Abstract

BACKGROUND

The existence of an extensive microbiome in and on the human body has increasingly dominated the scientific literature during the last decade. A shift from culture-dependent to culture-independent identification of microbes has occurred since the emergence of next-generation sequencing (NGS) techniques, whole genome shotgun and metagenomic sequencing. These sequencing analyses have revealed the presence of a rich diversity of microbes in most exposed surfaces of the human body, such as throughout the reproductive tract. The results of microbiota analyses are influenced by the technical specifications of the applied methods of analyses. Therefore, it is difficult to correctly compare and interpret the results of different studies of the same anatomical niche.

OBJECTIVES AND RATIONALE

The aim of this narrative review is to provide an overview of the currently used techniques and the reported microbiota compositions in the different anatomical parts of the female and male reproductive tracts since the introduction of NGS in 2005. This is crucial to understand and determine the interactions and roles of the different microbes necessary for successful reproduction.

SEARCH METHODS

A search in Embase, Medline Ovid, Web of science, Cochrane and Google scholar was conducted. The search was limited to English language and studies published between January 2005 and April 2018. Included articles needed to be original microbiome research related to the reproductive tracts.

OUTCOMES

The review provides an extensive up-to-date overview of current microbiome research in the field of human reproductive medicine. The possibility of drawing general conclusions is limited due to diversity in the execution of analytical steps in microbiome research, such as local protocols, sampling methods, primers used, sequencing techniques and bioinformatic pipelines, making it difficult to compare and interpret results of the available studies. Although some microbiota are associated with reproductive success and a good pregnancy outcome, it is still unknown whether a causal link exists. More research is needed to further explore the possible clinical implications and therapeutic interventions.

WIDER IMPLICATIONS

For the field of reproductive medicine, determination of what is a favourable reproductive tract microbiome will provide insight into the mechanisms of both unsuccessful and successful human reproduction. To increase pregnancy chances with live birth and to reduce reproduction-related health costs, future research could focus on postponing treatment or conception in case of the presence of unfavourable microbiota and on the development of therapeutic interventions, such as microbial therapeutics and lifestyle adaptations.

Introduction

Microbiome

The number of microorganisms coexisting in and on the human body is estimated to be in the same order of magnitude as the total number of cells that make up the body (Sender et al., 2016). The microorganisms colonising our body are referred to as our microbiota and besides bacteria, include viruses, fungi, yeasts, archaea and protozoa. The collective genetic content of these microorganisms and the surrounding environmental conditions are known as the microbiome (Marchesi and Ravel, 2015). It has been suggested that the combined collection of microbial and human cells should be seen as one single ecological and biological unit, the so-called human holobiont. The host–microbiome relationship can be categorised as commensalism (one species benefits, while the other remains unaffected), mutualism (beneficial to both species) or parasitism (one species benefits at the expense of the other) (Bordenstein and Theis, 2015).

The diversity of microorganisms within a given body site is defined as the number of different microorganisms. The most abundant microorganism is called the dominant one, and each region within the human body has its own characteristic composition. A distinction in diversity is made within (i.e. alpha) and between (i.e. beta) samples. Alpha-diversity refers to the mean species diversity at the region of interest, while the beta diversity reflects the diversity between different regions of interest (Human Microbiome Project C, 2012; Huttenhower et al., 2012), although all microbiota influence and actively interact with each other. However, the focus of this review is on bacteria only, since these microbiota are currently the most extensively investigated. Bacteria are taxonomically classified into different taxa, which are subsequently classified into different ranks, i.e. domains, kingdoms, phyla, classes, orders, families, genera and, finally, species (Fig. 1) (Yarza et al., 2014; Pirih and Kunej, 2018). The evolutionary relationship between bacteria is called phylogeny, and the evolutionary relationships among taxa of bacteria is typically depicted in a phylogenetic tree (Ehrlich, 1965). Microscopy-dependent techniques have been used to identify bacteria based on phenotypic or morphological characterisation and specific cell staining characteristics, whereas current technologies use sequencing of taxonomy-associated markers genes, such as the 16 s rRNA gene, or whole genome sequences (Morgan et al., 2013) to identify bacteria.

Figure 1

Taxonomy versus phylogenetic tree of Lactobacillus crispatus from domain to species.

Preparation of samples for microbiome analyses

For microbiome research, it is important to sample what you want to sample, identify what you want to identify and avoid bacterial contamination to prevent misinterpretation of the results. Therefore, the different necessary steps in microbiome analyses and possible pitfalls are discussed.

Microbiome sampling

Microbiome samples can be collected with many different (commercially available) sets consisting of a swab, tube and, often, an optional buffer solution. Collection can be performed by either a medical professional or by the individual via self-collection. The sampling should be standardised, which implicates the need to understand and strictly adhere to the protocol, and should prevent contamination by surroundings (e.g. skin, hands, dust, clothes) to preserve the original sample.

Sample storage

After sample collection, most samples are stored before further processing. The optimum storage condition generally involves immediate placement on ice and storage at −80°C until further processing (Aagaard et al., 2013; Kim et al., 2017a, 2017b; Chu et al., 2018). One should be aware that storage buffers can be contaminated (Salter et al., 2014) and that the time to place the sample on ice and to store impacts on the final analyses (Schellenberg et al., 2017).

DNA extraction and isolation

Upon sample processing, the first steps are DNA extraction and isolation, which nowadays is mostly done by commercially available DNA extraction kits. Sample contamination can occur by reagents in the kit (Salter et al., 2014; Kim et al., 2017a, 2017b), by the use of laboratory instruments and by the local environment (e.g. gloves and air).

In general, especially when handling low-biomass samples (e.g. semen or meconium) which have low abundance of microbiota, special care is needed to avoid contamination and hence false results (Chafee et al., 2015). It is strongly advised to collect samples in a standardised manner, to use only sterile equipment, to minimise accidental exposure to the environment and to always include positive and negative controls in the analysis (Salter et al., 2014) to prevent erroneous conclusions downstream in the microbiome analysis.

Early microbiome sample analyses

Microscopy

Light microscopy has for decades been the corner stone of microbial (viruses excepted) identification. Bacteria can be identified and taxonomically divided based on characteristics like Gram staining and cell morphology (shape, arrangement, form and size). Microscopy of clinical specimens is still used for the diagnosis of certain infectious diseases. In the field of human reproduction, microscopy still has an important role in the detection of clue cells or determination of the Nugent Score in case of suspicion of bacterial vaginosis (see below) (Nugent et al., 1991). However, the role of microscopy in daily clinical practice of reproductive medicine has diminished due to the relative time-consuming aspect, the disappearance of clinical microscopy training, experience and exposure, and the introduction of new techniques, such as polymerase chain reaction (PCR)-techniques (Bennett et al., 2014). A recent study showed that the sensitivity of a clinician’s diagnosis for bacterial vaginosis is nowadays significantly lower than that by a PCR/fluorogenic probe-based investigational test (P < 0.0001) (Schwebke et al., 2018).

Culture-dependent methods

Culture-dependent methods were the first techniques, after light microscopy, to study microbes and make use of defined growth media for the culture and proliferation of an organism (Sandle, 2011). After a certain time period of culturing, different genera can be assigned by judgement of cell staining characteristics, morphology and/or capacity for biochemical reactions. Although these methods are not expensive, they are time-consuming and elaborate and only microbiota whose metabolic and physiological needs are provided by the specific culture medium will proliferate (Nadkarni et al., 2009), with high-abundant and fast-growing species suppressing others (Hiergeist et al., 2015). Therefore, the biggest limitation of this technique is that the resulting microbial composition is incomplete and not representative (Ward et al., 1990).

Microbiome sequencing

Sequencing techniques based on 16 S ribosomal DNA (rDNA) genes overcome the problems of culture. The region of interest (amplicon or target sequence) in microbiome research is a specific gene, which is highly conserved during evolution and unique for all bacterial species, namely the 16 S rRNA gene (Fig. 2) (Lane et al., 1985). The 16 S rRNA gene is ~1500 base pairs (bp) long, contains nine hypervariable regions (V1–V9) interspersed between highly conserved regions, and codes for a component of the 30 S small subunit of the prokaryotic ribosome (Gray et al., 1984). Universal primers complementary to the highly conserved sequences between the hypervariable regions of the 16 S rRNA gene, can reliably identify different taxa (Větrovský and Baldrian, 2013). The hypervariable regions (V1–9) classify the microorganisms into taxonomic units and are used to perform phylogenetic analyses (Woese et al., 1990). The more sequences of 16S rRNA genes of different bacteria match, the more likely the microbes are related at a higher taxonomic rank, e.g. the threshold sequence identity is 94.5% for genera and 86.5% for families (Yarza et al., 2014, 2014).

Figure 2

A representation of the circular chromosome of bacteria. The 16S and 23S ribosomal RNA genes are highlighted together with the intergenic space (IS) region. V1–V9 marks the variable regions, with the conserved regions between them.

In 1975, the first sequencing technique (Sanger sequencing) was introduced (Sanger and Coulson, 1975), offering more insight and detail into the diversity of microbiota than the former classification relying on the combination of Gram staining and microscopy. Pyrosequencing was the first variant on the classical Sanger sequencing (Nyrén et al., 1993) and was based on detection of luminescence. In 2005, the development of next-generation (also called high-throughput or second generation 16S rRNA) sequencing (NGS) technologies allowed massive parallelisation of sequencing of bacterial DNA (Metzker, 2005) and eliminated the need for isolating cultures prior to analysis. NGS techniques were quickly commercialised by Roche Life Sciences’ 454 platform (Margulies et al., 2005) and Illumina’s MiSeq and HiSeq platforms (Caporaso et al., 2012; Loman et al., 2012). The biggest disadvantage of NGS is the generation of chimeric sequences and sequencing errors (Haas et al., 2011). Furthermore, the different 16 S rRNA primers are of major importance for the accuracy of the analysis, since the specific targeted region influences the types of bacteria included in the analysis (Baker et al., 2003; Mizrahi-Man et al., 2013; Tremblay et al., 2015; D’Amore et al., 2016).

Bioinformatic pipelines and operational taxonomic unit clustering

In order to analyse the large datasets of NGS analyses, bioinformatical pipelines (prescribed sets of processing steps converting raw data to interpretable material) are available. Frequently used examples of such bioinformatical pipelines in the field of microbiota research are mothur (Schloss et al., 2009) and Quantitative Insights Into Microbial Ecology (QIIME) (Caporaso et al., 2010). The purpose of a pipeline is to assign the resulting DNA sequences to taxonomic levels (from phylum to species) to determine the microbial composition and richness of the sample. The resulting DNA sequences are clustered to one another according to their similarity. Typically, above 97% sequence similarity, sequences are combined into operational taxonomic units (OTU). Nowadays, reassessment of the threshold of 97% has been proposed due to the availability of large numbers of sequences. It was suggested that the optimal identity thresholds is increased to around or higher than 99% (Edgar, 2018). These OTUs can then be further classified taxonomically. OTUs can be constructed by several methods (Westcott and Schloss, 2015) including the closed-reference method, the de novo method and the open method.

In the closed-reference method, resulting sequences are clustered against an external (often open source) reference database, such as Greengenes (McDonald et al., 2012), SILVA (Pruesse et al., 2007) or Ribosomal Database Project (Cole et al., 2008). The process is parallelizable, quick and suited for large datasets. However, sequences which are not present in the database will be processed as non-recognisable reads and will be discarded in further analysis.

In the de novo method, resulting sequences are clustered against one another without the use of an external reference database. All sequences will be clustered, however not in parallel, which can be time consuming and will often be unsuitable for large datasets.

The open method combines both of the above-mentioned methods. Sequences are initially clustered against an external reference database, and non-recognised ones will subsequently be clustered de novo.

Since the genetic differences of species clustered in the same OTU are neglected, clustering leads to loss of actual diversity (Chen et al., 2013). Importantly, the method used for OTU clustering will directly influence the final results (Nguyen et al., 2016).

Open source bioinformatics software packages, such as mothur (Schloss et al., 2009) and QIIME (Caporaso et al., 2010) combine all the sequence processing steps, without applying a standardised procedure and changes in analytic parameters which can lead to over- or under-interpretation in the microbial composition.

Whole genome shotgun sequencing

Whereas 16 S rRNA-based analyses are limited to the examination of the bacterial diversity, whole genome sequencing (WGS) techniques allow sequencing of both the whole genome presented as well as all the genomes present (Ranjan et al., 2016). WGS allows information about the function of genes and identification of novel genes, encoded metabolic pathways, the structure and organisation of genomes and the community structure (Roumpeka et al., 2017).

IS-pro technique

The intergenic spaces (IS)-pro technique is another microbial profiling technique, based on amplification of the IS regions, whose lengths are specific for each bacterial species (Fig. 2) (Budding et al., 2010).

Quantitative (real-time) PCR

Among the sequencing-related techniques currently available, quantitative PCR (qPCR) has proven itself as a sensitive method for the specific detection of individual species or bacterial groups (Huijsdens et al., 2002; Ott et al., 2004). Quantitative real-time PCR with species-specific probes is especially able to monitor quantitative changes, since this method is based on the continuous monitoring of changes in fluorescence during PCR (Malinen et al., 2003).

The microbiome in health and disease

In 2008, the NIH Common Fund Human Microbiome Project (HMP) in the USA was established (Peterson et al., 2009) to characterise the human microbiome at five different body sites (nasal passages, oral cavity, skin, gastrointestinal and urogenital tract) in healthy individuals and analyse how our microbiota contribute to normal physiology and predisposition to disease (Turnbaugh et al., 2007; Methé et al., 2012). Simultaneously, in Europe, the international microbiome consortium, the Metagenomics of the Human Intestinal Tract (MetaHIT) was initiated in 2008 (Qin et al., 2010) with the objective to establish associations between the genes of the human intestinal microbes and health and disease (Li et al., 2014).

The HMP showed that interpersonal variation (beta diversity) was significantly larger than intrapersonal variation (alpha-diversity). In addition, the vagina contained the lowest alpha-diversity, with relatively low beta diversity at the genus level but very high diversity among OTUs due to the presence of distinct Lactobacillus spp. (Human Microbiome Project C 2012).

A symbiotic relationship between host and the residing microorganisms is necessary to maintain health and avoid disease (Martin and Schwab, 2012) and an imbalance in this relationship can result in a dysbiotic state (Knight et al., 2017). These dysbiotic states have been shown to be associated with diseases such as dental caries and bacterial vaginosis. Dental caries is associated with increased phylogenetic diversity and overabundance of Prevotella taxa (Yang et al., 2012; Peterson et al., 2013). Bacterial vaginosis is characterised by a shift from a ‘healthy’ state with a low-pH, Lactobacillus-dominated community to a higher-pH, more diverse microbial community (Fredricks et al., 2005). Importantly, non-communicable diseases (NCDs) such as obesity, cardiovascular disease and inflammatory bowel disease, but also malnutrition have been linked to dysbiotic states (Knight et al., 2017).

Nowadays, it is known that the gut microbiome assists in digestion of food and produces vitamins and other compounds that influence human health by affecting host metabolism and immune responses (Flint et al., 2012; Walker and Lawley, 2013; Maranduba et al., 2015; Li et al., 2017). In addition, environmental factors such as use of antibiotics, diet and geography, as well as ethnicity, can strongly influence the composition of the gut microbiome (Gill et al., 2006; Cresci and Bawden, 2015; Doré and Blottière, 2015).

However, the shifts between symbiosis and dysbiosis and vice versa are unpredictable processes and their causes are not yet understood.

The microbiome in reproductive health and disease

The different parts of the male and female reproductive tract constitute a system subdivided by anatomical or physiological barriers. The male reproductive tract consists of an external part, the penis and the scrotum, and the internal part, the testes, epididymis, accessory glands, vas deferens and urethra. The female reproductive tract constitutes the vagina, the cervix and the uterine cavity which extends into the fallopian tubes, localising the fimbriae near the ovaries.

Whether microbes in the reproductive tract have a beneficial role for female health and reproductive success comparable to the behaviour of symbiotic microbiota in the local gut is unknown. However, more and more evidence is accumulating indicative of comparable roles.

