Abstract
High-throughput genomic sequencing approaches have held the promise of understanding and ultimately leading to treatments for cognitive disorders such as autism spectrum disorders, schizophrenia and Alzheimer’s disease. Although significant progress has been made into identifying genetic variants associated with these diseases, these studies have also uncovered that these disorders are mostly genetically complex and thus challenging to model in non-human systems. Improvements in such models might benefit from understanding the evolution of the human genome and how such modifications have affected brain development and function. The intersection of genome-wide variant information with cell-type-specific expression and epigenetic information will further assist in resolving the contribution of particular cell types in evolution or disease. For example, the role of non-neuronal cells in brain evolution and cognitive disorders has gone mostly underappreciated until the recent availability of single-cell transcriptomic approaches. In this review, we discuss recent studies that carry out cell-type-specific assessments of gene expression in brain tissue across primates and between healthy and disease populations. The emerging results from these studies are beginning to elucidate how specific cell types in the evolved human brain are contributing to cognitive disorders.
Introduction
An outstanding question in the field of evolutionary neuroscience has been: how can closely related species such as humans and chimpanzees have similar coding genomes, yet have notable phenotypic differences? Moreover, could differences in gene expression and regulation underlie the susceptibility of humans to neuropsychiatric diseases? Have evolutionary processes that shaped our sophisticated cognitive abilities supported brain mechanisms that result in psychiatric and neurological disorders?
One of the most striking traits that distinguish humans from other primates is a large brain characterized by a remarkable expansion of the neocortex (1–4). This evolutionary achievement correlates with a specific set of human cognitive abilities such as abstract thinking (5–7). Higher cognitive functions are frequently attenuated in neuropsychiatric disorders, such as autism spectrum disorder (ASD) or schizophrenia (SCZ), and based upon how we define or diagnose such disorders, we are unable to confirm their presence in other primates. This has led to the hypothesis that neuropsychiatric disorders might be a consequence of the evolution of human brain enlargement and cognitive abilities (8–11). The complex genetic etiology of neuropsychiatric disorders might confer advantages to neurotypical individuals and disease risk loci might be in linkage disequilibrium with alleles under positive selection (12,13). Such an evolutionary trade-off has been suggested by genome-wide association studies (GWAS) where risk loci associated with SCZ or ASD, debilitating neuropsychiatric disorders that reduce fitness in the general population (12,14), are genetically correlated with loci linked with intelligence and cognitive functions (15,16). Yet, understanding the role of evolution in these common neuropsychiatric disorders, a field sometimes called Darwinian medicine (17), is still controversial (18–20).
In the past two decades, large scale genome sequencing together with bulk brain tissue transcriptome comparisons between human and non-human primates or between patients and neurotypical individuals has already uncovered important candidate genes for understanding human cognitive specializations (e.g. FOXP2) or human diseases such as ASD (e.g. FOXP1) (21–25). However, transcriptome sequencing of brain tissue ‘in bulk’ potentially diminishes the probability to detect differentially expressed genes (DEGs) that have a cell-type-specific expression (26–28), as the human brain is a heterogeneous tissue composed of many different cell types with specific functions, morphologies and transcriptomic characteristics (29). In the past few years, significant effort has been made to better understand such heterogeneity. The development of single-cell and fluorescence-activated nuclei sorting technologies have facilitated significant progress in understanding the transcriptomic and epigenomic signatures of the human brain at single-cell resolution (29–34). These methods have been used in multiple areas to better understand the complexity of brain cell types, their development and their evolution and how they are affected in neuropsychiatric disorders (35–41). Therefore, we now have the tools to unlock cell-type differences among species and patient populations. Moreover, using the common genetic variants identified by GWAS, it has been possible to highlight genes and cell types potentially associated with a specific neuropsychiatric disorder. Thus, the integration of comparative genomics, complex traits genetics and neurogenomics has the unprecedented potential to link evolution with neuropsychiatric disorders (Fig. 1). Ultimately such knowledge may assist in the development of more accurate and effective therapies for devastating cognitive disorders through the use of cell-level data. In this review, we will summarize recent neurogenomic studies of cell types in the primate brain that provide insights into mechanisms of brain evolution and neuropsychiatric disorders.

Figure 1
The multi-omics perspective of Darwinian medicine. (A) GWAS will elucidate the contribution of common variants to a specific phenotype. Single-cell genomics will facilitate the understanding of the heterogeneity of thousands of brain cell types. Statistics (e.g. differential expression, co-expression) will define sets of genes for further investigation. (B) These approaches can be applied to understand the neurogenomics of neuropsychiatric diseases or in the comparisons of multiple-closely related species. (C) Data integration among these different methodologies will further elucidate the contribution of genes in both neuropsychiatric disorders and evolution.
Cell types: neuropsychiatric disorders and evolutionary implications
Single-cell approaches in human and/or non-human primate brains have detected DEGs relevant for both evolutionary (35,37) and disease comparisons (42–45). In this section, we will discuss changes in gene expression signatures in five major brain cell types: excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes and their precursor cells (OPCs), and microglia.
Excitatory neurons (glutamatergic neurons) are pyramidal-shaped neurons with long axons that connect different brain regions (46–48). Inhibitory neurons (GABAergic neurons) are fewer compared with excitatory neurons and are transcriptomically less diverse across brain regions (49–51). Importantly, excitation–inhibition interactions have been linked to complex traits and neuropsychiatric disorders (52–54). Both excitatory and inhibitory neurons are enriched for common variants associated with complex traits such as intelligence (55–57) and risk variants linked with SCZ and bipolar disorder (BD) (58–60). At the transcriptomic level, excitatory neurons diverge more between healthy controls and subjects affected by ASD, major depressive disorder (MDD), or Alzheimer’s disease (AD) compared with inhibitory neurons (43–45). Consistent with this finding, recent analysis of single-cell methylomes across mammalian cortex found that inhibitory neurons are more conservative than excitatory neurons in methylation signatures (61). Moreover, genes associated with GABAergic neurons showed more conserved co-expression networks (62). Regulatory features (promoters/enhancers) in both excitatory and inhibitory neurons are enriched for common variants associated with ASD, MDD, BD, SCZ and attention deficit/hyperactivity disorder (36). Moreover, neurons differ between SCZ and healthy controls at the transcriptomic level (63). ASD patients also have altered gene expression in a subcluster of excitatory neurons that were enriched for upper layer cortico-cortical projection neurons (44), whereas transcriptome alterations of deep layer excitatory neurons have been associated with MDD (45). However, in terms of evolution, neurons showed fewer changes on the human lineage compared with non-neuronal cell types and their transcriptomes have a lower evolutionary rate (35,37,64). These results suggest that neuronal transcriptomes tend to be more conserved between primates.
