,
Ongaco
,
C.
,
Romm
,
J.
,
Doheny
,
K.F.
,
Mingroni-Netto
,
R.C.
,
Bertola
,
D.
,
Kim
,
C.A.
et al. (
2017
)
Patients with a Kabuki syndrome phenotype demonstrate DNA methylation abnormalities
.
Eur. J. Hum. Genet.
,
25
,
1335
1344
.

22.

Kernohan
,
K.D.
,
Cigana Schenkel
,
L.
,
Huang
,
L.
,
Smith
,
A.
,
Pare
,
G.
,
Ainsworth
,
P.
,
Care4Rare Canada Consortium
,
Boycott
,
K.M.
,
Warman-Chardon
,
J.
and
Sadikovic
,
B.
(
2016
)
Identification of a methylation profile for DNMT1-associated autosomal dominant cerebellar ataxia, deafness, and narcolepsy
.
Clin. Epigenetics
,
8
,
91
.

23.

Hood
,
R.L.
,
Schenkel
,
L.C.
,
Nikkel
,
S.M.
,
Ainsworth
,
P.J.
,
Pare
,
G.
,
Boycott
,
K.M.
,
Bulman
,
D.E.
and
Sadikovic
,
B.
(
2016
)
The defining DNA methylation signature of Floating–Harbor syndrome
.
Sci. Rep.
,
6
,
38803
.

24.

Schenkel
,
L.C.
,
Kernohan
,
K.D.
,
McBride
,
A.
,
Reina
,
D.
,
Hodge
,
A.
,
Ainsworth
,
P.J.
,
Rodenhiser
,
D.I.
,
Pare
,
G.
,
Bérubé
,
N.G.
,
Skinner
,
C.
et al. (
2017
)
Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome
.
Epigenetics Chromatin
,
10
,
10
.

25.

Choufani
,
S.
,
Cytrynbaum
,
C.
,
Chung
,
B.H.
,
Turinsky
,
A.L.
,
Grafodatskaya
,
D.
,
Chen
,
Y.A.
,
Cohen
,
A.S.
,
Dupuis
,
L.
,
Butcher
,
D.T.
,
Siu
,
M.T.
et al. (
2015
)
NSD1 mutations generate a genome-wide DNA methylation signature
.
Nat. Commun.
,
6
,
10207
.

26.

Butcher
,
D.T.
,
Cytrynbaum
,
C.
,
Turinsky
,
A.L.
,
Siu
,
M.T.
,
Inbar-Feigenberg
,
M.
,
Mendoza-Londono
,
R.
,
Chitayat
,
D.
,
Walker
,
S.
,
Machado
,
J.
,
Caluseriu
,
O.
et al. (
2017
)
CHARGE and Kabuki syndromes: gene-specific DNA methylation signatures identify epigenetic mechanisms linking these clinically overlapping conditions
.
Am. J. Hum. Genet.
,
100
,
773
788
.

27.

Schenkel
,
L.C.
,
Aref-Eshghi
,
E.
,
Skinner
,
C.
,
Ainsworth
,
P.
,
Lin
,
H.
,
Paré
,
G.
,
Rodenhiser
,
D.I.
,
Schwartz
,
C.
and
Sadikovic
,
B.
(
2018
)
Peripheral blood epi-signature of Claes–Jensen syndrome enables sensitive and specific identification of patients and healthy carriers with pathogenic mutations in KDM5C
.
Clin. Epigenetics
,
10
,
21
.

28.

Aref-Eshghi
,
E.
,
Bend
,
E.G.
,
Colaiacovo
,
S.
,
Caudle
,
M.
,
Chakrabarti
,
R.
,
Napier
,
M.
,
Brick
,
L.
,
Brady
,
L.
,
Carere
,
D.A.
,
Levy
,
M.A.
et al. (
2019
)
Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions
.
Am. J. Hum. Genet.
,
104
,
685
700
.

29.

Robertson
,
J.G.
(
2007
)
Enzymes as a special class of therapeutic target: clinical drugs and modes of action
.
Curr. Opin. Struct. Biol.
,
17
,
674
679
.

30.

You
,
J.S.
and
Han
,
J.H.
(
2014
)
Targeting components of epigenome by small molecules
.
Arch. Pharm. Res.
,
37
,
1367
1374
.

31.

Guy
,
J.
,
Gan
,
J.
,
Selfridge
,
J.
,
Cobb
,
S.
and
Bird
,
A.
(
2007
)
Reversal of neurological defects in a mouse model of Rett syndrome
.
Science
,
315
,
1143
1147
.

32.

Alarcón
,
J.M.
,
Malleret
,
G.
,
Touzani
,
K.
,
Vronskaya
,
S.
,
Ishii
,
S.
,
Kandel
,
E.R.
and
Barco
,
A.
(
2004
)
Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration
.
Neuron
,
42
,
947
959
.