Recently, Chen et al. (2017) showed the presence of a specific microbial composition which changes along the course of the female reproductive tract, confirming other findings that the reproductive tract is indeed not sterile. Mitchell et al. (2015), e.g. found the presence of endometrial bacteria at a significantly lower quantity as compared to the vaginal quantity, suggesting that the cervix serves as a partial filter or barrier for ascending microbiota. The vaginal microbiome of the non-pregnant, healthy women appears to be dynamic and influenced by ethnicity, sexual activity, the menstrual cycle and the local microbiota (Zhou et al., 2007; Ravel et al., 2011; Gajer et al., 2012), and is mostly dominated by four Lactobacillus spp., i.e. L. crispatus, L. iners, L. jensenii or L. gasseri (Ravel et al., 2011).

In the assisted-reproductive technology (ART) setting, the presence of a diverse vaginal microbiome seems to influence pregnancy outcome negatively (Hillier et al., 1995; Moore et al., 2000; Hyman et al., 2012, 2014), while the opposite has been observed for a Lactobacillus dominant vaginal microbiome (Moore et al., 2000). Vaginal microbiota composed solely of Lactobacillus (L. crispatus, L. iners, L. jensenii, L. gasseri or other Lactobacillus species) at the cycle before embryo transfer have been associated with successful outcome of the IVF-embryo transfer procedure (Hyman et al., 2012). More specifically, Hyman et al. investigated the correlation between the vaginal microbiome composition during infertility therapy with the subsequent clinical outcomes in 30 patients. They concluded that the number of bacterial genera on swabs taken at the time of embryo transfer was significantly different (P = 0.028) between patients who had a live birth and patients who did not have a live birth.

Colonisation of the follicular fluid by microorganisms has been suggested as a potential cause of adverse pregnancy outcomes in IVF since colonisation of the follicular fluid at the time of oocyte retrieval was associated with higher embryo discard rates (P < 0.0001), lower rates of embryo transfer (P = 0.0001) and lower pregnancy rates (P < 0.05) in both fertile and infertile women (Pelzer et al., 2013). These results were based on 263 women who had two types of specimens collected: follicular fluid samples from the left and right ovary (n = 463) and vaginal swabs (n = 263) (Pelzer et al., 2013). Lower embryo transfer rates were associated with the presence of Propionibacterium spp. (P < 0.05) and Streptococcus spp. (P < 0.01) in right follicles, whereas higher embryo transfer rates were associated with the presence of Lactobacillus spp. (P < 0.05) in both the right and left follicles. Negative pregnancy outcomes were found with the presence of Actinomyces spp., Bifidobacterium spp., Propionibacterium spp. and Streptococcus spp. (P < 0.01) within the left ovarian follicular fluid and Actinomyces spp., Bifidobacterium spp. and Streptococcus intermedius (P < 0.01) within the right ovary. Positive pregnancy outcomes were found with the presence of Lactobacillus spp. (P < 0.001) in the left ovary (Pelzer et al., 2013). Additionally, Moore et al. (2000) demonstrated that the presence of Streptococcus viridans on the embryo transfer catheter tip is associated with adverse ART outcomes.

During pregnancy, a decrease in richness and diversity of the vaginal microbiome occurs (Aagaard et al., 2012) with a transition towards a Lactobacillus-dominated community (Aagaard et al., 2012; Romero et al., 2014; MacIntyre et al., 2015). Aagaard et al. (2012) compared vaginal samplings of 24 pregnant women with 60 non-pregnant controls and found diversity and richness to be reduced during pregnancy, whereas the microbiome of women closer to term returned to the non-pregnant microbiome state. Two independent studies, MacIntyre et al. (2015) characterising 42 pregnant women and Romero et al. (2014) characterising 22 pregnant and 32 non-pregnant women, confirmed these findings of a vaginal microbiome during pregnancy dominated by Lactobacillus spp. with low alpha-diversity. MacIntyre et al. also reported opposite finding during the postpartum period with a vaginal microbiome less dominated by Lactobacillus spp. albeit with increased alpha-diversity. Women without Lactobacilli-dominance accompanied by elevated Gardnerella or Ureaplasma abundances and pregnant women with an increased vaginal microbiome instability have a higher risk of preterm birth (DiGiulio et al., 2015; Stout et al., 2017). During pregnancy, the shift in microbial composition is possibly a response to the increased oestrogen levels (MacIntyre et al., 2015), whereby the shift to Lactobacillus-dominated communities serves as a protection against bacterial vaginosis (Ravel et al., 2011) with an associated reduced risk of preterm birth (Hyman et al., 2014). These finding indicate that the vaginal microbiome in general is not static with shifts in microbial composition occuring regularly and influenced by many factors (Forney et al., 2006; Zhou et al., 2007; Kim et al., 2009; Gajer et al., 2012).

The future goal of research in the field of the reproductive microbiome should be determination of a ‘healthy’ microbiome (Gevers et al., 2012; Lloyd-Price et al., 2016) to provide more insight in how and when an altered microbiome leads to disease and in how to use the microbiome as a biomarker of reproductive health. However, the increasing variety of analytical and bioinformatic tools and methods used for processing of the sequencing data creates a challenge if one tries to compare and interpret the different studies as a whole. An extensive summary of the currently published data of the microbiome in the healthy female and male reproductive tract is provided within this article. The findings will be discussed in light of clinical implications and future perspectives of reproductive health and ART.

Methods

Search strategy

We performed a search in Embase, Medline Ovid, Web of Science, Cochrane and Google Scholar. The search strategy included keywords related to scientific literature concerning the microbiome of the female and male reproductive tract, such as (alone or in combination): microflora, microbiota, genital tract, reproduction, semen, vagina, uterus, cervical, placenta, conception, assisted reproduction and urogenital microbiome. A protocol for this review has been registered in PROSPERO International prospective register of systematic reviews (2016: CRD42016042506).

Inclusion and exclusion criteria

Articles published from 2005 (after the introduction of the NGS technique) until April 2018, written in English and available online, were eligible for inclusion. Eligible studies, had to be related to original microbiome research in the female or male reproductive tract and could include culture-dependent or culture-independent techniques. Reviews, publications with no new results, and articles of which only the abstract was available were excluded, as were as comments on published articles and reports on animal research. Studies describing the microbiome of body parts other than the reproductive tract were not withheld. The populations of interest were males, women of reproductive age before conception and pregnant women until mid-gestation. We focused on publications which included at least one group of a healthy population and excluded adolescents (under 18 years of age), postmenopausal women and patients with diseases such as Human Immunodeficiency Virus (HIV), (chronic) prostatitis or vaginitis.

Selection procedure

Titles and/or abstracts of studies retrieved using the above-mentioned search strategy were screened independently by two reviewers (R.K. and S.S) to identify studies eligible for full-text screening. The full texts of these eligible articles were retrieved and independently assessed by the same two reviewers. Any disagreements concerning the eligibility of particular studies were resolved through discussion with a third reviewer (J.L.).

Study selection

A flowchart of the search strategy and study selection process of the articles is shown in Fig. 3. The search yielded 5201 results, with 2944 unique articles. After screening of titles and abstracts, 2792 articles were excluded. After reading the full-text articles, 51 articles were eligible for inclusion. A quality assessment was not performed, due to the variety of collection/extraction protocols and analytical/bioinformatical methods. Tables 1 and 2 provide an overview of the definitive selected articles and summarise the applied methods, techniques and results. A subdivision was made between articles that used culture-dependent techniques, culture-independent techniques or a combination of both. In addition, a distinction has been made between articles that studied a predetermined selection of microorganisms (selective) and articles that analysed the whole spectrum of detected microbiota (non-selective). Some articles describe multiple sample sites (e.g. vagina and cervix) and therefore, the total number of articles used in Tables 1 and 2 adds up to 89 from the 51 original articles.

Figure 3

PRISMA flow methodology for the selection of relevant manuscripts.

Table I

Included studies for the female reproductive tract. Overview of study characteristics and reported taxonomic assignments.

No.(Author, year) CountrySamplePopulation (N)Selective/non-selectiveTechnique16 S rRNA regionDatabaseTaxonomic assignment (reported)
Anatomical region: Vagina
1Pascual et al. (2006) ArgentinaPosterior fornixReproductive-age women (N = 100)SCultureL. acidophilus, L. fermentum, L. gasseri, L. brevsi, L. jensenii, L. casei subsp. casei, L. delbrueckii subsp. delbrueckii, Peptostreptococci, Streptococci, Bifidobacteria, Propionibacteria
2Aleshkin et al. (2006) RussiaVaginal wallPregnant and non-pregnant women, healthy pregnant women (first trimester) (N = 200)NSCultureLactobacillus spp., Gardnerella vaginalis, Bifidobacterium spp., Clostridium spp., Propionibacterium spp., Mobiluncus spp., Peptostreptococcus spp., Peptococcus spp., Bacteroides spp., Prevotella spp., Porphyromonas spp., Fusobacterium spp., Veillonella spp., Corynebacterium spp., Staphylococcus spp., Streptococcus spp., Streptococcus group B, Streptococcus group D, Neisseria spp., Enterobacteriaceae, Candida spp.
3Anukam et al. (2006) NigeriaVaginalHealthy premenopausal women (N = 241)SPCRV2–V3GenBank DNA databases, BLAST algorithmL. iners, L. gasseri, L. plantarum, L. suntoryeus, L. crispatus, L. rhamnosu, L. vaginalis, Lactobacillus spp., L. fermentum, L. helveticus, L. johnsonii, L. salivarius
4Jakobsson and Forsum (2007) SwedenUpper third vaginaIVF patients (N = 22)SCulture, NGSL. iners, L. gasseri, L. jensenii, Mobiluncus
5Garg et al. (2009) IndiaHigh vaginal wallHealthy reproductive-age women (N = 80)SCulture, PCRBLASTL. reuteri, L. fermentum, L. salivarius, L. plantarum, L. crispatus, L. jensenii), L. gasseri, L. acidophilus, L. casei, L. paracasei, L. rhamnosus, L. delbruckii
6Pelzer et al. (2011) AustraliaVaginalIVF patients (N = 71)SCulture, PCRBasic Local Alignment Search Tool (BLAST, NCBI)A. meyeri, Bacteroides spp., Bifidobacterium spp., Bifidobacterium spp., Candida albicans, C. glabrata, Clostridium butyricum, C. ramosum, Corynebacterium spp., Escherichia coli, Enterococcus faecalis, Egghertella lenta, Gemella spp., L. crispatus, L. gasseri, L. jensenii, Propionibacterium acnes, S. epidermidis, S. lugdunensis, Sterptococcus spp., S. agalactiae, S. viridans
7Hyman et al. (2012) USAPosterior fornixIVF patients (N = 30)NSSanger SequencingRibosomal Database Project (RDP)Lactobacillus
8Ekanem et al. (2012) NigeriaPosterior fornixNon-pregnant reproductive-age women (N = 220)NSCultureLactobacillus sp., Diphtheroids, Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus faecalis, Bacteroides sp., Peptostreptococcus sp., Eschericia coli, Candida albicans, Gardnerella vaginalis, Streptococcus agalactiae, Peptococcus sp., Clostridium sp., Proteus sp.
9Gajer et al. (2012) USAMid-vaginalReproductive-age women (N = 32)NSNGSV1–V2RDP Naïve Bayesian Classifier, Lactobacillus: speciateITL. iners, Atopobium,L. jensenii, Prevotella, Aerococcus, Shigella, Megasphaera, Eggerthella, Gemella, Peptoniphilus, L. gasseri, Finegoldia, Other Phyloptypes
10Mangot-Bertrand et al. (2013) FranceVaginalIVF patients (N = 307)SqPCRLactobacillus spp., G. vaginalis, A. vaginae, Mycoplasma hominis
11Pendharkar et al. (2013) South AfricaVaginalPremenopausal black women with or without BV (N = 30)SCulture, PCRComplete 16 S rRNA geneBLASTN, Genbank accession numberL. crispatus, L. iners, L. gasseri, L. jensenii, L. vaginalis, L. ruminis, L. mucosae, L. paracasei, L. coleohominis
12Brotman et al. (2014) USAMid-vaginalPremenopausal women (30)NSNGSV1–V2RDP Classifier, Lactobacillus: speciateITL. crispatus L. iners, L. gasseri, L. jensenni, Atopobium, Megasphaera, Prevotella, Sneathia, Streptococcus, Ruminococcaceae, Lachnospiraceae, Aerococcus, Lachnospiraceae, Anaerococcus, Diaphorobacter, Peptinophilus, Lachnospiraceae, Parvimonas, L.otu2, Proteobacteria, Proteobacteria, Dialister, Veillonella, Ruminococcaceae, Finegoldia
13Liu, et al. (2013) ChinaVaginal fornix and lower third of vaginaHealthy women and women with BV and/or VVC (N = 95)NSNGSV6Global Alignment for Sequence Taxonomy (GAST)Lactobacillus, Gardnerella, Streptococcus, Prevotella, Granulicatella, Bifidobacterium, Dialister, Sneathia, Alloscardovia, Parvimonas, Escherichia, Peptostreptococcus, Anaerococcus, Haemophilus, Peptinophilus, Bacillus, Aquabacterium, Mobiluncus, Sphingomonas, Ralstonia
14Bahaabadi et al. (2014) IranVaginalInfertile women (N = 100)SPCRNCBI gene bankM. hominis
15Albert et al. (2015) CanadaVaginalHealthy reproductive-age women (N = 310)NSNGS, cpn60 PCRV3Bowtie 2, mPUMA, cpn60 reference databaseL. crispatus, L. jensenii, Atopobium vaginae, Streptococcus devriesei, L. acidophilus, L. iners, Weissella viridescens, Desulfotalea psychorophila, Peptoniphilus harei, Clostridium innocuum Streptococcus parasanguinis, Gardnerella vaginalis subgroup A, Gardnerella vaginalis subgroup C, Prevotella tannerae, Faecalibacterium prausnitzii, L. gasseri, Sphingobium yanoikuyae, Gardnerella vaginals subgroup B, Massilia timonae, Acidaminococcus fermentans, Megasphaera sp. genomsp. type 1, Prevotella timonensis
16Gautam et al. (2015) Kenya, Rwanda, South Afrcia, TanzaniaCervicovaginalPregnant and non-pregnant women (N = 430)NSMicroarrayRibosomal Database Project, GenbankL. crispatus, L. iners, Gardnerella vaginalis, Atopobium vaginae, Prevotella spp., G. vaginalis, A. vaginae, Prevotella spp., Dialister, Megasphaera spp., Mobiluncus spp., lowest abundance L. iners, Prevotella spp., Megasphaera spp.
17Jespers et al. (2015) AfricaVaginalPregnant and non-pregnant women (N430)SCulture, qPCRLactobacillus genus, Lactobacillus crispatus, Lactobacillus iners, Lactobacillus jensenii, Lactobacillus gasseri, Lactobacillus vaginalis, Gardnerella vaginalis, Atopobium vaginae, Prevotella bivia, Escherichia coli, Candida albicans
18Mitchell et al. (2015) USAVaginalWomen undergoing hysterectomy for benign disease (N = 58)SCulture, qPCRPrevotella spp., L. Iners, L. Crispatus, G vaginalis, A vaginae, L. jensenii
19Moreno et al. (2016) SpainPosterior fornixFertile women (N = 13)NSNGSV3–V5QIIME, UCLUST algorithmLactobacillus spp., Atopobium, Clostridium, Gardnerella, Megasphaera, Parvimonas, Prevotella, Sphingomonas, Sneathia genera, Gardnerella, Clostridium, Sneathia, Prevotella spp., Atopobium, Gardnerella, Prevotella, or Sneathia
20Haahr et al. (2016) DenmarkPosterior fornixIVF patients (N = 130)SCulture, qPCRAtopobium vaginae, Gardnerella vaginalis, L. Iners, L. Crispatus, L. Jensenii, L. Gasseri
21de Vieira Santos-Greatti et al. (2016) BrazilVaginalNon-pregnant reproductive-age women (N = 783)SqPCRG. vaginalis
22Zozaya et al. (2016) USAVaginalWomen with or without BV (N = 96)NSPyrosequencingRibosomal Database ProjectMegasphaera, BVAB1, P. bivia, Prevotella, Gardnerella, Aerococcus, L. iners, Porphyromonas, Sneathia, Leptotrichia, Atopobium, Actinomyces, Megasphaera1, Eggerthella, Anaerococcus, Dialister, BVAB2, M. hominis, Peptoniphilus, Lactobacillus sp., Barnesiella, Gemella, Peptostreptococcus, Parvimonas, P. disiens
23Babu et al. (2017) IndiaPosterior fornixHealthy women and women with infertility problems (N = 200)NSCultureHealthy: Lactobacillus, Micrococcus, Enterococcus, Coagulase-negative Staphylococcus spp.
24Freitas and Hill (2017) CanadaVaginalHealthy reproductive-age women (N = 492)Scpn60 PCR, qPCRV3cpnDB reference databaseBifidobacterium breve, B. longum, B. dentium, Alloscardovia omnicolens
25Kim et al. (2017) KoreaPosterior fornixPregnant women (N = 168)SqPCRL. crispatus, L. iners, L. jensenii, L. gasseri, L., vaginalis, G. vaginalis and A. vaginae
26Nasioudis et al. (2017) USAPosterior vaginal wallFirst trimester pregnant women (N = 154)NSNGSV1–V3Lactobacillus crispatus, L. iners, L. gasseri, Gardnerella, L. jensenii, Streptococcus, Bifidobacterium, L. helveticus, L. acidophilus, L. johnsonii
27Campisciano et al. (2017) ItalyCervical-vaginalInfertile and fertile women (N = 96)NSNGSV1–V3Vaginal 16 S rDNA Reference DatabaseIdiopathic bacilli, Actinobacteria, Gammaproteobacteria, Tenericutes, Clostridia, Bacteroidia
28Wee et al. (2017) AustraliaPosterior fornixInfertile women and fertile controls (N = 31)NSNGS, PCRBacilli, Actinobacteria, Gammaproteobacteria, Tenericutes
29Son et al. (2018) KoreaPosterior fornixPregnant women (1) first trimester (N = 221), (2) second trimester (N = 138)NSCulture
  • E. coli, Enterobacteriae, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Enterococcus faecalis, Candida, Gram-negative bacteria, Gram-positive cocci, Other gram-positive cocci