Oligodendrocytes and OPC are important for the production of myelin required for axon ensheathment and metabolism (65–69). Oligodendrocytes are enriched for risk variants associated with SCZ and Parkinson’s disease (58,70). At the transcriptomic level, OPCs showed differences between healthy and individuals with MDD (45), whereas mature oligodendrocytes show differences in AD (43) and SCZ (63). Interestingly, promoter regions of oligodendrocytes are enriched for variants associated with SCZ, BD and complex traits such as intelligence and cognitive functions (36). These data underscore the potential role of oligodendrocytes in neuropsychiatric disorders and cognition. Furthermore, oligodendrocytes and OPCs showed human-specific changes, and these are linked with neuropsychiatric disorders. For instance, a recent study showed that hominin-specific regulatory elements of oligodendrocytes are severely affected in ASD patients (71). In addition, gene expression in oligodendrocytes and in particular OPCs has the highest human specificity (e.g. the number of changed genes in human versus non-human primates) compared with non-human primates in multiple brain regions (35). Moreover, another study showed that the human-specific genes in oligodendrocytes are enriched for variants associated with complex traits and neuropsychiatric disorders (37) and oligodendrocytes showed higher evolutionary rates compared with neurons (64). In a recent study that compared spatiotemporal gene expression between human and macaque, the DEGs from the brain areas with protracted development stages in human were enriched for oligodendrocyte identities (72). Considering that myelination is prolonged in humans compared with non-human primates (73) and the importance of the oligodendrocyte-enriched white matter in neuropsychiatric disorders and cognition (74–80), it is plausible to consider oligodendrocytes an interesting candidate cell type to be further evaluated by the Darwinian medicine hypothesis.
Astrocytes are arborized cells with a large variety of functions, from regulating synaptic activity and plasticity to supporting the metabolism of neurons (81–86). Astrocytes showed enrichment for complex traits or risk variants in the promoters but not enhancers of genes involved in cognitive disorders (36). A small number of genes specifically expressed in astrocytes are differentially expressed between healthy and ASD or AD individuals (43,44). Interestingly, astrocytes also have more gene expression differences on the human lineage compared with other non-human primates (35). In addition, spatiotemporal DEGs between human and macaque in the brain areas with protracted development stages in human were also enriched for astrocyte identities (72). Human accelerated regions (HARs), short deoxyribonucleic acid sequences with high rates of human-specific substitutions (87), are thought to be important for brain development and function as enhancers (88–90). It has been discovered that HARs are highly expressed in astrocytes of the human prefrontal cortex (91). Moreover, astrocytes contain the most human-specific DEGs when comparing organoids between humans and other primates (38). Because human astrocytes are morphologically and functionally distinct compared with other animals (92,93), they can be considered one of the important players in the evolution of our larger and metabolically expensive brains (94–98).
Microglia are broadly distributed immune cells important for the inflammatory response within the central nervous system (99,100). Similar to astrocytes, microglia lack genetic enrichment for complex traits or neuropsychiatric disorders except for enrichment of AD variants in enhancer regions (36). Nevertheless, microglia showed striking expression differences between healthy patients and ASD subjects (44), pointing to the role of inflammation in ASD (101–103). Finally, microglia have greater heterogeneity in humans compare with other mammals (104), supporting modifications on the human lineage.
Neurogenomics of human brain development: organoids and fetal tissue studies
One facet of human brain evolution is largely due to the specialization of the human brain’s developmental trajectory. Previous neuroanatomical studies have well documented that the human brain has a protracted development at both pre- and postnatal stages (105). Comparisons of the brain developmental transcriptome between human and macaque showed that although their overall trajectories are conserved, the human brain transcriptome always matched with macaque samples in earlier developmental stages (72). This protraction of human brain development is most obvious at two time points: the early fetal stage and childhood. Interestingly, the brain transcriptome of humans in childhood did not match with any sample of macaque (72). Importantly, these human-relevant gene expression signatures were enriched for genes involved in proliferation and synaptogenesis as well as genes associated with ASD, SCZ and other neurodevelopment disorders (38,40,72). One prominent feature of the human brain is to maintain neural progenitors, in particular outer radial glia (oRG), going through cell cycle progressions to generate more neurons (106,107). However, the mechanism to maintain human neural progenitors in this proliferative state is not yet defined. In a recent analysis of the single-cell transcriptome of human mid-gestation brain, the authors provided evidence for a cell fate decision to either generate mature neurons or stay as progenitors during the G1 phase (108). It was previously assumed that transcription factors were evenly distributed to daughter cells during the asymmetric division of radial glia. However, this study showed that the cell fate of neural progenitors is not determined by transcription factors but rather by a continuous modification of gene expression (108).
Unlike other model systems, brain tissue samples from humans and non-human primates are difficult to access, especially for early developmental or fetal stages (109). Therefore, in vitro cell culture systems have been applied to understand species-specific developmental mechanisms. In a recent study using neural progenitor cell (NPC) culture, DEGs between human and chimpanzee were enriched for neuronal migration function, and neuronal migration assays showed that chimpanzee NPCs migrated longer distance than human NPCs (110). This result is consistent with a recent study of CLOCK knockdown in human NPCs that resulted in further migration (111) and the circadian rhythm-related transcription factor CLOCK is a hub in a human-specific gene co-expression module further highlighting the role of this gene in human brain evolution and development (112,113). Additionally, the comparative study showed that human NPCs develop for longer time periods and ultimately form more complex dendritic structures (i.e. neurite arborization and spine) upon differentiation compared with differentiated chimpanzee and bonobo NPCs under the same culture conditions (110). In addition, PDGFRβ was downregulated in both the non-human primate NPCs and CLOCK knockdown human NPCs (110,111). PDGFD–PDGFRβ signaling has been found to prevent migration of radial glia in human neocortex (114). These results directly support the hypothesis that protracted human neural development is due to a specialization in maintaining a proliferative state of specific cell types relative to other primates.
The most recent development of in vitro systems to study genetic signatures of morphogenesis in human brain evolution is the generation of brain organoids from stem cells. Brain organoids contain many cell types relevant to early human brain development (e.g. progenitors and newborn neurons; additional cell types if cultured longer) and recapitulate several of the 3D organizational features of brain development such as the inside-out migration of cortical neurons (115–120). In addition, gene expression of human brain organoids is comparable with human fetal brain (121,122). Thus, given this similarity, the use of CRISPR-Cas9 gene editing technology, together with the derivation of organoids from patient-derived induced pluripotent stem cells, could facilitate brain organoids as a reliable model to study the neurogenomics of early normal and disease-relevant brain development. Consistent with results from primary brain tissue, human brain organoids also have upregulation of overall gene expression relative to chimpanzee (38,40). These upregulated genes are enriched for metabolism, regulation of cell cycle, negative regulation of apoptosis, proliferation, migration and neurite formation (38,40). These results provide further molecular pathways and specific genes for understanding the evolution and development of the human brain.
Chromosomal rearrangements known as segmental duplications (SD) contributed to increase the repertoire of new genes with novel functions on the human lineage (123–126). SD contain duplicated genes and some have been linked with human brain specialization and development (127). For instance, recent work compared gene expression in fetal brain tissue across mammalian species and identified 15 human-specific genes for neural progenitors, and many of them had undergone duplication on the human lineage (128). Further analysis showed that these duplicated genes were upregulated in radial glia. This result is consistent with previous findings in which the expansion of the radial glia pool, especially oRG, is a major mechanism underlying human cortical expansion (106,107). ARHGAP11B is one of the duplicated genes that originate from ARHGAP11A. ARHGAP11B, which is preferentially expressed in radial glia of human, has been found to facilitate proliferation of radial glia (129). NOTCH2NL, which is duplicated from NOTCH2, is mainly overlapping in expression with NOTCH2 in radial glia. The main role of NOTCH2NL is to prolong duration of radial glia proliferation, and deletion or duplication of this gene correlates with decreasing or increasing human brain size, respectively (130). SRGAP2C, which is duplicated from SRGAP2, functionally antagonizes SRGAP2 to prolong synaptic maturation and increase the density of dendritic spines and the length of dendritic shafts (131,132). TMEM14B emerged by a duplication event from TMEM14C and is a rapidly evolving primate specific gene with a protein structure highly divergent between human and non-human primates (133). TMEM14B is functionally linked with radial glia and enhances the proliferation of subventricular zone (SVZ) progenitors (133).