33.

Korzus
,
E.
,
Rosenfeld
,
M.G.
and
Mayford
,
M.
(
2004
)
CBP histone acetyltransferase activity is a critical component of memory consolidation
.
Neuron
,
42
,
961
972
.

34.

Benjamin
,
J.S.
,
Pilarowski
,
G.O.
,
Carosso
,
G.A.
,
Zhang
,
L.
,
Huso
,
D.L.
,
Goff
,
L.A.
,
Vernon
,
H.J.
,
Hansen
,
K.D.
and
Bjornsson
,
H.T.
(
2017
)
A ketogenic diet rescues hippocampal memory defects in a mouse model of Kabuki syndrome
.
Proc. Natl. Acad. Sci. U. S. A.
,
114
,
125
130
.

35.

Koo
,
T.
,
Lee
,
J.
and
Kim
,
J.S.
(
2015
)
Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9
.
Mol. Cells
,
38
,
475
481
.

36.

Hilton
,
I.B.
,
D'Ippolito
,
A.M.
,
Vockley
,
C.M.
,
Thakore
,
P.I.
,
Crawford
,
G.E.
,
Reddy
,
T.E.
and
Gersbach
,
C.A.
(
2015
)
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
.
Nat. Biotechnol.
,
33
,
510
517
.

37.

Fulco
,
C.P.
,
Munschauer
,
M.
,
Anyoha
,
R.
,
Munson
,
G.
,
Grossman
,
S.R.
,
Perez
,
E.M.
,
Kane
,
M.
,
Cleary
,
B.
,
Lander
,
E.S.
and
Engreitz
,
J.M.
(
2016
)
Systematic mapping of functional enhancer-promoter connections with CRISPR interference
.
Science
,
354
,
769
773
.

38.

McCabe
,
M.T.
and
Creasy
,
C.L.
(
2014
)
EZH2 as a potential target in cancer therapy
.
Epigenomics
,
6
,
341
351
.

39.

Ren
,
C.
,
Morohashi
,
K.
,
Plotnikov
,
A.N.
,
Jakoncic
,
J.
,
Smith
,
S.G.
,
Li
,
J.
,
Zeng
,
L.
,
Rodriguez
,
Y.
,
Stojanoff
,
V.
,
Walsh
,
M.
et al. (
2015
)
Small-molecule modulators of methyl-lysine binding for the CBX7 chromodomain
.
Chem. Biol.
,
22
,
161
168
.

40.

Zhou
,
Z.
,
Li
,
H.Q.
and
Liu
,
F.
(
2018
)
DNA methyltransferase inhibitors and their therapeutic potential
.
Curr. Top. Med. Chem.
,
18
,
2448
2457
.

41.

Pérez-Salvia
,
M.
and
Esteller
,
M.
(
2017
)
Bromodomain inhibitors and cancer therapy: from structures to applications
.
Epigenetics
,
12
,
323
339
.

42.

Huang
,
M.
,
Huang
,
J.
,
Zheng
,
Y.
and
Sun
,
Q.
(
2019
)
Histone acetyltransferase inhibitors: an overview in synthesis, structure-activity relationship and molecular mechanism
.
Eur. J. Med. Chem.
,
178
,
259
286
.

43.

Jambhekar
,
A.
,
Anastas
,
J.N.
and
Shi
,
Y.
(
2017
)
Histone lysine demethylase inhibitors
.
Cold Spring Harb. Perspect. Med.
,
7
,
pii: a026484
.

44.

Bögershausen
,
N.
and
Wollnik
,
B.
(
2018
)
Mutational landscapes and phenotypic Spectrum of SWI/SNF-related intellectual disability disorders
.
Front. Mol. Neurosci.
,
11
,
252
.

45.

Najmabadi
,
H.
,
Hu
,
H.
,
Garshasbi
,
M.
,
Zemojtel
,
T.
,
Abedini
,
S.S.
,
Chen
,
W.
,
Hosseini
,
M.
,
Behjati
,
F.
,
Haas
,
S.
,
Jamali
,
P.
et al. (
2011
)
Deep sequencing reveals 50 novel genes for recessive cognitive disorders
.
Nature
,
478
,
57
63
.

46.

Gregor
,
A.
,
Oti
,
M.
,
Kouwenhoven
,
E.N.
,
Hoyer
,
J.
,
Sticht
,
H.
,
Ekici
,
A.B.
,
Kjaergaard
,
S.
,
Rauch
,
A.
,
Stunnenberg
,
H.G.
,
Uebe
,
S.
et al. (
2013
)
De novo mutations in the genome organizer CTCF cause intellectual disability
.
Am. J. Hum. Genet.
,
93
,
124
131
.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)