  • E. coli, Enterobacteriae, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus agalactiae, Candida, Gram-negative bacteria, Gram-positive cocci, Other gram-positive cocci

Anatomical region: Cervix
30Fotouh and Al-Inany (2008) EgyptCervical mucus samples, catheter tipIVF/ICSI patients (N = 25)NSCultureStaphylococcus aureus, Coagulase-negative staphylococcus Streptococci, Diphteroids, Lactobacilli, Gram-negative bacteria, Klebsilla spp., Pseudomonous spp., Proteus, Non-lactose fermenters, E. coli
31Simhan and Krohn (2009) USACervicalPregnant women first trimester (N = 218)SCulture or PCRNeisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis
32Prabha, Aanam, and Kaur (2011) IndiaCervical areaWomen with unexplained infertility (N = 27)NSCultureStaphylococci, Micrococci, Streptococci, Bacillus, E. coli, Pseudomonas
33Costoya et al. (2012) ChileIntracervicalPatients with tubo-peritoneal infertility and normal fertile patients (N = 60)SPCRSYBR Safe DNA gel stainMycoplasmas
34Cicinelli et al. (2012) ItalyCervicalWomen referred for diagnostic hysteroscopy (N = 404)SCultureStreptococci, E. coli, E. Faecalis, Ureaplasma, Gardnerella vaginalis
35Ekanem et al. (2012) NigeriaCervical canalNon-pregnant reproductive-age women (N = 225)NSCultureLactobacillus sp., Diphtheroids, Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus faecalis, Bacteroides sp., Peptostreptococcus. sp., E. coli, Candida albican, Gardnerella vaginalis, Streptococcus agalactiae, Peptococcus sp., Clostridium sp., Proteus sp.
36Smith et al. (2012) Costa RicaExfoliated cervical cellsWomen (N = 10)NSSanger sequencing, NGSV6, V6–V9usearch, RDP Classifier, pplacerLactobacillus, Gardnerella, Prevotella, Megasphaera, BVAB1/Clostridiales, Howardella
37Kasprzykowska et al. (2014) PolandCervicalWomen with no symptoms of genital tract infection (N = 40)SPCRMycoplasma spp., U. Parvum, U. Urealyticum
38Anahtar et al. (2015) South AfricanCervicalHIV-negative women (N = 94)NSNGS, WGSV4Fusobacterium, Aerococcus, Sneathia, Gemella, Mobiluncus, Prevotella, Shuttleworthia, Clostridiales, Mycoplasma, Lactobacillus iners, Leptotrichiaceae
39Gautam et al. (2015) Kenya, Rwanda, South Africa, TanzaniaCervicovaginalPregnant and non-pregnant women (N = 430)SPCRNeisseria gonorrhoeae, Chlamydia trachomatis
40de Vieira Santos-Greatti et al. (2016) BrazilEndocervicalNon-pregnant reproductive-age women (N = 783)SPCRC. trachomatis, N. gonorrhoeae
41Seo et al. (2016) South KoreaCervicalWomen with CIN and control women (N = 137)NSNGSV1–V3EzTaxon-e, BLASTN, Mothur
42Panda et al. (2016) IndiaCervicalUnexplained infertile women (N = 296)NScultureMicrococcus spp., diptheroids, non-enterococcal group D Streptococcus, Staphylococcus aureus, coagulase negative Staphylococcus, Enterococcus spp., Bacillus spp., E. coli, Klebsiella spp., Acinetobacter spp., Candida spp.
43Campisciano et al. (2017) ItalyCervical-vaginalIdiopathic (1), Infertile (2) and fertile (3) women (N = 96)NSNGSV1–V3(3) Bacilli, Actinobacteria, Gammaproteobacteri, Tenericutes
44Wee et al. (2017) AustraliaEndocervical canalInfertile women and fertile controls (N = 31)NSNGS, PCRNo information
45Campos et al. (2018) BrazilEndocervixWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma urealyticum, Ureaplasma parvum
46Di et al. (2018) ItalyEndocervicalWomen (N = 35)SNGSV3–V4SILVA rRNA reference databaseC. trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Mycoplasma, Candida, Firmicutes, Actinobacteria, Fusobacteria, Proteobacteria, Tenericutes, Bacteroidetes, Lactobacillus, Atopobium, Bifidobacterium, L. crispatus, L. gasseri, L. inesr, Leptotrichia amnionii, Gardnerella vaginalis, Prevotella spp. Actinobacteria, L. crispatus, L. gasseri, Leptotrichia amnionii, G. vaginalis, Prevotella spp.
47Graspeuntner et al. (2018) GermanyCervixWomen with infectious (1) and non-infectious infertility (2), female sex workers (3) and healthy controls (4) (N = 190)NSculture, PCR, NGSV3/V4(3) Lactobacillus, Gardnerella, Prevotella, Sneathia, Clostridiales, N. gonorrhoeae, C. trachomatis (4) Lactobacillus, Gardnerella, Prevotella, Sneathia, C. trachomatis
48Taylor et al. (2018) USACervicalWomen (N = 250)SPCRC. trachomatis, N. gonorrhoeae, M. genitalium, G. vaginalis, Sneathia spp., U. urealyticum, A. vaginae, BVAB1
Anatomical region: Endometrium
49Fotouh and Al-Inany (2008) EgyptCervical mucus samples, catheter tipIVF/ICSI patients (N = 25)NSCultureStaphylococcus aureus, Coagulase-negative staphylococcus, Streptococci, Diphteroids, Lactobacilli, Klebsilla spp., Pseudomonous spp., Proteus, Non-lactose fermenters, E. coli
50Cicinelli et al. (2012) ItalyEndometrialWomen referred for diagnostic hysteroscopy (N = 404)SCultureStreptococcus Agalactiae, Enterococcus faecalis, E. coli, U. urealyticum, Mycoplasma, Staphylococci, Gardnerella vaginalis
51Moreno et al. (2016) SpainEndometrial fluidFertile women and IVF patients (N = 70)SNGSV3–V5Ribosomal database project classifier method v2.2Lactobacillus, Gardnerella, Bifidobacterium, Streptococcus, Prevotella
52Verstraelen et al. (2016) The NetherlandsEndometrial tissue and mucusWomen with various reproductive conditions (N = 19)NSNGSV1–2Ribosomal Database Project, NCBI databaseBacteroides xylanisolven, Bacteroides thetaiotaomicron, Bacteroides fragilis, Bacteroides vulgatus, Bacteroides ovatus,Pelomonas, Betaproteobacteria, Escherichia/Shigella, Chitinophagaceae. Lactobacillus iners, Prevotella amnii, Lactobacillus crispatus, Gardnerella vaginalis, Atopobium vaginae
53Franasiak et al. (2016) USAEndometrial (transfer catheter)Patients undergoing embryo transfer (N = 33)NSNGSV2–4–8, V3–6, V7–9RDP classifier (Naïve Bayesian classification), Greengenes databaseFlavobacterium, Lactobacillus, Limnohabitans, Polynucleobacter, Bdellovibrio, Chryseobacterium, Spirochaeta, Clostridium, Blvii28, Pseudomonas, Fluviicola, Paludibacter, Curvibacter, Methylotenera, Pelosinus, Acidovorax, Delftia, Janthinobacterium, Streptococcus, Candidatus Aquiluna, Pedobacter, Caloramator, Sulfuricurvum, Shuttleworthia, Salinibacterium, Sulfurospirillum, Paucibacter, Acinetobacter, Microbacterium, Cellvibrio
54Tao et al. (2017) USAEndometrial (transfer catheter)IVF patients (N = 70)NSNGSV4RDP 2.2 in QIIME using the Greengenes databaseLactobacillus spp., Corynebacterium spp., Bifidobacterium spp., Staphylococcus spp., Streptococcus
55Wee et al. (2017) AustraliaEndometrial biopsyInfertile women and controls (N = 31)NSqPCRNo information
56Moreno et al. (2018) ItalyEndometrial biopsyPatients assessed for chronic endometritis (N = 113)SCulture, PCR, NGSV2–4–8, V3–6, V7–9Greengenes databaseChlamydia trachomatis, Enterococcus, E. coli, Gardnerella vaginalis, Klebsiella pneumoniae, Mycoplasma hominis, Neisseria gonorrhoeae, Staphylococcus, Streptococcus
57Taylor et al. (2018) USAEndometrialWomen (N = 250)SPCRE. faecalis, E. coli, Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus mitis and yeasts
Anatomical region: Upper Genital Tract
58Costoya et al. (2012) ChileFallopian tubal flushingsPatients with tubo-peritoneal infertility and normal fertile patients (N = 60)SPCRSYBR Safe DNA gel stainMycoplasmas
59Kasprzykowska et al. (2014) PolandFluid from the pouch of DouglasWomen with no symptoms of genital tract infection (N = 40)SqPCRMycoplasma spp., U. Parvum, U. Urealyticum
60Pelzer et al. (2011) AustraliaFollicular fluidART patients (N = 71)NSCulture, PCRBasic Local Alignment Search Tool (BLAST, NCBI)Actinomyces species, A. israelii, A. naeslundii, C. parapsilosis, C. auromucosum, Fusobacterium spp., Lactobacillus spp., L. iners, P. avidum, P. granulosum, P. propionicus, Prevotella disiens, P. melanogenicus, Peptinophilus asaccharolyticus, Peptostreptococcus spp., Staphylococcus spp., Propionibacterium, Prevotella, Staphylococcus spp.
61Pelzer et al. (2012) AustraliaFollicular fluidIVF patients (N = 36)NSCulture, qPCRBasic Local Alignment Search Tool (BLAST, NCBI)Lactobacillus gasseri, L. Crispatus, L. Jensenii, CoNS, Propionibacterium spp., Peptostreptococcus spp., B. Longum, S. Agalactiae, S. Anginosus, Micrococcus spp., Salmonella enterica, E. coli, Lactobacillus species, Propionibacterium spp., Peptostreptococcus spp., Salmonella enterica
62Pelzer et al. (2013) AustraliaFollicular fluidIVF couples (N = 263)SCultureBasic Local Alignment Search Tool (BLAST, NCBI)Lactobacillus spp., Bifidobacterium spp., Staphylococcus spp.
63Mitchell et al. (2015) USAUpper genital tract: endocervix + endometrial fluidWomen undergoing hysterectomy for benign disease (N = 58)SCulture, qPCRLactobacillus iners, L crispatus, L jensenii, Gardnerella vaginalis, Atopobium vaginae, Megasphaera spp., Prevotella spp., Leptotrichia/Sneathia, BVAB1, BVAB2, BVAB3
64Campos et al. (2018) BrazilPeritoneal fluidWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium, Mycoplasma hominis
65Campos et al. (2018) BrazilBiopsied tissue samplesWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium
No.(Author, year) CountrySamplePopulation (N)Selective/non-selectiveTechnique16 S rRNA regionDatabaseTaxonomic assignment (reported)
Anatomical region: Vagina
1Pascual et al. (2006) ArgentinaPosterior fornixReproductive-age women (N = 100)SCultureL. acidophilus, L. fermentum, L. gasseri, L. brevsi, L. jensenii, L. casei subsp. casei, L. delbrueckii subsp. delbrueckii, Peptostreptococci, Streptococci, Bifidobacteria, Propionibacteria
2Aleshkin et al. (2006) RussiaVaginal wallPregnant and non-pregnant women, healthy pregnant women (first trimester) (N = 200)NSCultureLactobacillus spp., Gardnerella vaginalis, Bifidobacterium spp., Clostridium spp., Propionibacterium spp., Mobiluncus spp., Peptostreptococcus spp., Peptococcus spp., Bacteroides spp., Prevotella spp., Porphyromonas spp., Fusobacterium spp., Veillonella spp., Corynebacterium spp., Staphylococcus spp., Streptococcus spp., Streptococcus group B, Streptococcus group D, Neisseria spp., Enterobacteriaceae, Candida spp.
3Anukam et al. (2006) NigeriaVaginalHealthy premenopausal women (N = 241)SPCRV2–V3GenBank DNA databases, BLAST algorithmL. iners, L. gasseri, L. plantarum, L. suntoryeus, L. crispatus, L. rhamnosu, L. vaginalis, Lactobacillus spp., L. fermentum, L. helveticus, L. johnsonii, L. salivarius
4Jakobsson and Forsum (2007) SwedenUpper third vaginaIVF patients (N = 22)SCulture, NGSL. iners, L. gasseri, L. jensenii, Mobiluncus
5Garg et al. (2009) IndiaHigh vaginal wallHealthy reproductive-age women (N = 80)SCulture, PCRBLASTL. reuteri, L. fermentum, L. salivarius, L. plantarum, L. crispatus, L. jensenii), L. gasseri, L. acidophilus, L. casei, L. paracasei, L. rhamnosus, L. delbruckii
6Pelzer et al. (2011) AustraliaVaginalIVF patients (N = 71)SCulture, PCRBasic Local Alignment Search Tool (BLAST, NCBI)A. meyeri, Bacteroides spp., Bifidobacterium spp., Bifidobacterium spp., Candida albicans, C. glabrata, Clostridium butyricum, C. ramosum, Corynebacterium spp., Escherichia coli, Enterococcus faecalis, Egghertella lenta, Gemella spp., L. crispatus, L. gasseri, L. jensenii, Propionibacterium acnes, S. epidermidis, S. lugdunensis, Sterptococcus spp., S. agalactiae, S. viridans
7Hyman et al. (2012) USAPosterior fornixIVF patients (N = 30)NSSanger SequencingRibosomal Database Project (RDP)Lactobacillus
8Ekanem et al. (2012) NigeriaPosterior fornixNon-pregnant reproductive-age women (N = 220)NSCultureLactobacillus sp., Diphtheroids, Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus faecalis, Bacteroides sp., Peptostreptococcus sp., Eschericia coli, Candida albicans, Gardnerella vaginalis, Streptococcus agalactiae, Peptococcus sp., Clostridium sp., Proteus sp.
9Gajer et al. (2012) USAMid-vaginalReproductive-age women (N = 32)NSNGSV1–V2RDP Naïve Bayesian Classifier, Lactobacillus: speciateITL. iners, Atopobium,L. jensenii, Prevotella, Aerococcus, Shigella, Megasphaera, Eggerthella, Gemella, Peptoniphilus, L. gasseri, Finegoldia, Other Phyloptypes
10Mangot-Bertrand et al. (2013) FranceVaginalIVF patients (N = 307)SqPCRLactobacillus spp., G. vaginalis, A. vaginae, Mycoplasma hominis
11Pendharkar et al. (2013) South AfricaVaginalPremenopausal black women with or without BV (N = 30)SCulture, PCRComplete 16 S rRNA geneBLASTN, Genbank accession numberL. crispatus, L. iners, L. gasseri, L. jensenii, L. vaginalis, L. ruminis, L. mucosae, L. paracasei, L. coleohominis
12Brotman et al. (2014) USAMid-vaginalPremenopausal women (30)NSNGSV1–V2RDP Classifier, Lactobacillus: speciateITL. crispatus L. iners, L. gasseri, L. jensenni, Atopobium, Megasphaera, Prevotella, Sneathia, Streptococcus, Ruminococcaceae, Lachnospiraceae, Aerococcus, Lachnospiraceae, Anaerococcus, Diaphorobacter, Peptinophilus, Lachnospiraceae, Parvimonas, L.otu2, Proteobacteria, Proteobacteria, Dialister, Veillonella, Ruminococcaceae, Finegoldia
13Liu, et al. (2013) ChinaVaginal fornix and lower third of vaginaHealthy women and women with BV and/or VVC (N = 95)NSNGSV6Global Alignment for Sequence Taxonomy (GAST)Lactobacillus, Gardnerella, Streptococcus, Prevotella, Granulicatella, Bifidobacterium, Dialister, Sneathia, Alloscardovia, Parvimonas, Escherichia, Peptostreptococcus, Anaerococcus, Haemophilus, Peptinophilus, Bacillus, Aquabacterium, Mobiluncus, Sphingomonas, Ralstonia
14Bahaabadi et al. (2014) IranVaginalInfertile women (N = 100)SPCRNCBI gene bankM. hominis
15Albert et al. (2015) CanadaVaginalHealthy reproductive-age women (N = 310)NSNGS, cpn60 PCRV3Bowtie 2, mPUMA, cpn60 reference databaseL. crispatus, L. jensenii, Atopobium vaginae, Streptococcus devriesei, L. acidophilus, L. iners, Weissella viridescens, Desulfotalea psychorophila, Peptoniphilus harei, Clostridium innocuum Streptococcus parasanguinis, Gardnerella vaginalis subgroup A, Gardnerella vaginalis subgroup C, Prevotella tannerae, Faecalibacterium prausnitzii, L. gasseri, Sphingobium yanoikuyae, Gardnerella vaginals subgroup B, Massilia timonae, Acidaminococcus fermentans, Megasphaera sp. genomsp. type 1, Prevotella timonensis
16Gautam et al. (2015) Kenya, Rwanda, South Afrcia, TanzaniaCervicovaginalPregnant and non-pregnant women (N = 430)NSMicroarrayRibosomal Database Project, GenbankL. crispatus, L. iners, Gardnerella vaginalis, Atopobium vaginae, Prevotella spp., G. vaginalis, A. vaginae, Prevotella spp., Dialister, Megasphaera spp., Mobiluncus spp., lowest abundance L. iners, Prevotella spp., Megasphaera spp.
17Jespers et al. (2015) AfricaVaginalPregnant and non-pregnant women (N430)SCulture, qPCRLactobacillus genus, Lactobacillus crispatus, Lactobacillus iners, Lactobacillus jensenii, Lactobacillus gasseri, Lactobacillus vaginalis, Gardnerella vaginalis, Atopobium vaginae, Prevotella bivia, Escherichia coli, Candida albicans
18Mitchell et al. (2015) USAVaginalWomen undergoing hysterectomy for benign disease (N = 58)SCulture, qPCRPrevotella spp., L. Iners, L. Crispatus, G vaginalis, A vaginae, L. jensenii
19Moreno et al. (2016) SpainPosterior fornixFertile women (N = 13)NSNGSV3–V5QIIME, UCLUST algorithmLactobacillus spp., Atopobium, Clostridium, Gardnerella, Megasphaera, Parvimonas, Prevotella, Sphingomonas, Sneathia genera, Gardnerella, Clostridium, Sneathia, Prevotella spp., Atopobium, Gardnerella, Prevotella, or Sneathia
20Haahr et al. (2016) DenmarkPosterior fornixIVF patients (N = 130)SCulture, qPCRAtopobium vaginae, Gardnerella vaginalis, L. Iners, L. Crispatus, L. Jensenii, L. Gasseri
21de Vieira Santos-Greatti et al. (2016) BrazilVaginalNon-pregnant reproductive-age women (N = 783)SqPCRG. vaginalis
22Zozaya et al. (2016) USAVaginalWomen with or without BV (N = 96)NSPyrosequencingRibosomal Database ProjectMegasphaera, BVAB1, P. bivia, Prevotella, Gardnerella, Aerococcus, L. iners, Porphyromonas, Sneathia, Leptotrichia, Atopobium, Actinomyces, Megasphaera1, Eggerthella, Anaerococcus, Dialister, BVAB2, M. hominis, Peptoniphilus, Lactobacillus sp., Barnesiella, Gemella, Peptostreptococcus, Parvimonas, P. disiens
23Babu et al. (2017) IndiaPosterior fornixHealthy women and women with infertility problems (N = 200)NSCultureHealthy: Lactobacillus, Micrococcus, Enterococcus, Coagulase-negative Staphylococcus spp.
24Freitas and Hill (2017) CanadaVaginalHealthy reproductive-age women (N = 492)Scpn60 PCR, qPCRV3cpnDB reference databaseBifidobacterium breve, B. longum, B. dentium, Alloscardovia omnicolens
25Kim et al. (2017) KoreaPosterior fornixPregnant women (N = 168)SqPCRL. crispatus, L. iners, L. jensenii, L. gasseri, L., vaginalis, G. vaginalis and A. vaginae
26Nasioudis et al. (2017) USAPosterior vaginal wallFirst trimester pregnant women (N = 154)NSNGSV1–V3Lactobacillus crispatus, L. iners, L. gasseri, Gardnerella, L. jensenii, Streptococcus, Bifidobacterium, L. helveticus, L. acidophilus, L. johnsonii
27Campisciano et al. (2017) ItalyCervical-vaginalInfertile and fertile women (N = 96)NSNGSV1–V3Vaginal 16 S rDNA Reference DatabaseIdiopathic bacilli, Actinobacteria, Gammaproteobacteria, Tenericutes, Clostridia, Bacteroidia
28Wee et al. (2017) AustraliaPosterior fornixInfertile women and fertile controls (N = 31)NSNGS, PCRBacilli, Actinobacteria, Gammaproteobacteria, Tenericutes
29Son et al. (2018) KoreaPosterior fornixPregnant women (1) first trimester (N = 221), (2) second trimester (N = 138)NSCulture
  • E. coli, Enterobacteriae, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Enterococcus faecalis, Candida, Gram-negative bacteria, Gram-positive cocci, Other gram-positive cocci