Conclusions
Have cognitive disorders arisen as a consequence of human brain evolution? This question is at the core of Darwinian medicine. In the past two decades, a huge effort has been undertaken to answer this question at the genome level. By constantly increasing sample size, GWAS have elucidated how common variants with small effect might have impact risk for cognitive disorders. The pleiotropy of these variants suggests that risk alleles are shared across complex traits (134–136). These recent advances in genetics have made it possible to assess the impact of natural selection in highly polygenic traits and disorders (137–141). Simultaneously, advances in single-cell genomics have helped to define the transcriptomes and epigenomes of brain cells. Although many studies have primarily focused on healthy tissue, studies are now focusing on changes in the heterogeneity of cell types in the diseased human brain and how such cell types are different compared with other primates. Moreover, data integration of genetics, single-cell genomics and comparative genomics has the potential to refine the association between evolution and neuropsychiatric disorders. By combining these approaches, we now have the appropriate resolution to identify genomic changes in the evolved human brain that put us at risk for cognitive diseases.
Acknowledgements
G.K. is a Jon Heighten Scholar in Autism Research at UT Southwestern.
Conflict of Interest statement. None declared.
Funding
The National Institute of Mental Health (NIMH) (MH103517, MH102603 to G.K.); The National Institute on Deafness and Other Communication Disorders (NIDCD) (DC014702 to G.K.); The National Institute of Neurological Disorders and Stroke (NINDS) (NS106447, NS115821 to G.K.); The Simons Foundation (SFARI 573689, 401220 to G.K.); The Chan Zuckerberg Initiative, an advised fund of Silicon Valley Community Foundation (HCA-A-1704-01747 to G.K.); the James S. McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition—Scholar Award (220020467 to G.K.).
References
1.Van Essen
, D.C.
(
2018
)
Scaling of human brain size
.
Science
,
360
,
1184
–
1185
.
2.Reardon
, P.K.
, Seidlitz
, J.
, Vandekar
, S.
, Liu
, S.
, Patel
, R.
, Park
, M.T.M.
, Alexander-Bloch
, A.
, Clasen
, L.S.
, Blumenthal
, J.D.
, Lalonde
, F.M.
, Giedd
, J.N.
et al. (
2018
)
Normative brain size variation and brain shape diversity in humans
.
Science
,
360
,
1222
–
1227
.
3.Rilling
, J.K.
(
2014
)
Comparative primate neuroimaging: insights into human brain evolution
.
Trends Cogn. Sci.
,
18
,
46
–
55
.
4.Falk
, D.
, Redmond
, J.C.
, Jr., Guyer
, J.
, Conroy
, C.
, Recheis
, W.
, Weber
, G.W.
and Seidler
, H.
(
2000
)
Early hominid brain evolution: a new look at old endocasts
.
J. Hum. Evol.
,
38
,
695
–
717
.
5.Dunbar
, R.I.
(
2009
)
The social brain hypothesis and its implications for social evolution
.
Ann. Hum. Biol.
,
36
,
562
–
572
.
6.Roth
, G.
and Dicke
, U.
(
2005
)
Evolution of the brain and intelligence
.
Trends Cogn. Sci.
,
9
,
250
–
257
.
7.Williams
, M.F.
(
2002
)
Primate encephalization and intelligence
.
Med. Hypotheses
,
58
,
284
–
290
.
8.Burns
, J.K.
(
2004
)
An evolutionary theory of schizophrenia: cortical connectivity, metarepresentation, and the social brain
.
Behav. Brain Sci.
,
27
,
831
–
855
.
9.Crow
, T.J.
(
2000
)
Schizophrenia as the price that homo sapiens pays for language: a resolution of the central paradox in the origin of the species
.
Brain Res. Brain Res. Rev.
,
31
,
118
–
129
.
10.Horrobin
, D.F.
(
1998
)
Schizophrenia: the illness that made us human
.
Med. Hypotheses
,
50
,
269
–
288
.
11.Crow
, T.J.
(
1997
)
Is schizophrenia the price that Homo sapiens pays for language?
Schizophr. Res.
,
28
,
127
–
141
.
12.Mullins
, N.
, Ingason
, A.
, Porter
, H.
, Euesden
, J.
, Gillett
, A.
, Ólafsson
, S.
, Guðbjartsson
, D.F.
, Lewis
, C.M.
, Sigurdsson
, E.
, Saemundsen
, E.
et al. (
2017
)
Reproductive fitness and genetic risk of psychiatric disorders in the general population
.
Nat. Commun.
,
8
, 15833.
13.Jarvik
, L.F.
and Deckard
, B.S.
(
1977
)
The Odyssean personality. A survival advantage for carriers of genes predisposing to schizophrenia
.
Neuropsychobiology
,
3
,
179
–
191
.
14.van
Dongen
, J.
and Boomsma
, D.I.
(
2013
)
The evolutionary paradox and the missing heritability of schizophrenia
.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
,
162B
,
122
–
136
.
15.Grove
, J.
, Ripke
, S.
, Als
, T.D.
, Mattheisen
, M.
, Walters
, R.K.
, Won
, H.
, Pallesen
, J.
, Agerbo
, E.
, Andreassen
, O.A.
, Anney
, R.
et al. (
2019
)
Identification of common genetic risk variants for autism spectrum disorder
.
Nat. Genet.
,
51
,
431
–
444
.
16.Brainstorm
, C.
, Bulik-Sullivan
, B.
, Finucane
, H.K.
, Walters
, R.K.
, Bras
, J.
, Duncan
, L.
, Escott-Price
, V.
, Falcone
, G.J.
, Gormley
, P.
, Malik
, R.
et al. (
2018
)
Analysis of shared heritability in common disorders of the brain
.
Science
,
360
, eaap8757.
17.Williams
, G.C.
and Nesse
, R.M.
(
1991
)
The dawn of Darwinian medicine
.
Q. Rev. Biol.
,
66
,
1
–
22
.
18.Keller
, M.C.
(
2018
)
Evolutionary perspectives on genetic and environmental risk factors for psychiatric disorders
.
Annu. Rev. Clin. Psychol.
,
14
,
471
–
493
.
19.Ogawa
, L.M.
and Vallender
, E.J.
(
2014
)
Evolutionary conservation in genes underlying human psychiatric disorders
.
Front. Hum. Neurosci.
,
8
,
283
.
20.Keller
, M.C.
and Miller
, G.
(
2006
)
Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best
.
Behav. Brain. Sci.
,
29
,
385
–
404
.
21.Satterstrom
, F.K.
, Kosmicki
, J.A.
, Wang
, J.
, Breen
, M.S.
, De Rubeis
, S.
, An
, J.-Y.
, Peng
, M.
, Collins
, R.
, Grove
, J.
, Klei
, L.
et al. (
2020
)
Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism
.
Cell
,
180
,
568
–
584
.
22.Konopka
, G.
, Bomar
, J.M.
, Winden
, K.
, Coppola
, G.
, Jonsson
, Z.O.
, Gao
, F.
, Peng
, S.
, Preuss
, T.M.
, Wohlschlegel
, J.A.
and Geschwind
, D.H.
(
2009
)
Human-specific transcriptional regulation of CNS development genes by FOXP2
.