  • E. coli, Enterobacteriae, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus agalactiae, Candida, Gram-negative bacteria, Gram-positive cocci, Other gram-positive cocci

Anatomical region: Cervix
30Fotouh and Al-Inany (2008) EgyptCervical mucus samples, catheter tipIVF/ICSI patients (N = 25)NSCultureStaphylococcus aureus, Coagulase-negative staphylococcus Streptococci, Diphteroids, Lactobacilli, Gram-negative bacteria, Klebsilla spp., Pseudomonous spp., Proteus, Non-lactose fermenters, E. coli
31Simhan and Krohn (2009) USACervicalPregnant women first trimester (N = 218)SCulture or PCRNeisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis
32Prabha, Aanam, and Kaur (2011) IndiaCervical areaWomen with unexplained infertility (N = 27)NSCultureStaphylococci, Micrococci, Streptococci, Bacillus, E. coli, Pseudomonas
33Costoya et al. (2012) ChileIntracervicalPatients with tubo-peritoneal infertility and normal fertile patients (N = 60)SPCRSYBR Safe DNA gel stainMycoplasmas
34Cicinelli et al. (2012) ItalyCervicalWomen referred for diagnostic hysteroscopy (N = 404)SCultureStreptococci, E. coli, E. Faecalis, Ureaplasma, Gardnerella vaginalis
35Ekanem et al. (2012) NigeriaCervical canalNon-pregnant reproductive-age women (N = 225)NSCultureLactobacillus sp., Diphtheroids, Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus faecalis, Bacteroides sp., Peptostreptococcus. sp., E. coli, Candida albican, Gardnerella vaginalis, Streptococcus agalactiae, Peptococcus sp., Clostridium sp., Proteus sp.
36Smith et al. (2012) Costa RicaExfoliated cervical cellsWomen (N = 10)NSSanger sequencing, NGSV6, V6–V9usearch, RDP Classifier, pplacerLactobacillus, Gardnerella, Prevotella, Megasphaera, BVAB1/Clostridiales, Howardella
37Kasprzykowska et al. (2014) PolandCervicalWomen with no symptoms of genital tract infection (N = 40)SPCRMycoplasma spp., U. Parvum, U. Urealyticum
38Anahtar et al. (2015) South AfricanCervicalHIV-negative women (N = 94)NSNGS, WGSV4Fusobacterium, Aerococcus, Sneathia, Gemella, Mobiluncus, Prevotella, Shuttleworthia, Clostridiales, Mycoplasma, Lactobacillus iners, Leptotrichiaceae
39Gautam et al. (2015) Kenya, Rwanda, South Africa, TanzaniaCervicovaginalPregnant and non-pregnant women (N = 430)SPCRNeisseria gonorrhoeae, Chlamydia trachomatis
40de Vieira Santos-Greatti et al. (2016) BrazilEndocervicalNon-pregnant reproductive-age women (N = 783)SPCRC. trachomatis, N. gonorrhoeae
41Seo et al. (2016) South KoreaCervicalWomen with CIN and control women (N = 137)NSNGSV1–V3EzTaxon-e, BLASTN, Mothur
42Panda et al. (2016) IndiaCervicalUnexplained infertile women (N = 296)NScultureMicrococcus spp., diptheroids, non-enterococcal group D Streptococcus, Staphylococcus aureus, coagulase negative Staphylococcus, Enterococcus spp., Bacillus spp., E. coli, Klebsiella spp., Acinetobacter spp., Candida spp.
43Campisciano et al. (2017) ItalyCervical-vaginalIdiopathic (1), Infertile (2) and fertile (3) women (N = 96)NSNGSV1–V3(3) Bacilli, Actinobacteria, Gammaproteobacteri, Tenericutes
44Wee et al. (2017) AustraliaEndocervical canalInfertile women and fertile controls (N = 31)NSNGS, PCRNo information
45Campos et al. (2018) BrazilEndocervixWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma urealyticum, Ureaplasma parvum
46Di et al. (2018) ItalyEndocervicalWomen (N = 35)SNGSV3–V4SILVA rRNA reference databaseC. trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Mycoplasma, Candida, Firmicutes, Actinobacteria, Fusobacteria, Proteobacteria, Tenericutes, Bacteroidetes, Lactobacillus, Atopobium, Bifidobacterium, L. crispatus, L. gasseri, L. inesr, Leptotrichia amnionii, Gardnerella vaginalis, Prevotella spp. Actinobacteria, L. crispatus, L. gasseri, Leptotrichia amnionii, G. vaginalis, Prevotella spp.
47Graspeuntner et al. (2018) GermanyCervixWomen with infectious (1) and non-infectious infertility (2), female sex workers (3) and healthy controls (4) (N = 190)NSculture, PCR, NGSV3/V4(3) Lactobacillus, Gardnerella, Prevotella, Sneathia, Clostridiales, N. gonorrhoeae, C. trachomatis (4) Lactobacillus, Gardnerella, Prevotella, Sneathia, C. trachomatis
48Taylor et al. (2018) USACervicalWomen (N = 250)SPCRC. trachomatis, N. gonorrhoeae, M. genitalium, G. vaginalis, Sneathia spp., U. urealyticum, A. vaginae, BVAB1
Anatomical region: Endometrium
49Fotouh and Al-Inany (2008) EgyptCervical mucus samples, catheter tipIVF/ICSI patients (N = 25)NSCultureStaphylococcus aureus, Coagulase-negative staphylococcus, Streptococci, Diphteroids, Lactobacilli, Klebsilla spp., Pseudomonous spp., Proteus, Non-lactose fermenters, E. coli
50Cicinelli et al. (2012) ItalyEndometrialWomen referred for diagnostic hysteroscopy (N = 404)SCultureStreptococcus Agalactiae, Enterococcus faecalis, E. coli, U. urealyticum, Mycoplasma, Staphylococci, Gardnerella vaginalis
51Moreno et al. (2016) SpainEndometrial fluidFertile women and IVF patients (N = 70)SNGSV3–V5Ribosomal database project classifier method v2.2Lactobacillus, Gardnerella, Bifidobacterium, Streptococcus, Prevotella
52Verstraelen et al. (2016) The NetherlandsEndometrial tissue and mucusWomen with various reproductive conditions (N = 19)NSNGSV1–2Ribosomal Database Project, NCBI databaseBacteroides xylanisolven, Bacteroides thetaiotaomicron, Bacteroides fragilis, Bacteroides vulgatus, Bacteroides ovatus,Pelomonas, Betaproteobacteria, Escherichia/Shigella, Chitinophagaceae. Lactobacillus iners, Prevotella amnii, Lactobacillus crispatus, Gardnerella vaginalis, Atopobium vaginae
53Franasiak et al. (2016) USAEndometrial (transfer catheter)Patients undergoing embryo transfer (N = 33)NSNGSV2–4–8, V3–6, V7–9RDP classifier (Naïve Bayesian classification), Greengenes databaseFlavobacterium, Lactobacillus, Limnohabitans, Polynucleobacter, Bdellovibrio, Chryseobacterium, Spirochaeta, Clostridium, Blvii28, Pseudomonas, Fluviicola, Paludibacter, Curvibacter, Methylotenera, Pelosinus, Acidovorax, Delftia, Janthinobacterium, Streptococcus, Candidatus Aquiluna, Pedobacter, Caloramator, Sulfuricurvum, Shuttleworthia, Salinibacterium, Sulfurospirillum, Paucibacter, Acinetobacter, Microbacterium, Cellvibrio
54Tao et al. (2017) USAEndometrial (transfer catheter)IVF patients (N = 70)NSNGSV4RDP 2.2 in QIIME using the Greengenes databaseLactobacillus spp., Corynebacterium spp., Bifidobacterium spp., Staphylococcus spp., Streptococcus
55Wee et al. (2017) AustraliaEndometrial biopsyInfertile women and controls (N = 31)NSqPCRNo information
56Moreno et al. (2018) ItalyEndometrial biopsyPatients assessed for chronic endometritis (N = 113)SCulture, PCR, NGSV2–4–8, V3–6, V7–9Greengenes databaseChlamydia trachomatis, Enterococcus, E. coli, Gardnerella vaginalis, Klebsiella pneumoniae, Mycoplasma hominis, Neisseria gonorrhoeae, Staphylococcus, Streptococcus
57Taylor et al. (2018) USAEndometrialWomen (N = 250)SPCRE. faecalis, E. coli, Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus mitis and yeasts
Anatomical region: Upper Genital Tract
58Costoya et al. (2012) ChileFallopian tubal flushingsPatients with tubo-peritoneal infertility and normal fertile patients (N = 60)SPCRSYBR Safe DNA gel stainMycoplasmas
59Kasprzykowska et al. (2014) PolandFluid from the pouch of DouglasWomen with no symptoms of genital tract infection (N = 40)SqPCRMycoplasma spp., U. Parvum, U. Urealyticum
60Pelzer et al. (2011) AustraliaFollicular fluidART patients (N = 71)NSCulture, PCRBasic Local Alignment Search Tool (BLAST, NCBI)Actinomyces species, A. israelii, A. naeslundii, C. parapsilosis, C. auromucosum, Fusobacterium spp., Lactobacillus spp., L. iners, P. avidum, P. granulosum, P. propionicus, Prevotella disiens, P. melanogenicus, Peptinophilus asaccharolyticus, Peptostreptococcus spp., Staphylococcus spp., Propionibacterium, Prevotella, Staphylococcus spp.
61Pelzer et al. (2012) AustraliaFollicular fluidIVF patients (N = 36)NSCulture, qPCRBasic Local Alignment Search Tool (BLAST, NCBI)Lactobacillus gasseri, L. Crispatus, L. Jensenii, CoNS, Propionibacterium spp., Peptostreptococcus spp., B. Longum, S. Agalactiae, S. Anginosus, Micrococcus spp., Salmonella enterica, E. coli, Lactobacillus species, Propionibacterium spp., Peptostreptococcus spp., Salmonella enterica
62Pelzer et al. (2013) AustraliaFollicular fluidIVF couples (N = 263)SCultureBasic Local Alignment Search Tool (BLAST, NCBI)Lactobacillus spp., Bifidobacterium spp., Staphylococcus spp.
63Mitchell et al. (2015) USAUpper genital tract: endocervix + endometrial fluidWomen undergoing hysterectomy for benign disease (N = 58)SCulture, qPCRLactobacillus iners, L crispatus, L jensenii, Gardnerella vaginalis, Atopobium vaginae, Megasphaera spp., Prevotella spp., Leptotrichia/Sneathia, BVAB1, BVAB2, BVAB3
64Campos et al. (2018) BrazilPeritoneal fluidWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium, Mycoplasma hominis
65Campos et al. (2018) BrazilBiopsied tissue samplesWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium
Table I

Included studies for the female reproductive tract. Overview of study characteristics and reported taxonomic assignments.

No.(Author, year) CountrySamplePopulation (N)Selective/non-selectiveTechnique16 S rRNA regionDatabaseTaxonomic assignment (reported)
Anatomical region: Vagina
1Pascual et al. (2006) ArgentinaPosterior fornixReproductive-age women (N = 100)SCultureL. acidophilus, L. fermentum, L. gasseri, L. brevsi, L. jensenii, L. casei subsp. casei, L. delbrueckii subsp. delbrueckii, Peptostreptococci, Streptococci, Bifidobacteria, Propionibacteria
2Aleshkin et al. (2006) RussiaVaginal wallPregnant and non-pregnant women, healthy pregnant women (first trimester) (N = 200)NSCultureLactobacillus spp., Gardnerella vaginalis, Bifidobacterium spp., Clostridium spp., Propionibacterium spp., Mobiluncus spp., Peptostreptococcus spp., Peptococcus spp., Bacteroides spp., Prevotella spp., Porphyromonas spp., Fusobacterium spp., Veillonella spp., Corynebacterium spp., Staphylococcus spp., Streptococcus spp., Streptococcus group B, Streptococcus group D, Neisseria spp., Enterobacteriaceae, Candida spp.
3Anukam et al. (2006) NigeriaVaginalHealthy premenopausal women (N = 241)SPCRV2–V3GenBank DNA databases, BLAST algorithmL. iners, L. gasseri, L. plantarum, L. suntoryeus, L. crispatus, L. rhamnosu, L. vaginalis, Lactobacillus spp., L. fermentum, L. helveticus, L. johnsonii, L. salivarius
4Jakobsson and Forsum (2007) SwedenUpper third vaginaIVF patients (N = 22)SCulture, NGSL. iners, L. gasseri, L. jensenii, Mobiluncus
5Garg et al. (2009) IndiaHigh vaginal wallHealthy reproductive-age women (N = 80)SCulture, PCRBLASTL. reuteri, L. fermentum, L. salivarius, L. plantarum, L. crispatus, L. jensenii), L. gasseri, L. acidophilus, L. casei, L. paracasei, L. rhamnosus, L. delbruckii
6Pelzer et al. (2011) AustraliaVaginalIVF patients (N = 71)SCulture, PCRBasic Local Alignment Search Tool (BLAST, NCBI)A. meyeri, Bacteroides spp., Bifidobacterium spp., Bifidobacterium spp., Candida albicans, C. glabrata, Clostridium butyricum, C. ramosum, Corynebacterium spp., Escherichia coli, Enterococcus faecalis, Egghertella lenta, Gemella spp., L. crispatus, L. gasseri, L. jensenii, Propionibacterium acnes, S. epidermidis, S. lugdunensis, Sterptococcus spp., S. agalactiae, S. viridans
7Hyman et al. (2012) USAPosterior fornixIVF patients (N = 30)NSSanger SequencingRibosomal Database Project (RDP)Lactobacillus
8Ekanem et al. (2012) NigeriaPosterior fornixNon-pregnant reproductive-age women (N = 220)NSCultureLactobacillus sp., Diphtheroids, Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus faecalis, Bacteroides sp., Peptostreptococcus sp., Eschericia coli, Candida albicans, Gardnerella vaginalis, Streptococcus agalactiae, Peptococcus sp., Clostridium sp., Proteus sp.
9Gajer et al. (2012) USAMid-vaginalReproductive-age women (N = 32)NSNGSV1–V2RDP Naïve Bayesian Classifier, Lactobacillus: speciateITL. iners, Atopobium,L. jensenii, Prevotella, Aerococcus, Shigella, Megasphaera, Eggerthella, Gemella, Peptoniphilus, L. gasseri, Finegoldia, Other Phyloptypes
10Mangot-Bertrand et al. (2013) FranceVaginalIVF patients (N = 307)SqPCRLactobacillus spp., G. vaginalis, A. vaginae, Mycoplasma hominis
11Pendharkar et al. (2013) South AfricaVaginalPremenopausal black women with or without BV (N = 30)SCulture, PCRComplete 16 S rRNA geneBLASTN, Genbank accession numberL. crispatus, L. iners, L. gasseri, L. jensenii, L. vaginalis, L. ruminis, L. mucosae, L. paracasei, L. coleohominis
12Brotman et al. (2014) USAMid-vaginalPremenopausal women (30)NSNGSV1–V2RDP Classifier, Lactobacillus: speciateITL. crispatus L. iners, L. gasseri, L. jensenni, Atopobium, Megasphaera, Prevotella, Sneathia, Streptococcus, Ruminococcaceae, Lachnospiraceae, Aerococcus, Lachnospiraceae, Anaerococcus, Diaphorobacter, Peptinophilus, Lachnospiraceae, Parvimonas, L.otu2, Proteobacteria, Proteobacteria, Dialister, Veillonella, Ruminococcaceae, Finegoldia
13Liu, et al. (2013) ChinaVaginal fornix and lower third of vaginaHealthy women and women with BV and/or VVC (N = 95)NSNGSV6Global Alignment for Sequence Taxonomy (GAST)Lactobacillus, Gardnerella, Streptococcus, Prevotella, Granulicatella, Bifidobacterium, Dialister, Sneathia, Alloscardovia, Parvimonas, Escherichia, Peptostreptococcus, Anaerococcus, Haemophilus, Peptinophilus, Bacillus, Aquabacterium, Mobiluncus, Sphingomonas, Ralstonia
14Bahaabadi et al. (2014) IranVaginalInfertile women (N = 100)SPCRNCBI gene bankM. hominis
15Albert et al. (2015) CanadaVaginalHealthy reproductive-age women (N = 310)NSNGS, cpn60 PCRV3Bowtie 2, mPUMA, cpn60 reference databaseL. crispatus, L. jensenii, Atopobium vaginae, Streptococcus devriesei, L. acidophilus, L. iners, Weissella viridescens, Desulfotalea psychorophila, Peptoniphilus harei, Clostridium innocuum Streptococcus parasanguinis, Gardnerella vaginalis subgroup A, Gardnerella vaginalis subgroup C, Prevotella tannerae, Faecalibacterium prausnitzii, L. gasseri, Sphingobium yanoikuyae, Gardnerella vaginals subgroup B, Massilia timonae, Acidaminococcus fermentans, Megasphaera sp. genomsp. type 1, Prevotella timonensis
16Gautam et al. (2015) Kenya, Rwanda, South Afrcia, TanzaniaCervicovaginalPregnant and non-pregnant women (N = 430)NSMicroarrayRibosomal Database Project, GenbankL. crispatus, L. iners, Gardnerella vaginalis, Atopobium vaginae, Prevotella spp., G. vaginalis, A. vaginae, Prevotella spp., Dialister, Megasphaera spp., Mobiluncus spp., lowest abundance L. iners, Prevotella spp., Megasphaera spp.
17Jespers et al. (2015) AfricaVaginalPregnant and non-pregnant women (N430)SCulture, qPCRLactobacillus genus, Lactobacillus crispatus, Lactobacillus iners, Lactobacillus jensenii, Lactobacillus gasseri, Lactobacillus vaginalis, Gardnerella vaginalis, Atopobium vaginae, Prevotella bivia, Escherichia coli, Candida albicans
18Mitchell et al. (2015) USAVaginalWomen undergoing hysterectomy for benign disease (N = 58)SCulture, qPCRPrevotella spp., L. Iners, L. Crispatus, G vaginalis, A vaginae, L. jensenii
19Moreno et al. (2016) SpainPosterior fornixFertile women (N = 13)NSNGSV3–V5QIIME, UCLUST algorithmLactobacillus spp., Atopobium, Clostridium, Gardnerella, Megasphaera, Parvimonas, Prevotella, Sphingomonas, Sneathia genera, Gardnerella, Clostridium, Sneathia, Prevotella spp., Atopobium, Gardnerella, Prevotella, or Sneathia
20Haahr et al. (2016) DenmarkPosterior fornixIVF patients (N = 130)SCulture, qPCRAtopobium vaginae, Gardnerella vaginalis, L. Iners, L. Crispatus, L. Jensenii, L. Gasseri
21de Vieira Santos-Greatti et al. (2016) BrazilVaginalNon-pregnant reproductive-age women (N = 783)SqPCRG. vaginalis
22Zozaya et al. (2016) USAVaginalWomen with or without BV (N = 96)NSPyrosequencingRibosomal Database ProjectMegasphaera, BVAB1, P. bivia, Prevotella, Gardnerella, Aerococcus, L. iners, Porphyromonas, Sneathia, Leptotrichia, Atopobium, Actinomyces, Megasphaera1, Eggerthella, Anaerococcus, Dialister, BVAB2, M. hominis, Peptoniphilus, Lactobacillus sp., Barnesiella, Gemella, Peptostreptococcus, Parvimonas, P. disiens
23Babu et al. (2017) IndiaPosterior fornixHealthy women and women with infertility problems (N = 200)NSCultureHealthy: Lactobacillus, Micrococcus, Enterococcus, Coagulase-negative Staphylococcus spp.
24Freitas and Hill (2017) CanadaVaginalHealthy reproductive-age women (N = 492)Scpn60 PCR, qPCRV3cpnDB reference databaseBifidobacterium breve, B. longum, B. dentium, Alloscardovia omnicolens
25Kim et al. (2017) KoreaPosterior fornixPregnant women (N = 168)SqPCRL. crispatus, L. iners, L. jensenii, L. gasseri, L., vaginalis, G. vaginalis and A. vaginae
26Nasioudis et al. (2017) USAPosterior vaginal wallFirst trimester pregnant women (N = 154)NSNGSV1–V3Lactobacillus crispatus, L. iners, L. gasseri, Gardnerella, L. jensenii, Streptococcus, Bifidobacterium, L. helveticus, L. acidophilus, L. johnsonii
27Campisciano et al. (2017) ItalyCervical-vaginalInfertile and fertile women (N = 96)NSNGSV1–V3Vaginal 16 S rDNA Reference DatabaseIdiopathic bacilli, Actinobacteria, Gammaproteobacteria, Tenericutes, Clostridia, Bacteroidia
28Wee et al. (2017) AustraliaPosterior fornixInfertile women and fertile controls (N = 31)NSNGS, PCRBacilli, Actinobacteria, Gammaproteobacteria, Tenericutes
29Son et al. (2018) KoreaPosterior fornixPregnant women (1) first trimester (N = 221), (2) second trimester (N = 138)NSCulture
  • E. coli, Enterobacteriae, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Enterococcus faecalis, Candida, Gram-negative bacteria, Gram-positive cocci, Other gram-positive cocci

  • E. coli, Enterobacteriae, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus agalactiae, Candida, Gram-negative bacteria, Gram-positive cocci, Other gram-positive cocci