Nature
,
462
,
213
–
217
.
23.Spiteri
, E.
, Konopka
, G.
, Coppola
, G.
, Bomar
, J.
, Oldham
, M.
, Ou
, J.
, Vernes
, S.C.
, Fisher
, S.E.
, Ren
, B.
and Geschwind
, D.H.
(
2007
)
Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain
.
Am. J. Hum. Genet.
,
81
,
1144
–
1157
.
24.Lai
, C.S.
, Gerrelli
, D.
, Monaco
, A.P.
, Fisher
, S.E.
and Copp
, A.J.
(
2003
)
FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder
.
Brain
,
126
,
2455
–
2462
.
25.Lai
, C.S.
, Fisher
, S.E.
, Hurst
, J.A.
, Vargha-Khadem
, F.
and Monaco
, A.P.
(
2001
)
A forkhead-domain gene is mutated in a severe speech and language disorder
.
Nature
,
413
,
519
–
523
.
26.Kulkarni
, A.
, Anderson
, A.G.
, Merullo
, D.P.
and Konopka
, G.
(
2019
)
Beyond bulk: a review of single cell transcriptomics methodologies and applications
.
Curr. Opin. Biotechnol.
,
58
,
129
–
136
.
27.Tasic
, B.
(
2018
)
Single cell transcriptomics in neuroscience: cell classification and beyond
.
Curr. Opin. Neurobiol.
,
50
,
242
–
249
.
28.Wang
, Y.
and Navin
, N.E.
(
2015
)
Advances and applications of single-cell sequencing technologies
.
Mol. Cell
,
58
,
598
–
609
.
29.Tasic
, B.
, Yao
, Z.
, Graybuck
, L.T.
, Smith
, K.A.
, Nguyen
, T.N.
, Bertagnolli
, D.
, Goldy
, J.
, Garren
, E.
, Economo
, M.N.
, Viswanathan
, S.
et al. (
2018
)
Shared and distinct transcriptomic cell types across neocortical areas
.
Nature
,
563
,
72
–
78
.
30.Amamoto
, R.
, Zuccaro
, E.
, Curry
, N.C.
, Khurana
, S.
, Chen
, H.-H.
, Cepko
, C.L.
and Arlotta
, P.
(
2020
)
FIN-Seq: transcriptional profiling of specific cell types from frozen archived tissue of the human central nervous system
.
Nucleic Acids Res.
,
48
,
e4
.
31.Slane
, D.
and Bayer
, M.
(
2017
)
Cell type-specific gene expression profiling using fluorescence-activated nuclear sorting
.
Methods Mol. Biol.
,
1629
,
27
–
35
.
32.Krishnaswami
, S.R.
, Grindberg
, R.V.
, Novotny
, M.
, Venepally
, P.
, Lacar
, B.
, Bhutani
, K.
, Linker
, S.B.
, Pham
, S.
, Erwin
, J.A.
, Miller
, J.A.
et al. (
2016
)
Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons
.
Nat. Protoc.
,
11
,
499
–
524
.
33.Marion-Poll
, L.
, Montalban
, E.
, Munier
, A.
, Herve
, D.
and Girault
, J.A.
(
2014
)
Fluorescence-activated sorting of fixed nuclei: a general method for studying nuclei from specific cell populations that preserves post-translational modifications
.
Eur. J. Neurosci.
,
39
,
1234
–
1244
.
34.Matevossian
, A.
and Akbarian
, S.
(
2008
)
Neuronal nuclei isolation from human postmortem brain tissue
.
J. Vis. Exp.
. doi:
.
35.Khrameeva
, E.
, Kurochkin
, I.
, Han
, D.
, Guijarro
, P.
, Kanton
, S.
, Santel
, M.
, Qian
, Z.
, Rong
, S.
, Mazin
, P.
, Sabirov
, M.
et al. (
2020
)
Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains
.
Genome Res.
,
30
,
776
–
789
.
36.Nott
, A.
, Holtman
, I.R.
, Coufa
, N.G.
, Schlachetzki
, J.C.M.
, Yu
, M.
, Hu
, R.
, Han
, C.Z.
, Pena
, M.
, Xiao
, J.
, Wu
, Y.
et al. (
2019
)
Brain cell type-specific enhancer-promoter interactome maps and disease-risk association
.
Science
,
366
,
1134
–
1139
.
37.Berto
, S.
, Mendizaba
, I.
, Usui
, N.
, Toriumi
, K.
, Chatterjee
, P.
, Douglas
, C.
, Tamminga
, C.A.
, Preuss
, T.M.
, Yi
, S.V.
, Konopka
, G.
et al. (
2019
)
Accelerated evolution of oligodendrocytes in the human brain
.
Proc. Natl. Acad. Sci. U. S. A.
,
116
,
24334
–
24342
.
38.Kanton
, S.
, Boyle
, M.J.
, He
, Z.
, Sante
, M.
, Weigert
, A.
, Sanchís-Calleja
, F.
, Guijarro
, P.
, Sidow
, L.
, Fleck
, J.S.
, Han
, D.
et al. (
2019
)
Organoid single-cell genomic atlas uncovers human-specific features of brain development
.
Nature
,
574
,
418
–
422
.
39.Hodge
, R.D.
, Bakken
, T.E.
, Miller
, J.A.
, Smith
, K.A.
, Barkan
, E.R.
, Graybuck
, L.T.
, Close
, J.L.
, Long
, B.
, Johansen
, N.
, Penn
, O.
et al. (
2019
)
Conserved cell types with divergent features in human versus mouse cortex
.
Nature
,
573
,
61
–
68
.
40.Pollen
, A.A.
, Bhaduri
, A.
, Andrews
, M.G.
, Nowakowski
, T.J.
, Meyerson
, O.S.
, Mostajo-Radji
, M.A.
, Di Lullo
, E.
, Alvarado
, B.
, Bedolli
, M.
, Dougherty
, M.L.
et al. (
2019
)
Establishing cerebral Organoids as models of human-specific brain evolution
.
Cell
,
176
,
743
–
756
.
41.Lake
, B.B.
, Chen
, S.
, Sos
, B.C.
, Fan
, J.
, Kaeser
, G.E.
, Yung
, Y.C.
, Duong
, T.E.
, Gao
, D.
, Chun
, J.
, Kharchenko
, P.V.
et al. (
2018
)
Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain
.
Nat. Biotechnol.
,
36
,
70
–
80
.
42.Jaffe
, A.E.
, Hoeppner
, D.J.
, Saito
, T.
, Blanpain
, L.
, Ukaigwe
, J.
, Burke
, E.E.
, Collado-Torres
, L.
, Tao
, R.
, Tajinda
, K.
, Maynard
, K.R.
et al. (
2020
)
Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk
.
Nat. Neurosci.
,
23
,
510
–
519
.
43.Mathys
, H.
, Davila-Velderrain
, J.
, Peng
, Z.
, Gao
, F.
, Mohammadi
, S.
, Young
, J.Z.
, Menon
, M.
, He
, L.
, Abdurrob
, F.
, Jiang
, X.
et al. (
2019
)
Single-cell transcriptomic analysis of Alzheimer's disease
.
Nature
,
570
,
332
–
337
.
44.Velmeshev
, D.
, Schirmer
, L.
, Jung
, D.
, Haeussler
, M.
, Perez
, Y.
, Mayer
, S.
, Bhaduri
, A.
, Goyal
, N.
, Rowitch
, D.H.