Anatomical region: Cervix
30Fotouh and Al-Inany (2008) EgyptCervical mucus samples, catheter tipIVF/ICSI patients (N = 25)NSCultureStaphylococcus aureus, Coagulase-negative staphylococcus Streptococci, Diphteroids, Lactobacilli, Gram-negative bacteria, Klebsilla spp., Pseudomonous spp., Proteus, Non-lactose fermenters, E. coli
31Simhan and Krohn (2009) USACervicalPregnant women first trimester (N = 218)SCulture or PCRNeisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis
32Prabha, Aanam, and Kaur (2011) IndiaCervical areaWomen with unexplained infertility (N = 27)NSCultureStaphylococci, Micrococci, Streptococci, Bacillus, E. coli, Pseudomonas
33Costoya et al. (2012) ChileIntracervicalPatients with tubo-peritoneal infertility and normal fertile patients (N = 60)SPCRSYBR Safe DNA gel stainMycoplasmas
34Cicinelli et al. (2012) ItalyCervicalWomen referred for diagnostic hysteroscopy (N = 404)SCultureStreptococci, E. coli, E. Faecalis, Ureaplasma, Gardnerella vaginalis
35Ekanem et al. (2012) NigeriaCervical canalNon-pregnant reproductive-age women (N = 225)NSCultureLactobacillus sp., Diphtheroids, Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus faecalis, Bacteroides sp., Peptostreptococcus. sp., E. coli, Candida albican, Gardnerella vaginalis, Streptococcus agalactiae, Peptococcus sp., Clostridium sp., Proteus sp.
36Smith et al. (2012) Costa RicaExfoliated cervical cellsWomen (N = 10)NSSanger sequencing, NGSV6, V6–V9usearch, RDP Classifier, pplacerLactobacillus, Gardnerella, Prevotella, Megasphaera, BVAB1/Clostridiales, Howardella
37Kasprzykowska et al. (2014) PolandCervicalWomen with no symptoms of genital tract infection (N = 40)SPCRMycoplasma spp., U. Parvum, U. Urealyticum
38Anahtar et al. (2015) South AfricanCervicalHIV-negative women (N = 94)NSNGS, WGSV4Fusobacterium, Aerococcus, Sneathia, Gemella, Mobiluncus, Prevotella, Shuttleworthia, Clostridiales, Mycoplasma, Lactobacillus iners, Leptotrichiaceae
39Gautam et al. (2015) Kenya, Rwanda, South Africa, TanzaniaCervicovaginalPregnant and non-pregnant women (N = 430)SPCRNeisseria gonorrhoeae, Chlamydia trachomatis
40de Vieira Santos-Greatti et al. (2016) BrazilEndocervicalNon-pregnant reproductive-age women (N = 783)SPCRC. trachomatis, N. gonorrhoeae
41Seo et al. (2016) South KoreaCervicalWomen with CIN and control women (N = 137)NSNGSV1–V3EzTaxon-e, BLASTN, Mothur
42Panda et al. (2016) IndiaCervicalUnexplained infertile women (N = 296)NScultureMicrococcus spp., diptheroids, non-enterococcal group D Streptococcus, Staphylococcus aureus, coagulase negative Staphylococcus, Enterococcus spp., Bacillus spp., E. coli, Klebsiella spp., Acinetobacter spp., Candida spp.
43Campisciano et al. (2017) ItalyCervical-vaginalIdiopathic (1), Infertile (2) and fertile (3) women (N = 96)NSNGSV1–V3(3) Bacilli, Actinobacteria, Gammaproteobacteri, Tenericutes
44Wee et al. (2017) AustraliaEndocervical canalInfertile women and fertile controls (N = 31)NSNGS, PCRNo information
45Campos et al. (2018) BrazilEndocervixWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma urealyticum, Ureaplasma parvum
46Di et al. (2018) ItalyEndocervicalWomen (N = 35)SNGSV3–V4SILVA rRNA reference databaseC. trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Mycoplasma, Candida, Firmicutes, Actinobacteria, Fusobacteria, Proteobacteria, Tenericutes, Bacteroidetes, Lactobacillus, Atopobium, Bifidobacterium, L. crispatus, L. gasseri, L. inesr, Leptotrichia amnionii, Gardnerella vaginalis, Prevotella spp. Actinobacteria, L. crispatus, L. gasseri, Leptotrichia amnionii, G. vaginalis, Prevotella spp.
47Graspeuntner et al. (2018) GermanyCervixWomen with infectious (1) and non-infectious infertility (2), female sex workers (3) and healthy controls (4) (N = 190)NSculture, PCR, NGSV3/V4(3) Lactobacillus, Gardnerella, Prevotella, Sneathia, Clostridiales, N. gonorrhoeae, C. trachomatis (4) Lactobacillus, Gardnerella, Prevotella, Sneathia, C. trachomatis
48Taylor et al. (2018) USACervicalWomen (N = 250)SPCRC. trachomatis, N. gonorrhoeae, M. genitalium, G. vaginalis, Sneathia spp., U. urealyticum, A. vaginae, BVAB1
Anatomical region: Endometrium
49Fotouh and Al-Inany (2008) EgyptCervical mucus samples, catheter tipIVF/ICSI patients (N = 25)NSCultureStaphylococcus aureus, Coagulase-negative staphylococcus, Streptococci, Diphteroids, Lactobacilli, Klebsilla spp., Pseudomonous spp., Proteus, Non-lactose fermenters, E. coli
50Cicinelli et al. (2012) ItalyEndometrialWomen referred for diagnostic hysteroscopy (N = 404)SCultureStreptococcus Agalactiae, Enterococcus faecalis, E. coli, U. urealyticum, Mycoplasma, Staphylococci, Gardnerella vaginalis
51Moreno et al. (2016) SpainEndometrial fluidFertile women and IVF patients (N = 70)SNGSV3–V5Ribosomal database project classifier method v2.2Lactobacillus, Gardnerella, Bifidobacterium, Streptococcus, Prevotella
52Verstraelen et al. (2016) The NetherlandsEndometrial tissue and mucusWomen with various reproductive conditions (N = 19)NSNGSV1–2Ribosomal Database Project, NCBI databaseBacteroides xylanisolven, Bacteroides thetaiotaomicron, Bacteroides fragilis, Bacteroides vulgatus, Bacteroides ovatus,Pelomonas, Betaproteobacteria, Escherichia/Shigella, Chitinophagaceae. Lactobacillus iners, Prevotella amnii, Lactobacillus crispatus, Gardnerella vaginalis, Atopobium vaginae
53Franasiak et al. (2016) USAEndometrial (transfer catheter)Patients undergoing embryo transfer (N = 33)NSNGSV2–4–8, V3–6, V7–9RDP classifier (Naïve Bayesian classification), Greengenes databaseFlavobacterium, Lactobacillus, Limnohabitans, Polynucleobacter, Bdellovibrio, Chryseobacterium, Spirochaeta, Clostridium, Blvii28, Pseudomonas, Fluviicola, Paludibacter, Curvibacter, Methylotenera, Pelosinus, Acidovorax, Delftia, Janthinobacterium, Streptococcus, Candidatus Aquiluna, Pedobacter, Caloramator, Sulfuricurvum, Shuttleworthia, Salinibacterium, Sulfurospirillum, Paucibacter, Acinetobacter, Microbacterium, Cellvibrio
54Tao et al. (2017) USAEndometrial (transfer catheter)IVF patients (N = 70)NSNGSV4RDP 2.2 in QIIME using the Greengenes databaseLactobacillus spp., Corynebacterium spp., Bifidobacterium spp., Staphylococcus spp., Streptococcus
55Wee et al. (2017) AustraliaEndometrial biopsyInfertile women and controls (N = 31)NSqPCRNo information
56Moreno et al. (2018) ItalyEndometrial biopsyPatients assessed for chronic endometritis (N = 113)SCulture, PCR, NGSV2–4–8, V3–6, V7–9Greengenes databaseChlamydia trachomatis, Enterococcus, E. coli, Gardnerella vaginalis, Klebsiella pneumoniae, Mycoplasma hominis, Neisseria gonorrhoeae, Staphylococcus, Streptococcus
57Taylor et al. (2018) USAEndometrialWomen (N = 250)SPCRE. faecalis, E. coli, Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus mitis and yeasts
Anatomical region: Upper Genital Tract
58Costoya et al. (2012) ChileFallopian tubal flushingsPatients with tubo-peritoneal infertility and normal fertile patients (N = 60)SPCRSYBR Safe DNA gel stainMycoplasmas
59Kasprzykowska et al. (2014) PolandFluid from the pouch of DouglasWomen with no symptoms of genital tract infection (N = 40)SqPCRMycoplasma spp., U. Parvum, U. Urealyticum
60Pelzer et al. (2011) AustraliaFollicular fluidART patients (N = 71)NSCulture, PCRBasic Local Alignment Search Tool (BLAST, NCBI)Actinomyces species, A. israelii, A. naeslundii, C. parapsilosis, C. auromucosum, Fusobacterium spp., Lactobacillus spp., L. iners, P. avidum, P. granulosum, P. propionicus, Prevotella disiens, P. melanogenicus, Peptinophilus asaccharolyticus, Peptostreptococcus spp., Staphylococcus spp., Propionibacterium, Prevotella, Staphylococcus spp.
61Pelzer et al. (2012) AustraliaFollicular fluidIVF patients (N = 36)NSCulture, qPCRBasic Local Alignment Search Tool (BLAST, NCBI)Lactobacillus gasseri, L. Crispatus, L. Jensenii, CoNS, Propionibacterium spp., Peptostreptococcus spp., B. Longum, S. Agalactiae, S. Anginosus, Micrococcus spp., Salmonella enterica, E. coli, Lactobacillus species, Propionibacterium spp., Peptostreptococcus spp., Salmonella enterica
62Pelzer et al. (2013) AustraliaFollicular fluidIVF couples (N = 263)SCultureBasic Local Alignment Search Tool (BLAST, NCBI)Lactobacillus spp., Bifidobacterium spp., Staphylococcus spp.
63Mitchell et al. (2015) USAUpper genital tract: endocervix + endometrial fluidWomen undergoing hysterectomy for benign disease (N = 58)SCulture, qPCRLactobacillus iners, L crispatus, L jensenii, Gardnerella vaginalis, Atopobium vaginae, Megasphaera spp., Prevotella spp., Leptotrichia/Sneathia, BVAB1, BVAB2, BVAB3
64Campos et al. (2018) BrazilPeritoneal fluidWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium, Mycoplasma hominis
65Campos et al. (2018) BrazilBiopsied tissue samplesWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium
No.(Author, year) CountrySamplePopulation (N)Selective/non-selectiveTechnique16 S rRNA regionDatabaseTaxonomic assignment (reported)
Anatomical region: Vagina
1Pascual et al. (2006) ArgentinaPosterior fornixReproductive-age women (N = 100)SCultureL. acidophilus, L. fermentum, L. gasseri, L. brevsi, L. jensenii, L. casei subsp. casei, L. delbrueckii subsp. delbrueckii, Peptostreptococci, Streptococci, Bifidobacteria, Propionibacteria
2Aleshkin et al. (2006) RussiaVaginal wallPregnant and non-pregnant women, healthy pregnant women (first trimester) (N = 200)NSCultureLactobacillus spp., Gardnerella vaginalis, Bifidobacterium spp., Clostridium spp., Propionibacterium spp., Mobiluncus spp., Peptostreptococcus spp., Peptococcus spp., Bacteroides spp., Prevotella spp., Porphyromonas spp., Fusobacterium spp., Veillonella spp., Corynebacterium spp., Staphylococcus spp., Streptococcus spp., Streptococcus group B, Streptococcus group D, Neisseria spp., Enterobacteriaceae, Candida spp.
3Anukam et al. (2006) NigeriaVaginalHealthy premenopausal women (N = 241)SPCRV2–V3GenBank DNA databases, BLAST algorithmL. iners, L. gasseri, L. plantarum, L. suntoryeus, L. crispatus, L. rhamnosu, L. vaginalis, Lactobacillus spp., L. fermentum, L. helveticus, L. johnsonii, L. salivarius
4Jakobsson and Forsum (2007) SwedenUpper third vaginaIVF patients (N = 22)SCulture, NGSL. iners, L. gasseri, L. jensenii, Mobiluncus
5Garg et al. (2009) IndiaHigh vaginal wallHealthy reproductive-age women (N = 80)SCulture, PCRBLASTL. reuteri, L. fermentum, L. salivarius, L. plantarum, L. crispatus, L. jensenii), L. gasseri, L. acidophilus, L. casei, L. paracasei, L. rhamnosus, L. delbruckii
6Pelzer et al. (2011) AustraliaVaginalIVF patients (N = 71)SCulture, PCRBasic Local Alignment Search Tool (BLAST, NCBI)A. meyeri, Bacteroides spp., Bifidobacterium spp., Bifidobacterium spp., Candida albicans, C. glabrata, Clostridium butyricum, C. ramosum, Corynebacterium spp., Escherichia coli, Enterococcus faecalis, Egghertella lenta, Gemella spp., L. crispatus, L. gasseri, L. jensenii, Propionibacterium acnes, S. epidermidis, S. lugdunensis, Sterptococcus spp., S. agalactiae, S. viridans
7Hyman et al. (2012) USAPosterior fornixIVF patients (N = 30)NSSanger SequencingRibosomal Database Project (RDP)Lactobacillus
8Ekanem et al. (2012) NigeriaPosterior fornixNon-pregnant reproductive-age women (N = 220)NSCultureLactobacillus sp., Diphtheroids, Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus faecalis, Bacteroides sp., Peptostreptococcus sp., Eschericia coli, Candida albicans, Gardnerella vaginalis, Streptococcus agalactiae, Peptococcus sp., Clostridium sp., Proteus sp.
9Gajer et al. (2012) USAMid-vaginalReproductive-age women (N = 32)NSNGSV1–V2RDP Naïve Bayesian Classifier, Lactobacillus: speciateITL. iners, Atopobium,L. jensenii, Prevotella, Aerococcus, Shigella, Megasphaera, Eggerthella, Gemella, Peptoniphilus, L. gasseri, Finegoldia, Other Phyloptypes
10Mangot-Bertrand et al. (2013) FranceVaginalIVF patients (N = 307)SqPCRLactobacillus spp., G. vaginalis, A. vaginae, Mycoplasma hominis
11Pendharkar et al. (2013) South AfricaVaginalPremenopausal black women with or without BV (N = 30)SCulture, PCRComplete 16 S rRNA geneBLASTN, Genbank accession numberL. crispatus, L. iners, L. gasseri, L. jensenii, L. vaginalis, L. ruminis, L. mucosae, L. paracasei, L. coleohominis
12Brotman et al. (2014) USAMid-vaginalPremenopausal women (30)NSNGSV1–V2RDP Classifier, Lactobacillus: speciateITL. crispatus L. iners, L. gasseri, L. jensenni, Atopobium, Megasphaera, Prevotella, Sneathia, Streptococcus, Ruminococcaceae, Lachnospiraceae, Aerococcus, Lachnospiraceae, Anaerococcus, Diaphorobacter, Peptinophilus, Lachnospiraceae, Parvimonas, L.otu2, Proteobacteria, Proteobacteria, Dialister, Veillonella, Ruminococcaceae, Finegoldia
13Liu, et al. (2013) ChinaVaginal fornix and lower third of vaginaHealthy women and women with BV and/or VVC (N = 95)NSNGSV6Global Alignment for Sequence Taxonomy (GAST)Lactobacillus, Gardnerella, Streptococcus, Prevotella, Granulicatella, Bifidobacterium, Dialister, Sneathia, Alloscardovia, Parvimonas, Escherichia, Peptostreptococcus, Anaerococcus, Haemophilus, Peptinophilus, Bacillus, Aquabacterium, Mobiluncus, Sphingomonas, Ralstonia
14Bahaabadi et al. (2014) IranVaginalInfertile women (N = 100)SPCRNCBI gene bankM. hominis
15Albert et al. (2015) CanadaVaginalHealthy reproductive-age women (N = 310)NSNGS, cpn60 PCRV3Bowtie 2, mPUMA, cpn60 reference databaseL. crispatus, L. jensenii, Atopobium vaginae, Streptococcus devriesei, L. acidophilus, L. iners, Weissella viridescens, Desulfotalea psychorophila, Peptoniphilus harei, Clostridium innocuum Streptococcus parasanguinis, Gardnerella vaginalis subgroup A, Gardnerella vaginalis subgroup C, Prevotella tannerae, Faecalibacterium prausnitzii, L. gasseri, Sphingobium yanoikuyae, Gardnerella vaginals subgroup B, Massilia timonae, Acidaminococcus fermentans, Megasphaera sp. genomsp. type 1, Prevotella timonensis
16Gautam et al. (2015) Kenya, Rwanda, South Afrcia, TanzaniaCervicovaginalPregnant and non-pregnant women (N = 430)NSMicroarrayRibosomal Database Project, GenbankL. crispatus, L. iners, Gardnerella vaginalis, Atopobium vaginae, Prevotella spp., G. vaginalis, A. vaginae, Prevotella spp., Dialister, Megasphaera spp., Mobiluncus spp., lowest abundance L. iners, Prevotella spp., Megasphaera spp.
17Jespers et al. (2015) AfricaVaginalPregnant and non-pregnant women (N430)SCulture, qPCRLactobacillus genus, Lactobacillus crispatus, Lactobacillus iners, Lactobacillus jensenii, Lactobacillus gasseri, Lactobacillus vaginalis, Gardnerella vaginalis, Atopobium vaginae, Prevotella bivia, Escherichia coli, Candida albicans
18Mitchell et al. (2015) USAVaginalWomen undergoing hysterectomy for benign disease (N = 58)SCulture, qPCRPrevotella spp., L. Iners, L. Crispatus, G vaginalis, A vaginae, L. jensenii
19Moreno et al. (2016) SpainPosterior fornixFertile women (N = 13)NSNGSV3–V5QIIME, UCLUST algorithmLactobacillus spp., Atopobium, Clostridium, Gardnerella, Megasphaera, Parvimonas, Prevotella, Sphingomonas, Sneathia genera, Gardnerella, Clostridium, Sneathia, Prevotella spp., Atopobium, Gardnerella, Prevotella, or Sneathia
20Haahr et al. (2016) DenmarkPosterior fornixIVF patients (N = 130)SCulture, qPCRAtopobium vaginae, Gardnerella vaginalis, L. Iners, L. Crispatus, L. Jensenii, L. Gasseri
21de Vieira Santos-Greatti et al. (2016) BrazilVaginalNon-pregnant reproductive-age women (N = 783)SqPCRG. vaginalis
22Zozaya et al. (2016) USAVaginalWomen with or without BV (N = 96)NSPyrosequencingRibosomal Database ProjectMegasphaera, BVAB1, P. bivia, Prevotella, Gardnerella, Aerococcus, L. iners, Porphyromonas, Sneathia, Leptotrichia, Atopobium, Actinomyces, Megasphaera1, Eggerthella, Anaerococcus, Dialister, BVAB2, M. hominis, Peptoniphilus, Lactobacillus sp., Barnesiella, Gemella, Peptostreptococcus, Parvimonas, P. disiens
23Babu et al. (2017) IndiaPosterior fornixHealthy women and women with infertility problems (N = 200)NSCultureHealthy: Lactobacillus, Micrococcus, Enterococcus, Coagulase-negative Staphylococcus spp.
24Freitas and Hill (2017) CanadaVaginalHealthy reproductive-age women (N = 492)Scpn60 PCR, qPCRV3cpnDB reference databaseBifidobacterium breve, B. longum, B. dentium, Alloscardovia omnicolens
25Kim et al. (2017) KoreaPosterior fornixPregnant women (N = 168)SqPCRL. crispatus, L. iners, L. jensenii, L. gasseri, L., vaginalis, G. vaginalis and A. vaginae
26Nasioudis et al. (2017) USAPosterior vaginal wallFirst trimester pregnant women (N = 154)NSNGSV1–V3Lactobacillus crispatus, L. iners, L. gasseri, Gardnerella, L. jensenii, Streptococcus, Bifidobacterium, L. helveticus, L. acidophilus, L. johnsonii
27Campisciano et al. (2017) ItalyCervical-vaginalInfertile and fertile women (N = 96)NSNGSV1–V3Vaginal 16 S rDNA Reference DatabaseIdiopathic bacilli, Actinobacteria, Gammaproteobacteria, Tenericutes, Clostridia, Bacteroidia
28Wee et al. (2017) AustraliaPosterior fornixInfertile women and fertile controls (N = 31)NSNGS, PCRBacilli, Actinobacteria, Gammaproteobacteria, Tenericutes
29Son et al. (2018) KoreaPosterior fornixPregnant women (1) first trimester (N = 221), (2) second trimester (N = 138)NSCulture
  • E. coli, Enterobacteriae, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus agalactiae, Enterococcus faecalis, Candida, Gram-negative bacteria, Gram-positive cocci, Other gram-positive cocci

  • E. coli, Enterobacteriae, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus agalactiae, Candida, Gram-negative bacteria, Gram-positive cocci, Other gram-positive cocci