, Kriegstein
, A.R.
et al. (
2019
)
Single-cell genomics identifies cell type-specific molecular changes in autism
.
Science
,
364
,
685
–
689
.
45.Nagy
, C.
, Maitra
, M.
, Tanti
, A.
, Suderman
, M.
, Théroux
, J.-F.
, Davoli
, M.A.
, Perlman
, K.
, Yerko
, V.
, Wang
, Y.C.
, Tripathy
, S.J.
et al. (
2020
)
Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons
.
Nat. Neurosci
. doi:
.
46.Quiquempoix
, M.
, Fayad
, S.L.
, Boutourlinsky
, K.
, Leresche
, N.
, Lambert
, R.C.
and Bessaih
, T.
(
2018
)
Layer 2/3 pyramidal neurons control the gain of cortical output
.
Cell Rep.
,
24
,
2799
–
2807
, .
47.Baker
, A.
, Kalmbach
, B.E.
, Morishima
, M.
, Kim
, J.
, Juavinett
, A.L.
, Li
, N.
and Dembrow
, N.C.
(
2018
)
Specialized subpopulations of deep-layer pyramidal neurons in the Neocortex: bridging cellular properties to functional consequences
.
J. Neurosci.
,
38
,
5441
–
5455
.
48.Spruston
, N.
(
2008
)
Pyramidal neurons: dendritic structure and synaptic integration
.
Nat. Rev. Neurosci.
,
9
,
206
–
221
.
49.Lim
, L.
, Mi
, D.
, Llorca
, A.
and Marin
, O.
(
2018
)
Development and functional diversification of cortical interneurons
.
Neuron
,
100
,
294
–
313
.
50.Tremblay
, R.
, Lee
, S.
and Rudy
, B.
(
2016
)
GABAergic interneurons in the Neocortex: from cellular properties to circuits
.
Neuron
,
91
,
260
–
292
.
51.Markram
, H.
, Toledo-Rodriguez
, M.
, Wang
, Y.
, Gupta
, A.
, Silberberg
, G.
and Wu
, C.
(
2004
)
Interneurons of the neocortical inhibitory system
.
Nat. Rev. Neurosci.
,
5
,
793
–
807
.
52.Sohal
, V.S.
and Rubenstein
, J.L.R.
(
2019
)
Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders
.
Mol. Psychiatry
,
24
,
1248
–
1257
.
53.Tatti
, R.
, Haley
, M.S.
, Swanson
, O.K.
, Tselha
, T.
and Maffei
, A.
(
2017
)
Neurophysiology and regulation of the balance between excitation and inhibition in neocortical circuits
.
Biol. Psychiatry
,
81
,
821
–
831
.
54.Gatto
, C.L.
and Broadie
, K.
(
2010
)
Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models
.
Front. Synaptic Neurosci.
,
2
,
4
.
55.Watanabe
, K.
, Umicevic Mirkov
, M.
, de
Leeuw
, C.A.
, van den
Heuvel
, M.P.
and Posthuma
, D.
(
2019
)
Genetic mapping of cell type specificity for complex traits
.
Nat. Commun.
,
10
,
3222
.
56.Savage
, J.E.
, Jansen
, P.R.
, Stringer
, S.
, Watanabe
, K.
, Bryois
, J.
, de
Leeuw
, C.A.
, Nagel
, M.
, Awasthi
, S.
, Barr
, P.B.
, Coleman
, J.R.I.
et al. (
2018
)
Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence
.
Nat. Genet.
,
50
,
912
–
919
.
57.Coleman
, J.R.I.
, Bryois
, J.
, Gaspar
, H.A.
, Jansen
, P.R.
, Savage
, J.E.
, Skene
, N.
, Plomin
, R.
, Muñoz-Manchado
, A.B.
, Linnarsson
, S.
, Crawford
, G.
et al. (
2019
)
Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87,740 individuals
.
Mol. Psychiatry
,
24
,
182
–
197
.
58.Skene
, N.G.
, Bryois
, J.
, Bakken
, T.E.
, Breen
, G.
, Crowley
, J.J.
, Gaspar
, H.A.
, Giusti-Rodriguez
, P.
, Hodge
, R.D.
, Miller
, J.A.
, Muñoz-Manchado
, A.B.
et al. (
2018
)
Genetic identification of brain cell types underlying schizophrenia
.
Nat. Genet.
,
50
,
825
–
833
.
59.Finucane
, H.K.
, Reshef
, Y.A.
, Anttila
, V.
, Slowikowski
, K.
, Gusev
, A.
, Byrnes
, A.
, Gazal
, S.
, Loh
, P.-R.
, Lareau
, C.
, Shoresh
, N.
et al. (
2018
)
Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types
.
Nat. Genet.
,
50
,
621
–
629
.
60.Rajarajan
, P.
, Borrman
, T.
, Liao
, W.
, Schrode
, N.
, Flaherty
, E.
, Casiño
, C.
, Powell
, S.
, Yashaswini
, C.
, LaMarca
, E.A.
, Kassim
, B.
et al. (
2018
)
Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk
.
Science
,
362
, eaat4311.
61.Luo
, C.
, Keown
, C.L.
, Kurihara
, L.
, Zhou
, J.
, He
, Y.
, Li
, J.
, Castanon
, R.
, Lucero
, J.
, Nery
, J.R.
, Sandoval
, J.P.
et al. (
2017
)
Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex
.
Science
,
357
,
600
–
604
.
62.Sousa
, A.M.M.
, Zhu
, Y.
, Raghanti
, M.A.
, Kitchen
, R.R.
, Onorati
, M.
, Tebbenkamp
, A.T.N.
, Stutz
, B.
, Meyer
, K.A.
, Li
, M.
, Kawasawa
, Y.I.
et al. (
2017
)
Molecular and cellular reorganization of neural circuits in the human lineage
.
Science
,
358
,
1027
–
1032
.
63.Mendizabal
, I.
, Berto
, S.
, Usui
, N.
, Toriumi
, K.
, Chatterjee
, P.
, Douglas
, C.
, Huh
, I.
, Jeong
, H.
, Layman
, T.
, Tamminga
, C.A.
et al. (
2019
)
Cell type-specific epigenetic links to schizophrenia risk in the brain
.
Genome Biol.
,
20
,
135
.
64.Hu
, G.
, Li
, J.
and Wang
, G.Z.
(
2020
)
Significant evolutionary constraints on neuron cells revealed by single-cell transcriptomics
.
Genome Biol. Evol.
,
12
,
300
–
308
.
65.Saab
, A.S.
, Tzvetavona
, I.D.
, Trevisiol
, A.
, Baltan
, S.
, Dibaj
, P.
, Kusch
, K.
, Möbius
, W.
, Goetze
, B.
, Jahn
, H.M.
, Huang
, W.
et al. (
2016
)
Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism
.
Neuron
,
91
,
119
–
132
.
66.Simons
, M.
and Nave
, K.A.
(
2015
)
Oligodendrocytes: myelination and axonal support
.
Cold Spring Harb. Perspect. Biol.
,
8
,
a020479
.
67.Nave
, K.A.
and Werner
, H.B.
(
2014
)
Myelination of the nervous system: mechanisms and functions
.
Annu. Rev. Cell Dev. Biol.
,
30
,
503
–
533
.
68.Funfschilling
, U.
, Supplie
, L.M.
, Mahad
, D.
, Boretius
, S.
, Saab
, A.S.
, Edgar
, J.
, Brinkmann
, B.G.
, Kassmann
, C.M.
, Tzvetanova
, I.D.
, Möbius
, W.
et al. (
2012
)
Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity
.
Nature
,
485
,
517
–
521
.
69.Nave
, K.A.
(
2010
)
Myelination and the trophic support of long axons
.
Nat. Rev. Neurosci.
,
11
,
275
–
283
.
70.Bryois
, J.
, Skene
, N.G.
, Hansen
, T.F.
, Kogelman
, L.J.A.
, Watson
, H.J.
, Liu
, Z.
, Eating Disorders Working Group of the Psychiatric Genomics Consortium; International Headache Genetics Consortium; 23andMe Research Team
, Brueggeman
, L.
, Breen
, G.
, Bulik
, C.M.
et al. (
2020
)
Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease
.
Nat. Genet.
,
52
,
482
–
493
.
71.Castelijns
, B.
, Baak
, M.L.
, Timpanaro
, I.S.
, Wiggers
, C.R.M.
, Vermunt
, M.W.
, Shang
, P.
, Kondova
, I.
, Geeven
, G.
, Bianchi
, V.
, de
Laat
, W.
et al. (
2020
)
Hominin-specific regulatory elements selectively emerged in oligodendrocytes and are disrupted in autism patients
.
Nat. Commun.
,
11
,
301
.
72.Zhu
, Y.
, Sousa
, A.M.M.
, Gao
, T.
, Skarica
, M.
, Li
, M.
, Santpere
, G.
, Esteller-Cucala
, P.
, Juan
, D.
, Gulden
, L.F.-P.F.O.
et al. (
2018
)
Spatiotemporal transcriptomic divergence across human and macaque brain development
.
Science
,
362
.
73.Miller
, D.J.
, Duka
, T.
, Stimpson
, C.D.
, Schapiro
, S.J.
, Baze
, W.B.
, McArthur
, M.J.
, Fobbs
, A.J.
, Sousa
, A.M.M.
, Sestan
, N.
, Wildman
, D.E.
et al. (
2012
)
Prolonged myelination in human neocortical evolution
.
Proc. Natl. Acad. Sci. U. S. A.
,
109
,
16480
–
16485
.
74.Bells
, S.
, Lefebvre
, J.
, Longoni
, G.
, Narayanan
, S.
, Arnold
, D.L.
, Yeh
, E.A.
, Mabbott
, D.J.
et al. (
2019
)
White matter plasticity and maturation in human cognition
.
Glia
,
67
,
2020
–
2037
.
75.Liang
, S.
, Wang
, Q.
, Kong
, X.
, Deng
, W.
, Yang
, X.
, Li
, X.
, Zhang
, Z.
, Zhang
, J.
, Zhang
, C.
, Li
, X.-M.
et al. (
2019
)
White matter abnormalities in major depression biotypes identified by diffusion tensor imaging
.
Neurosci. Bull.
,
35
,
867
–
876
.
76.Dimond
, D.
, Schuetze
, M.
, Smith
, R.E.
, Dhollander
, T.
, Cho
, I.
, Vinette
, S.
, Eycke, Lebel
, C.
, McCrimmon
, A.
, Dewey
, D.
et al. (
2019
)
Reduced white matter Fiber density in autism Spectrum disorder
.
Cereb. Cortex
,
29
,
1778
–
1788
.
77.Wang
, Y.
, Metoki
, A.
, Alm
, K.H.
and Olson
, I.R.
(
2018
)
White matter pathways and social cognition
.
Neurosci. Biobehav. Rev.
,
90
,
350
–
370
.
78.Wang
, Y.
and Olson
, I.R.
(
2018
)
The original social network: white matter and social cognition
.
Trends Cogn. Sci.
,
22
,
504
–
516
.
79.Kelly
, S.
, Jahanshad
, N.
, Zalesky
, A.
, Kochunov
, P.
, Agartz
, I.
, Alloza
, C.
, Andreassen
, O.A.
, Arango
, C.
, Banaj
, N.
, Bouix
, S.
et al. (
2018
)
Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA schizophrenia DTI working group
.
Mol. Psychiatry
,
23
,
1261
–
1269
.
80.Aoki
, Y.
, Yoncheva
, Y.N.
, Chen
, B.
, Nath
, T.
, Sharp
, D.
, Lazar
, M.
, Velasco
, P.
, Milham
, M.P.
, Di Martino
, A.
et al. (
2017
)
Association of white matter structure with autism spectrum disorder and attention-deficit/hyperactivity disorder
.
JAMA Psychiatry
,
74
,
1120
–
1128
.
81.Bazargani
, N.
and Attwell
, D.
(
2016
)
Astrocyte calcium signaling: the third wave
.
Nat. Neurosci.
,
19
,
182
–
189
.
82.MacVicar
, B.A.
and Newman
, E.A.
(
2015
)
Astrocyte regulation of blood flow in the brain
.
Cold Spring Harb. Perspect. Biol.
,
7
, a020388.
83.Araque
, A.
, Carmignoto
, G.
, Haydon
, P.G.
, Oliet
, S.H.R.
, Robitaille
, R.
, Volterra
, A.
et al. (
2014
)
Gliotransmitters travel in time and space
.
Neuron
,
81
,
728
–
739
.
84.Rouach
, N.
, Koulakoff
, A.
, Abudara
, V.
, Willecke
, K.
and Giaume
, C.
(
2008
)
Astroglial metabolic networks sustain hippocampal synaptic transmission
.
Science
,
322
,
1551
–
1555
.
85.Dallerac
, G.
and Rouach
, N.
(
2016
)
Astrocytes as new targets to improve cognitive functions
.
Prog. Neurobiol.
,
144
,
48
–
67
.
86.Magistretti
, P.J.
and Allaman
, I.
(
2018
)
Lactate in the brain: from metabolic end-product to signalling molecule
.
Nat. Rev. Neurosci.
,
19
,
235
–
249
.
87.Pollard
, K.S.
, Salama
, S.R.
, King
, B.
, Kern
, A.D.
, Dreszer
, T.
, Katzman
, S.
, Siepel
, A.
, Pedersen
, J.S.
, Bejerano
, G.
, Baertsch
, R.
et al. (
2006
)
Forces shaping the fastest evolving regions in the human genome
.
PLoS Genet.
,
2
,
e168
.
88.Levchenko
, A.
, Kanapin
, A.
, Samsonova
, A.
and Gainetdinov
, R.R.
(
2018
)
Human accelerated regions and other human-specific sequence variations in the context of evolution and their relevance for brain development
.
Genome Biol. Evol.
,
10
,
166
–
188
.
89.Capra
, J.A.
, Erwin
, G.D.
, McKinsey
, G.
, Rubenstein
, J.L.
and Pollard
, K.S.
(
2013
)
Many human accelerated regions are developmental enhancers
.
Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.
,
368
, 20130025.
90.Prabhakar
, S.
, Visel
, A.
, Akiyama
, J.A.
, Shoukry
, M.
, Lewis
, K.D.
, Holt
, A.
, Plajzer-Frick
, I.
, Morrison
, H.
, Fitzpatrick
, D.R.
, Afzal
, V.
, Pennacchio
, L.A.
et al. (
2008
)
Human-specific gain of function in a developmental enhancer
.
Science
,
321
,
1346
–
1350
.
91.Won
, H.
, Huang
, J.
, Opland
, C.K.
, Hartl
, C.L.
and Geschwind
, D.H.
(
2019
)
Human evolved regulatory elements modulate genes involved in cortical expansion and neurodevelopmental disease susceptibility
.