Anatomical region: Cervix
30Fotouh and Al-Inany (2008) EgyptCervical mucus samples, catheter tipIVF/ICSI patients (N = 25)NSCultureStaphylococcus aureus, Coagulase-negative staphylococcus Streptococci, Diphteroids, Lactobacilli, Gram-negative bacteria, Klebsilla spp., Pseudomonous spp., Proteus, Non-lactose fermenters, E. coli
31Simhan and Krohn (2009) USACervicalPregnant women first trimester (N = 218)SCulture or PCRNeisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis
32Prabha, Aanam, and Kaur (2011) IndiaCervical areaWomen with unexplained infertility (N = 27)NSCultureStaphylococci, Micrococci, Streptococci, Bacillus, E. coli, Pseudomonas
33Costoya et al. (2012) ChileIntracervicalPatients with tubo-peritoneal infertility and normal fertile patients (N = 60)SPCRSYBR Safe DNA gel stainMycoplasmas
34Cicinelli et al. (2012) ItalyCervicalWomen referred for diagnostic hysteroscopy (N = 404)SCultureStreptococci, E. coli, E. Faecalis, Ureaplasma, Gardnerella vaginalis
35Ekanem et al. (2012) NigeriaCervical canalNon-pregnant reproductive-age women (N = 225)NSCultureLactobacillus sp., Diphtheroids, Staphylococcus epidermidis, Staphylococcus aureus, Staphylococcus faecalis, Bacteroides sp., Peptostreptococcus. sp., E. coli, Candida albican, Gardnerella vaginalis, Streptococcus agalactiae, Peptococcus sp., Clostridium sp., Proteus sp.
36Smith et al. (2012) Costa RicaExfoliated cervical cellsWomen (N = 10)NSSanger sequencing, NGSV6, V6–V9usearch, RDP Classifier, pplacerLactobacillus, Gardnerella, Prevotella, Megasphaera, BVAB1/Clostridiales, Howardella
37Kasprzykowska et al. (2014) PolandCervicalWomen with no symptoms of genital tract infection (N = 40)SPCRMycoplasma spp., U. Parvum, U. Urealyticum
38Anahtar et al. (2015) South AfricanCervicalHIV-negative women (N = 94)NSNGS, WGSV4Fusobacterium, Aerococcus, Sneathia, Gemella, Mobiluncus, Prevotella, Shuttleworthia, Clostridiales, Mycoplasma, Lactobacillus iners, Leptotrichiaceae
39Gautam et al. (2015) Kenya, Rwanda, South Africa, TanzaniaCervicovaginalPregnant and non-pregnant women (N = 430)SPCRNeisseria gonorrhoeae, Chlamydia trachomatis
40de Vieira Santos-Greatti et al. (2016) BrazilEndocervicalNon-pregnant reproductive-age women (N = 783)SPCRC. trachomatis, N. gonorrhoeae
41Seo et al. (2016) South KoreaCervicalWomen with CIN and control women (N = 137)NSNGSV1–V3EzTaxon-e, BLASTN, Mothur
42Panda et al. (2016) IndiaCervicalUnexplained infertile women (N = 296)NScultureMicrococcus spp., diptheroids, non-enterococcal group D Streptococcus, Staphylococcus aureus, coagulase negative Staphylococcus, Enterococcus spp., Bacillus spp., E. coli, Klebsiella spp., Acinetobacter spp., Candida spp.
43Campisciano et al. (2017) ItalyCervical-vaginalIdiopathic (1), Infertile (2) and fertile (3) women (N = 96)NSNGSV1–V3(3) Bacilli, Actinobacteria, Gammaproteobacteri, Tenericutes
44Wee et al. (2017) AustraliaEndocervical canalInfertile women and fertile controls (N = 31)NSNGS, PCRNo information
45Campos et al. (2018) BrazilEndocervixWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma urealyticum, Ureaplasma parvum
46Di et al. (2018) ItalyEndocervicalWomen (N = 35)SNGSV3–V4SILVA rRNA reference databaseC. trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Mycoplasma, Candida, Firmicutes, Actinobacteria, Fusobacteria, Proteobacteria, Tenericutes, Bacteroidetes, Lactobacillus, Atopobium, Bifidobacterium, L. crispatus, L. gasseri, L. inesr, Leptotrichia amnionii, Gardnerella vaginalis, Prevotella spp. Actinobacteria, L. crispatus, L. gasseri, Leptotrichia amnionii, G. vaginalis, Prevotella spp.
47Graspeuntner et al. (2018) GermanyCervixWomen with infectious (1) and non-infectious infertility (2), female sex workers (3) and healthy controls (4) (N = 190)NSculture, PCR, NGSV3/V4(3) Lactobacillus, Gardnerella, Prevotella, Sneathia, Clostridiales, N. gonorrhoeae, C. trachomatis (4) Lactobacillus, Gardnerella, Prevotella, Sneathia, C. trachomatis
48Taylor et al. (2018) USACervicalWomen (N = 250)SPCRC. trachomatis, N. gonorrhoeae, M. genitalium, G. vaginalis, Sneathia spp., U. urealyticum, A. vaginae, BVAB1
Anatomical region: Endometrium
49Fotouh and Al-Inany (2008) EgyptCervical mucus samples, catheter tipIVF/ICSI patients (N = 25)NSCultureStaphylococcus aureus, Coagulase-negative staphylococcus, Streptococci, Diphteroids, Lactobacilli, Klebsilla spp., Pseudomonous spp., Proteus, Non-lactose fermenters, E. coli
50Cicinelli et al. (2012) ItalyEndometrialWomen referred for diagnostic hysteroscopy (N = 404)SCultureStreptococcus Agalactiae, Enterococcus faecalis, E. coli, U. urealyticum, Mycoplasma, Staphylococci, Gardnerella vaginalis
51Moreno et al. (2016) SpainEndometrial fluidFertile women and IVF patients (N = 70)SNGSV3–V5Ribosomal database project classifier method v2.2Lactobacillus, Gardnerella, Bifidobacterium, Streptococcus, Prevotella
52Verstraelen et al. (2016) The NetherlandsEndometrial tissue and mucusWomen with various reproductive conditions (N = 19)NSNGSV1–2Ribosomal Database Project, NCBI databaseBacteroides xylanisolven, Bacteroides thetaiotaomicron, Bacteroides fragilis, Bacteroides vulgatus, Bacteroides ovatus,Pelomonas, Betaproteobacteria, Escherichia/Shigella, Chitinophagaceae. Lactobacillus iners, Prevotella amnii, Lactobacillus crispatus, Gardnerella vaginalis, Atopobium vaginae
53Franasiak et al. (2016) USAEndometrial (transfer catheter)Patients undergoing embryo transfer (N = 33)NSNGSV2–4–8, V3–6, V7–9RDP classifier (Naïve Bayesian classification), Greengenes databaseFlavobacterium, Lactobacillus, Limnohabitans, Polynucleobacter, Bdellovibrio, Chryseobacterium, Spirochaeta, Clostridium, Blvii28, Pseudomonas, Fluviicola, Paludibacter, Curvibacter, Methylotenera, Pelosinus, Acidovorax, Delftia, Janthinobacterium, Streptococcus, Candidatus Aquiluna, Pedobacter, Caloramator, Sulfuricurvum, Shuttleworthia, Salinibacterium, Sulfurospirillum, Paucibacter, Acinetobacter, Microbacterium, Cellvibrio
54Tao et al. (2017) USAEndometrial (transfer catheter)IVF patients (N = 70)NSNGSV4RDP 2.2 in QIIME using the Greengenes databaseLactobacillus spp., Corynebacterium spp., Bifidobacterium spp., Staphylococcus spp., Streptococcus
55Wee et al. (2017) AustraliaEndometrial biopsyInfertile women and controls (N = 31)NSqPCRNo information
56Moreno et al. (2018) ItalyEndometrial biopsyPatients assessed for chronic endometritis (N = 113)SCulture, PCR, NGSV2–4–8, V3–6, V7–9Greengenes databaseChlamydia trachomatis, Enterococcus, E. coli, Gardnerella vaginalis, Klebsiella pneumoniae, Mycoplasma hominis, Neisseria gonorrhoeae, Staphylococcus, Streptococcus
57Taylor et al. (2018) USAEndometrialWomen (N = 250)SPCRE. faecalis, E. coli, Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus mitis and yeasts
Anatomical region: Upper Genital Tract
58Costoya et al. (2012) ChileFallopian tubal flushingsPatients with tubo-peritoneal infertility and normal fertile patients (N = 60)SPCRSYBR Safe DNA gel stainMycoplasmas
59Kasprzykowska et al. (2014) PolandFluid from the pouch of DouglasWomen with no symptoms of genital tract infection (N = 40)SqPCRMycoplasma spp., U. Parvum, U. Urealyticum
60Pelzer et al. (2011) AustraliaFollicular fluidART patients (N = 71)NSCulture, PCRBasic Local Alignment Search Tool (BLAST, NCBI)Actinomyces species, A. israelii, A. naeslundii, C. parapsilosis, C. auromucosum, Fusobacterium spp., Lactobacillus spp., L. iners, P. avidum, P. granulosum, P. propionicus, Prevotella disiens, P. melanogenicus, Peptinophilus asaccharolyticus, Peptostreptococcus spp., Staphylococcus spp., Propionibacterium, Prevotella, Staphylococcus spp.
61Pelzer et al. (2012) AustraliaFollicular fluidIVF patients (N = 36)NSCulture, qPCRBasic Local Alignment Search Tool (BLAST, NCBI)Lactobacillus gasseri, L. Crispatus, L. Jensenii, CoNS, Propionibacterium spp., Peptostreptococcus spp., B. Longum, S. Agalactiae, S. Anginosus, Micrococcus spp., Salmonella enterica, E. coli, Lactobacillus species, Propionibacterium spp., Peptostreptococcus spp., Salmonella enterica
62Pelzer et al. (2013) AustraliaFollicular fluidIVF couples (N = 263)SCultureBasic Local Alignment Search Tool (BLAST, NCBI)Lactobacillus spp., Bifidobacterium spp., Staphylococcus spp.
63Mitchell et al. (2015) USAUpper genital tract: endocervix + endometrial fluidWomen undergoing hysterectomy for benign disease (N = 58)SCulture, qPCRLactobacillus iners, L crispatus, L jensenii, Gardnerella vaginalis, Atopobium vaginae, Megasphaera spp., Prevotella spp., Leptotrichia/Sneathia, BVAB1, BVAB2, BVAB3
64Campos et al. (2018) BrazilPeritoneal fluidWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium, Mycoplasma hominis
65Campos et al. (2018) BrazilBiopsied tissue samplesWomen with (1) and without (2) endometriosis (N = 104)SPCR(2) Mycoplasma genitalium
Table II

Included studies for the male reproductive tract. Overview of study characteristics and reported taxonomic assignments.