Nat. Commun.
,
10
,
2396
.
92.Zhang
, Y.
, Sloan
, S.A.
, Clarke
, L.E.
, Caneda
, C.
, Plaza
, C.A.
, Blumenthal
, P.D.
, Vogel
, H.
, Steinberg
, G.K.
, Edwards
, M.S.B.
, Li
, G.
et al. (
2016
)
Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse
.
Neuron
,
89
,
37
–
53
.
93.Oberheim
, N.A.
, Takano
, T.
, Han
, X.
, He
, W.
, Lin
, J.H.C.
, Wang
, F.
, Xu
, Q.
, Wyatt
, J.D.
, Pilcher
, W.
, Ojemann
, J.G.
et al. (
2009
)
Uniquely hominid features of adult human astrocytes
.
J. Neurosci.
,
29
,
3276
–
3287
.
94.Bauernfeind
, A.L.
and Babbitt
, C.C.
(
2020
)
Metabolic changes in human brain evolution
.
Evol. Anthropol.
. doi:
.
95.Pontzer
, H.
, Brown
, M.H.
, Raichlen
, D.A.
, Dunsworth
, H.
, Hare
, B.
, Walker
, K.
, Luke
, A.
, Dugas
, L.
, Durazo-Arvizu
, R.A.
, Schoeller
, D.
et al. (
2016
)
Metabolic acceleration and the evolution of human brain size and life history
.
Nature
,
533
,
390
–
392
.
96.Wang
, S.P.
, Yang
, H.
, Wu
, J.W.
, Gauthier
, N.
, Fukao
, T.
and Mitchell
, G.A.
(
2014
)
Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example
.
J. Hum. Evol.
,
77
,
41
–
49
.
97.Dunbar
, R.I.
and Shultz
, S.
(
2007
)
Understanding primate brain evolution
.
Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.
,
362
,
649
–
658
.
98.Isler
, K.
and van
Schaik
, C.P.
(
2006
)
Metabolic costs of brain size evolution
.
Biol. Lett.
,
2
,
557
–
560
.
99.Colonna
, M.
and Butovsky
, O.
(
2017
)
Microglia function in the central nervous system during health and Neurodegeneration
.
Annu. Rev. Immunol.
,
35
,
441
–
468
.
100.Nayak
, D.
, Roth
, T.L.
and McGavern
, D.B.
(
2014
)
Microglia development and function
.
Annu. Rev. Immunol.
,
32
,
367
–
402
.
101.Salter
, M.W.
and Stevens
, B.
(
2017
)
Microglia emerge as central players in brain disease
.
Nat. Med.
,
23
,
1018
–
1027
.
102.Morgan
, J.T.
, Chana
, G.
, Pardo
, C.A.
, Achim
, C.
, Semendeferi
, K.
, Buckwalter
, J.
, Courchesne
, E.
and Everall
, I.P.
(
2010
)
Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism
.
Biol. Psychiatry
,
68
,
368
–
376
.
103.Vargas
, D.L.
, Nascimbene
, C.
, Krishnan
, C.
, Zimmerman
, A.W.
and Pardo
, C.A.
(
2005
)
Neuroglial activation and neuroinflammation in the brain of patients with autism
.
Ann. Neurol.
,
57
,
67
–
81
.
104.Geirsdottir
, L.
, David
, E.
, Keren-Shaul
, H.
, Weiner
, A.
, Bohlen
, S.C.
, Neuber
, J.
, Balic
, A.
, Giladi
, A.
, Sheban
, F.
, Dutertre
, C.-A.
et al. (
2019
)
Cross-species single-cell analysis reveals divergence of the primate microglia program
.
Cell
,
179
,
1609
–
1622
.
105.Hill
, R.S.
and Walsh
, C.A.
(
2005
)
Molecular insights into human brain evolution
.
Nature
,
437
,
64
–
67
.
106.Florio
, M.
and Huttner
, W.B.
(
2014
)
Neural progenitors, neurogenesis and the evolution of the neocortex
.
Development
,
141
,
2182
–
2194
.
107.Lui
, J.H.
, Hansen
, D.V.
and Kriegstein
, A.R.
(
2011
)
Development and evolution of the human neocortex
.
Cell
,
146
,
18
–
36
.
108.Polioudakis
, D.
, de la
Torre-Ubieta
, L.
, Langerman
, J.
, Elkins
, A.G.
, Shi
, X.
, Stein
, J.L.
, Vuong
, C.K.
, Nichterwitz
, S.
, Gevorgian
, M.
, Opland
, C.K.
et al. (
2019
)
A single-cell transcriptomic atlas of human neocortical development during mid-gestation
.
Neuron
,
103
,
785
–
801
, .
109.Tanaka
, Y.
, Cakir
, B.
, Xiang
, Y.
, Sullivan
, G.J.
and Park
, I.H.
(
2020
)
Synthetic analyses of single-cell transcriptomes from multiple brain Organoids and fetal brain
.
Cell Rep.
,
30
,
1682
–
1689
, .
110.Marchetto
, M.C.
, Hrvoj-Mihic
, B.
, Kerman
, B.E.
, Yu
, D.X.
, Vadodaria
, K.C.
, Linker
, S.B.
, Narvaiza
, I.
, Santos
, R.
, Denli
, A.M.
et al. (
2019
)
Species-specific maturation profiles of human, chimpanzee and bonobo neural cells
.
elife
,
8
, e37527.
111.Fontenot
, M.R.
, Bertom
, S.
, Liu
, Y.
, Werthmann
, G.
, Douglas
, C.
, Usui
, N.
, Gleason
, K.
, Tamminga
, C.A.
, Takahashi
, J.S.
and Konopka
, G.
(
2017
)
Novel transcriptional networks regulated by CLOCK in human neurons
.
Genes Dev.
,
31
,
2121
–
2135
.
112.Konopka
, G.
, Berto
, S.
, Liu
, Y.
, Werthmann
, G.
, Douglas
, C.
, Usui
, N.
, Gleason
, K.
, Tamminga
, C.A.
, Takahashi
, J.S.
and Konopka
, G.
(
2012
)
Human-specific transcriptional networks in the brain
.
Neuron
,
75
,
601
–
617
.
113.Berto
, S.
and Nowick
, K.
(
2018
)
Species-specific changes in a primate transcription factor network provide insights into the molecular evolution of the primate prefrontal cortex
.
Genome Biol. Evol.
,
10
,
2023
–
2036
.
114.Lui
, J.H.
, Nowakowski
, T.J.
, Pollen
, A.A.
, Javaherian
, A.
, Kriegstein
, A.R.
and Oldham
, M.C.
(
2014
)
Radial glia require PDGFD-PDGFRbeta signalling in human but not mouse neocortex
.
Nature
,
515
,
264
–
268
.
115.Arlotta
, P.
and Pasca
, S.P.
(
2019
)
Cell diversity in the human cerebral cortex: from the embryo to brain organoids
.
Curr. Opin. Neurobiol.
,
56
,
194
–
198
.
116.Quadrato
, G.
and Arlotta
, P.
(
2017
)
Present and future of modeling human brain development in 3D organoids
.
Curr. Opin. Cell Biol.
,
49
,
47
–
52
.
117.Di Lullo
, E.
and Kriegstein
, A.R.
(
2017
)
The use of brain organoids to investigate neural development and disease
.
Nat. Rev. Neurosci.
,
18
,
573
–
584
.
118.Kelava
, I.
and Lancaster
, M.A.
(
2016
)
Dishing out mini-brains: current progress and future prospects in brain organoid research
.
Dev. Biol.
,
420
,
199
–
209
.
119.Lancaster
, M.A.
and Knoblich
, J.A.
(
2014
)
Organogenesis in a dish: modeling development and disease using organoid technologies
.
Science
,
345
, 1247125.
120.Bershteyn
, M.
and Kriegstein
, A.R.
(
2013
)
Cerebral organoids in a dish: progress and prospects
.
Cell
,
155
,
19
–
20
.
121.Luo
, C.
, Lancaster
, M.A.
, Castanon
, R.
, Nery
, J.R.
, Knoblich
, J.A.
and Ecker
, J.R.
(
2016
)
Cerebral Organoids recapitulate Epigenomic signatures of the human fetal brain
.
Cell Rep.
,
17
,
3369
–
3384
.
122.Camp
, J.G.
, Badsha
, F.
, Florio
, M.
, Kanton
, S.
, Gerber
, T.
, Wilsch-Bräuninger
, M.
, Lewitus
, E.
, Sykes
, A.
, Hevers
, W.
and Lancaster
, M.
(
2015
)
Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
.
Proc. Natl. Acad. Sci. U. S. A.
,
112
,
15672
–
15677
.
123.Dennis
, M.Y.
, Lana
, H.
, Nelson Bradley
, J.
, Osnat
, P.
, Stuart
, C.
, John
, H.
, Francesca
, A.
, Kelsi
, P.
, Laura
, D.
and Archana
, R.
(
2017
)
The evolution and population diversity of human-specific segmental duplications
.
Nat. Ecol. Evol.
,
1
,
69
.
124.Dennis
, M.Y.
and Eichler
, E.E.
(
2016
)
Human adaptation and evolution by segmental duplication
.
Curr. Opin. Genet. Dev.
,
41
,
44
–
52
.
125.Marques-Bonet
, T.
, Girirajan
, S.
and Eichler
, E.E.
(
2009
)
The origins and impact of primate segmental duplications
.
Trends Genet.
,
25
,
443
–
454
.
126.Varki
, A.
, Geschwind
, D.H.
and Eichler
, E.E.
(
2008
)
Explaining human uniqueness: genome interactions with environment, behaviour and culture
.
Nat. Rev. Genet.
,
9
,
749
–
763
.
127.Dougherty
, M.L.
, Underwood
, J.G.
, Nelson
, B.J.
, Tseng
, E.
, Munson
, K.M.
, Penn
, O.
, Nowakowski
, T.J.
, Pollen
, A.A.
and Eichler
, E.E.
(
2018
)
Transcriptional fates of human-specific segmental duplications in brain
.
Genome Res.
,
28
,
1566
–
1576
.
128.Florio
, M.
, Heide
, M.
, Pinson
, A.
, Brandl
, H.
, Albert
, M.
, Winkler
, S.
, Wimberger
, P.
, Huttner
, W.B.
and Hiller
, M.
(
2018
)
Evolution and cell-type specificity of human-specific genes preferentially expressed in progenitors of fetal neocortex
.
elife
,
7
, e32332.
129.Florio
, M.
, Albert
, M.
, Taverna
, E.
, Namba
, T.
, Brandl
, H.
, Lewitus
, E.
, Haffner
, C.
, Sykes
, A.
, Wong
, F.K.
, Peters
, J.
, Guhr
, E.
et al. (
2015
)
Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion
.
Science
,
347
,
1465
–
1470
.
130.Fiddes
, I.T.
, Lodewijk
, G.A.
, Mooring
, M.
, Bosworth
, C.M.
, Ewing
, A.D.
, Mantalas
, G.L.
, Novak
, A.M.
, van den
Bout
, A.
, Bishara
, A.
, Rosenkrantz
, J.L.
et al. (
2018
)
Human-specific NOTCH2NL genes affect NOTCH signaling and cortical neurogenesis
.
Cell
,
173
,
1356
–
1369
, .
131.Sousa
, A.M.M.
, Meyer
, K.A.
, Santpere
, G.
, Gulden
, F.O.
and Sestan
, N.
(
2017
)
Evolution of the human nervous system function, structure, and development
.
Cell
,
170
,
226
–
247
.
132.Fossati
, M.
, Pizzarelli
, R.
, Schmidt
, E.R.
, Kupferman
, J.V.
, Stroebel
, D.
, Polleux
, F.
and Charrier
, C.
(
2016
)
SRGAP2 and its human-specific Paralog co-regulate the development of excitatory and inhibitory synapses
.
Neuron
,
91
,
356
–
369
.
133.Liu
, J.
, Liu
, W.
, Yang
, L.
, Wu
, Q.
, Zhang
, H.
, Fang
, A.
, Li
, L.
, Xu
, X.
and Le Sun
, J.Z.
(
2017
)
The primate-specific gene TMEM14B marks outer radial glia cells and promotes cortical expansion and folding
.
Cell. Stem. Cell.
,
21
,
635
–
649
.
134.p. m. h. e. Cross-disorder Group of the Psychiatric Genomics Consortium. Electronic address
(
2019
)
C. Cross-disorder Group of the Psychiatric Genomics, genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders
.
Cell
,
179
,
1469
–
1482
.
135.Watanabe
, K.
, Stringer
, S.
, Frei
, O.
, Mirkov
, M.U.
, de
Leeuw
, C.
, Polderman
, T.J.C.
, van der
Sluis
, S.
, Andreassen
, O.A.
, Neale
, B.M.
, Posthuma
, D.
et al. (
2019
)
A global overview of pleiotropy and genetic architecture in complex traits
.
Nat. Genet.
,
51
,
1339
–
1348
.
136.Solovieff
, N.
, Cotsapas
, C.
, Lee
, P.H.
, Purcell
, S.M.
and Smoller
, J.W.
(
2013
)
Pleiotropy in complex traits: challenges and strategies
.
Nat. Rev. Genet.
,
14
,
483
–
495
.
137.Uricchio
, L.H.
(
2020
)
Evolutionary perspectives on polygenic selection, missing heritability, and GWAS
.
Hum. Genet.
,
139
,
5
–
21
.
138.Berg
, J.J.
, Harpak
, A.
, Sinnott-Armstrong
, N.
, Joergensen
, A.M.
, Mostafavi
, H.
, Field
, Y.
, Boyle
, E.A.
, Zhang
, X.
, Racimo
, F.
, Pritchard
, J.K.
et al. (
2019
)
Reduced signal for polygenic adaptation of height in UK Biobank
.
eLife
,
8
, e39725.
139.Guo
, J.
, Yang
, J.
and Visscher
, P.M.
(
2018
)
Leveraging GWAS for complex traits to detect signatures of natural selection in humans
.
Curr. Opin. Genet. Dev.
,
53
,
9
–
14
.
140.Pardinas
, A.F.
, Holmans
, P.
, Pocklington
, A.J.
, Escott-Price
, V.
, Ripke
, S.
, Carrera
, N.
, Legge
, S.E.
, Bishop
, S.
, Cameron
, D.
, Hamshere
, M.L.
et al. (
2018
)
Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection
.
Nat. Genet.
,
50
,
381
–
389
.
141.Polimanti
, R.
and Gelernter
, J.
(
2017
)
Widespread signatures of positive selection in common risk alleles associated to autism spectrum disorder
.
PLoS Genet.
,
13
, e1006618.
© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email:
[email protected]