No.Year (Author) CountrySamplePopulation (N)Selective/non-selectiveTechnique16 S rRNA regionDatabaseTaxonomic assignment (reported)
Sample: Semen
66Virecoulon et al. (2005) FranceSemenPatients from infertile couples (N = 543)NSCulture, PCRCoagulase-negative Staphylococci, Streptococcus agalactiae, S. anginosus, S. constellatus, S. mitis, S. oralis, non-hemolytic Streptococci, Enterococcus spp., Escherichia coli, Proteus mirabilis, Gardnerella vaginalis, Corynebacterium spp., Lactobacillus spp., Ureaplasma urealyticum
67Gdoura et al. (2007) TunisiaSemenInfertile men (N = 120)SPCRU. parvum, M. hominis, M. genitalium
68Kiessling et al. (2008) USASemenMen undergoing fertility evaluation or vasectomy (N = 34)NSTaq polymeraseGenBank BLASTn searchPeptoniphilis, Anaerococcus, Finegoldia, Peptostreptococcus spp., Corynebacterium spp., Staphylococcus, Lactobacillus, Streptococcus, Pseudomonas spp., Haemophilus, Acinetobacter spp.
69Zinzendorf et al. (2008) AfricaSemenAsymptomatic men undergoing fertility evaluation (N = 927)NSCultureU. urealyticum, M. hominis
70Ivanov, Kuzmin, and Gritsenko (2009) RussiaSeminal fluidHealthy (1) men and men with chronic prostatis syndrome (2) (N = 108)NSCulture(1) S. haemolyticus, S. saprophyticus, S. capitis, S. hominis, S. aureus, Corynebacterium genitalium, C. pseudogenitalium, Lactobacillus spp., Streptococcus spp., Micrococcus spp.
71De Francesco et al. (2011) ItalySemenMen investigated for subfertility and healthy normo-zoospermic controls (N = 732)NSCultureGardnerella vaginalis, Escherichia coli, Enterococcus spp. Ureaplasma urealyticus, Staphylococcus spp., Streptococcus agalactiae, Enterococcus sp., Streptococcus viridans, Escherichia coli, Morganella morganii, Proteus mirabilis, Citrobacter koseri, Enterobacter aerogenes, Klebsiella pneumoniae, Serratia fonticola
72Domes et al. (2012) CanadaSemenNon-azoospermic subfertile men (N = 4935)NSCultureEnterococcus fecalis, E. coli, group B Streptococcus, Staphylococcus aureus, Klebsiella pneumoniae Proteus mirabilis, Citrobacter koseri, Morganella morganii
73Hou et al. (2013) ChinaSemenSperm donors and infertility patients (N = 77)NSCulture, pyrosequencingV1–V2SILVA bacterial sequence database with the use of MothurStreptococcus, Corynebacterium, Finegoldia, Veillonella. Lactobacillus, Prevotella, Staphylococcus, Anaerococcus, Peptoniphilus, Incertae sedis, Porphyromonas, Clostridiales, Corynebacterium, Finegoldia, Anaerococcus, Ralstonia, Streptococcus, Pelomonas, Acidovorax, Atopobium, Veillonella, Prevotella, Aerococcus, Gemella
74Bahaabadi et al. (2014) IranSemenInfertile men (N = 100)SqPCRNCBI gene bankMycoplasma, M. hominis
75Weng et al. (2014) TaiwanSemenMen (N = 96)NSNGSLactobacillus iners, Prevotella sp., Gardnerella sp., Lactobacillus sp., Pseudomonas sp., Prevotella bivia. Genera; Lactobacillus Pseudomonas, Prevotella, Gardnerella, Rhodanobacter, Streptococcus, Finegoldia, Haemophilus
76Filipiak et al. (2015) PolandSemenInfertile men (N = 72)SCultureE. faecalis, E. coli, S. aureus, Ureaplasma sp., Ch. Trachomatis, Klebsiella oxytoca, Morganella morganii, Proteus mirabilis, M. hominis, Chlamydia
77Palini et al. (2016) ItalySemenPatients admitted to semen analysis (N = 20)NS/SPCR, cultureStaphylococcus spp., viridans streptococci, Gram-negative bacilli (not identified), Proteus mirabilis, Escherichia coli, Enterococci
78Godovalov and Karpunina (2016) RussiaSeminal plasmaMen of infertile couples (N = 71)SCultureStreptococci, Enterococci, Staphylococci, Candida fungi, Enterobacteria, anaerobes
79Ahmadi et al. (2017) IranSeminal fluid(1) Infertile men having abnormal semen parameters and (2) healthy fertile men (N = 330)SqPCR, culture(2) M. hominis
80Mändar et al. (2017) EstoniaSemenMen with (1) and without (2) prostatitis (N = 67)NSNGSV6(2) Lactobacillus iners, Lactobacillus crispatus, Gardnerella vaginalis, Corynebacterium seminale, Peptoniphilus asaccharolyticus, Atopobium vaginae, Enterobacter cowanii, Pseudomonas veronii, Campylobacter rectus, Bacteroides ureolyticus, Anaerococcus hydrogenalis, Streptococcus infantis, Acinetobacter johnsonii, Varibaculum cambriense, Peptostreptococcus anaerobius, Janthinobacterium lividum
81Chen et al. (2018) ChinaSeminal plasma(1) Healthy men, (2) patients with obstructive and non-obstructive azoospermia (N = 17)NSNGSRDP classifier(1) Lactobacillus, Prevotella, Proteus, Pseudomonas, Veillonella, Corynebacterium, Rhodococcus, Staphylococcus and Bacillus
82ItalyUrine, semen(1) Infertile patients and (2) healthy volunteers (N = 660)NSCulture(2) Enterococcus faecalis, E. coli, Staphylococcus haemolyticus, Streptococcus agalactiae, Proteus mirabilis, Klebsiella pneumoniae
83Monteiro et al. (2018) PortugalSemen(1) Infertility-related cases and (2) controls (N = 118)NSNGSV3–V6Greengenes database(2) Enterococcus, Staphylococcus, Anaerococcus, Peptoniphilus, Caulobacteraceae, Pasteurellaceae Aggregatibacter, Pasteurellaceae Haemophilus, Enterobacteriaceae Klebsiella, Enterobacteriaceae Morganella, Actinobacteria Actinomycetaceae, Actinobacteria Corynebacterium, Actinobacteria Propionibacterium, Bacteriodetes Flavobacteriaceae
Anatomical region: Coronal Sulcus
84Price et al. (2010) UgandaCoronal sulcusHIV-negative men before (1) and after (2) circumcision (N = 12)NSPyrosequencingV3–V4Ribosomal Database Project (RDP) Naı¨ve Bayesian Classifier(1) Pseudomonadaceae, Oxalobacteraceae, Corynebacteriaceae, Clostridiales Family XI, Staphylococcaceae, Prevotellaceae, Moraxellaceae, Comamonadaceae, Bifidobacteriaceae. Xanthomonadaceae, Enterobacteriaceae, Fusobacteriaceae, Aeromonadaceae, Veillonellaceae, Sphingomonadaceae, Aerococcaceae, Peptostreptococcaceae, Carnobacteriaceae, Streptococcaceae, Micrococcaceae, Flavobacteriaceae, Burkholderiales Family V, Porphyromonadaceae, Caulobacteraceae, Enterococcaceae, Lachnospiraceae, Burkholderiaceae, Campylobacteraceae, Coriobacteriaceae, Rhodocyclaceae, Actinomycetaceae, Intrasporangiaceae, Planctomycetaceae, Halomonadaceae, Brevibacteriaceae, Bradyrhizobiaceae, Mycoplasmataceae, Pseudomonadales Family VI (2) Pseudomonadaceae, Oxalobacteraceae, Corynebacteriaceae, Clostridiales Family XI, Staphylococcaceae, Prevotellaceae, Moraxellaceae, Comamonadaceae, Bifidobacteriaceae. Xanthomonadaceae, Enterobacteriaceae, Fusobacteriaceae, Aeromonadaceae, Veillonellaceae, Sphingomonadaceae, Aerococcaceae, Peptostreptococcaceae, Carnobacteriaceae, Streptococcaceae, Micrococcaceae, Flavobacteriaceae, Burkholderiales Family V, Bacillaceae, Caulobacteraceae, Enterococcaceae, Burkholderiaceae, Rhodocyclaceae, Actinomycetaceae, Intrasporangiaceae, Planctomycetaceae, Halomonadaceae, Brevibacteriaceae, Neisseriaceae, Bradyrhizobiaceae, Dermabacteraceae, Rhodobacteraceae, Pseudomonadales Family VI
85Nelson et al. (2012) AmericaCoronal sulcusAdolescent men (N = 18)NSSanger, PCR, pyrosequencingV1–V3, V3–V5, V6–V9NCBI using BLASTN, subset: SILVA databaseCorynebacteria, Staphylococcus, Anaerococcus. Peptoniphilus, Prevotella, Finegoldia, Porphyromonas, Propionibacterium, Delftia. Corynebacterium, Staphylococcus, Anaerococcus, Unclassified, Prevotella, Peptoniphilus, Finegoldia, Porphyromonas, Propionibacterium, Delftia
86Liu et al. (2013) UgandaCoronal sulcusCircumcised (1) and uncircumcised (2) men (N = 156)NSqPCR, pyrosequencingV3–V6Ribosomal Database Project Naïve Bayesian Classifier(1) Peptoniphilus spp., Anaerococcus spp., Unclassified Clostridiales, Prevotella spp., Finegoldia spp., Murdochiella spp., Porphyromonas spp., Corynebacterium spp., Dialister spp., Negativicoccus spp., Peptostreptococcus sp., Mobiluncus spp., Gardnerella spp., Lactobacillus spp., Staphylococcus spp., Saccharofermentans spp., Streptococcus spp., Actinomyces spp., Veillonella spp., Peptococcus spp., Olsenella spp., Arcanobacterium spp., Howardella spp., Parvimonas spp., Atopobium spp., Sneathia spp., Sutterella spp., Moryella spp., Peptostreptococcaceae family, Treponema spp., Fusobacterium spp., Pyramidobacter spp., Facklamia spp., Anaerosphaera spp., Kocuria spp., Megasphaera spp., Micrococcus spp., Gemella spp., Ralstonia spp.
(2) Peptoniphilus spp., Anaerococcus spp., Prevotella spp., Finegoldia spp., Murdochiella spp., Porphyromonas spp., Corynebacterium spp., Dialister spp., Negativicoccus spp., Peptostreptococcus spp., Mobiluncus spp., Gardnerella spp., Lactobacillus spp., Staphylococcus spp., Saccharofermentans spp., Streptococcus spp., Actinomyces spp., Veillonella spp., Peptococcus spp., Olsenella spp., Arcanobacterium spp., Howardella spp., Parvimonas spp., Atopobium spp., Sneathia spp., Sutterella spp., Moryella spp., Peptostreptococcaceae family, Treponema spp., Fusobacterium spp., Pyramidobacter spp., Facklamia spp., Anaerosphaera spp., Kocuria spp., Megasphaera spp., Micrococcus spp., Gemella spp., Ralstonia spp.
87Zozaya et al. (2016) USAUrethral and penile skinMale partners of women with (1) and without (2) BV (N = 130)NSPyrosequencingMegasphaera, BVAB1, P. bivia, Prevotella, Gardnerella, Aerococcus, L. iners, Porphyromonas, Sneathia, Leptotrichia, Atopobium, Actinomyces, Megasphaera1, Eggerthella, Anaerococcus, Dialister, BVAB2, M. hominis, Peptoniphilus, Lactobacillus sp., Barnesiella, Gemella, Peptostreptococcus, Parvimonas, P. disiens
Sample: Urine
88Virecoulon et al. (2005) FranceFfirst void urinePatients from infertile couples (N = 543)SPCRChlamydia
89Nelson et al. (2012) USAUrineAdolescent men (N = 18)NSSanger, PCR, pyrosequencingV1–V3, V3–V5, V6–V9NCBI using BLASTN, subset: SILVA databaseCorynebacteria, Staphylococcus, Anaerococcus, Peptoniphilus), Prevotella, Finegoldia, Porphyromonas, Propionibacterium, Delftia, Streptocccus, Lactobacillus, Staphylococcus, Gardnerella, Unclassified, Corynebacterium, Veillonella, Anaerococcus, Prevotella, Escherichia/Shigella
No.Year (Author) CountrySamplePopulation (N)Selective/non-selectiveTechnique16 S rRNA regionDatabaseTaxonomic assignment (reported)
Sample: Semen
66Virecoulon et al. (2005) FranceSemenPatients from infertile couples (N = 543)NSCulture, PCRCoagulase-negative Staphylococci, Streptococcus agalactiae, S. anginosus, S. constellatus, S. mitis, S. oralis, non-hemolytic Streptococci, Enterococcus spp., Escherichia coli, Proteus mirabilis, Gardnerella vaginalis, Corynebacterium spp., Lactobacillus spp., Ureaplasma urealyticum
67Gdoura et al. (2007) TunisiaSemenInfertile men (N = 120)SPCRU. parvum, M. hominis, M. genitalium
68Kiessling et al. (2008) USASemenMen undergoing fertility evaluation or vasectomy (N = 34)NSTaq polymeraseGenBank BLASTn searchPeptoniphilis, Anaerococcus, Finegoldia, Peptostreptococcus spp., Corynebacterium spp., Staphylococcus, Lactobacillus, Streptococcus, Pseudomonas spp., Haemophilus, Acinetobacter spp.
69Zinzendorf et al. (2008) AfricaSemenAsymptomatic men undergoing fertility evaluation (N = 927)NSCultureU. urealyticum, M. hominis
70Ivanov, Kuzmin, and Gritsenko (2009) RussiaSeminal fluidHealthy (1) men and men with chronic prostatis syndrome (2) (N = 108)NSCulture(1) S. haemolyticus, S. saprophyticus, S. capitis, S. hominis, S. aureus, Corynebacterium genitalium, C. pseudogenitalium, Lactobacillus spp., Streptococcus spp., Micrococcus spp.
71De Francesco et al. (2011) ItalySemenMen investigated for subfertility and healthy normo-zoospermic controls (N = 732)NSCultureGardnerella vaginalis, Escherichia coli, Enterococcus spp. Ureaplasma urealyticus, Staphylococcus spp., Streptococcus agalactiae, Enterococcus sp., Streptococcus viridans, Escherichia coli, Morganella morganii, Proteus mirabilis, Citrobacter koseri, Enterobacter aerogenes, Klebsiella pneumoniae, Serratia fonticola
72Domes et al. (2012) CanadaSemenNon-azoospermic subfertile men (N = 4935)NSCultureEnterococcus fecalis, E. coli, group B Streptococcus, Staphylococcus aureus, Klebsiella pneumoniae Proteus mirabilis, Citrobacter koseri, Morganella morganii
73Hou et al. (2013) ChinaSemenSperm donors and infertility patients (N = 77)NSCulture, pyrosequencingV1–V2SILVA bacterial sequence database with the use of MothurStreptococcus, Corynebacterium, Finegoldia, Veillonella. Lactobacillus, Prevotella, Staphylococcus, Anaerococcus, Peptoniphilus, Incertae sedis, Porphyromonas, Clostridiales, Corynebacterium, Finegoldia, Anaerococcus, Ralstonia, Streptococcus, Pelomonas, Acidovorax, Atopobium, Veillonella, Prevotella, Aerococcus, Gemella
74Bahaabadi et al. (2014) IranSemenInfertile men (N = 100)SqPCRNCBI gene bankMycoplasma, M. hominis
75Weng et al. (2014) TaiwanSemenMen (N = 96)NSNGSLactobacillus iners, Prevotella sp., Gardnerella sp., Lactobacillus sp., Pseudomonas sp., Prevotella bivia. Genera; Lactobacillus Pseudomonas, Prevotella, Gardnerella, Rhodanobacter, Streptococcus, Finegoldia, Haemophilus
76Filipiak et al. (2015) PolandSemenInfertile men (N = 72)SCultureE. faecalis, E. coli, S. aureus, Ureaplasma sp., Ch. Trachomatis, Klebsiella oxytoca, Morganella morganii, Proteus mirabilis, M. hominis, Chlamydia
77Palini et al. (2016) ItalySemenPatients admitted to semen analysis (N = 20)NS/SPCR, cultureStaphylococcus spp., viridans streptococci, Gram-negative bacilli (not identified), Proteus mirabilis, Escherichia coli, Enterococci
78Godovalov and Karpunina (2016) RussiaSeminal plasmaMen of infertile couples (N = 71)SCultureStreptococci, Enterococci, Staphylococci, Candida fungi, Enterobacteria, anaerobes
79Ahmadi et al. (2017) IranSeminal fluid(1) Infertile men having abnormal semen parameters and (2) healthy fertile men (N = 330)SqPCR, culture(2) M. hominis
80Mändar et al. (2017) EstoniaSemenMen with (1) and without (2) prostatitis (N = 67)NSNGSV6(2) Lactobacillus iners, Lactobacillus crispatus, Gardnerella vaginalis, Corynebacterium seminale, Peptoniphilus asaccharolyticus, Atopobium vaginae, Enterobacter cowanii, Pseudomonas veronii, Campylobacter rectus, Bacteroides ureolyticus, Anaerococcus hydrogenalis, Streptococcus infantis, Acinetobacter johnsonii, Varibaculum cambriense, Peptostreptococcus anaerobius, Janthinobacterium lividum
81Chen et al. (2018) ChinaSeminal plasma(1) Healthy men, (2) patients with obstructive and non-obstructive azoospermia (N = 17)NSNGSRDP classifier(1) Lactobacillus, Prevotella, Proteus, Pseudomonas, Veillonella, Corynebacterium, Rhodococcus, Staphylococcus and Bacillus
82ItalyUrine, semen(1) Infertile patients and (2) healthy volunteers (N = 660)NSCulture(2) Enterococcus faecalis, E. coli, Staphylococcus haemolyticus, Streptococcus agalactiae, Proteus mirabilis, Klebsiella pneumoniae
83Monteiro et al. (2018) PortugalSemen(1) Infertility-related cases and (2) controls (N = 118)NSNGSV3–V6Greengenes database(2) Enterococcus, Staphylococcus, Anaerococcus, Peptoniphilus, Caulobacteraceae, Pasteurellaceae Aggregatibacter, Pasteurellaceae Haemophilus, Enterobacteriaceae Klebsiella, Enterobacteriaceae Morganella, Actinobacteria Actinomycetaceae, Actinobacteria Corynebacterium, Actinobacteria Propionibacterium, Bacteriodetes Flavobacteriaceae
Anatomical region: Coronal Sulcus
84Price et al. (2010) UgandaCoronal sulcusHIV-negative men before (1) and after (2) circumcision (N = 12)NSPyrosequencingV3–V4Ribosomal Database Project (RDP) Naı¨ve Bayesian Classifier(1) Pseudomonadaceae, Oxalobacteraceae, Corynebacteriaceae, Clostridiales Family XI, Staphylococcaceae, Prevotellaceae, Moraxellaceae, Comamonadaceae, Bifidobacteriaceae. Xanthomonadaceae, Enterobacteriaceae, Fusobacteriaceae, Aeromonadaceae, Veillonellaceae, Sphingomonadaceae, Aerococcaceae, Peptostreptococcaceae, Carnobacteriaceae, Streptococcaceae, Micrococcaceae, Flavobacteriaceae, Burkholderiales Family V, Porphyromonadaceae, Caulobacteraceae, Enterococcaceae, Lachnospiraceae, Burkholderiaceae, Campylobacteraceae, Coriobacteriaceae, Rhodocyclaceae, Actinomycetaceae, Intrasporangiaceae, Planctomycetaceae, Halomonadaceae, Brevibacteriaceae, Bradyrhizobiaceae, Mycoplasmataceae, Pseudomonadales Family VI (2) Pseudomonadaceae, Oxalobacteraceae, Corynebacteriaceae, Clostridiales Family XI, Staphylococcaceae, Prevotellaceae, Moraxellaceae, Comamonadaceae, Bifidobacteriaceae. Xanthomonadaceae, Enterobacteriaceae, Fusobacteriaceae, Aeromonadaceae, Veillonellaceae, Sphingomonadaceae, Aerococcaceae, Peptostreptococcaceae, Carnobacteriaceae, Streptococcaceae, Micrococcaceae, Flavobacteriaceae, Burkholderiales Family V, Bacillaceae, Caulobacteraceae, Enterococcaceae, Burkholderiaceae, Rhodocyclaceae, Actinomycetaceae, Intrasporangiaceae, Planctomycetaceae, Halomonadaceae, Brevibacteriaceae, Neisseriaceae, Bradyrhizobiaceae, Dermabacteraceae, Rhodobacteraceae, Pseudomonadales Family VI
85Nelson et al. (2012) AmericaCoronal sulcusAdolescent men (N = 18)NSSanger, PCR, pyrosequencingV1–V3, V3–V5, V6–V9NCBI using BLASTN, subset: SILVA databaseCorynebacteria, Staphylococcus, Anaerococcus. Peptoniphilus, Prevotella, Finegoldia, Porphyromonas, Propionibacterium, Delftia. Corynebacterium, Staphylococcus, Anaerococcus, Unclassified, Prevotella, Peptoniphilus, Finegoldia, Porphyromonas, Propionibacterium, Delftia
86Liu et al. (2013) UgandaCoronal sulcusCircumcised (1) and uncircumcised (2) men (N = 156)NSqPCR, pyrosequencingV3–V6Ribosomal Database Project Naïve Bayesian Classifier(1) Peptoniphilus spp., Anaerococcus spp., Unclassified Clostridiales, Prevotella spp., Finegoldia spp., Murdochiella spp., Porphyromonas spp., Corynebacterium spp., Dialister spp., Negativicoccus spp., Peptostreptococcus sp., Mobiluncus spp., Gardnerella spp., Lactobacillus spp., Staphylococcus spp., Saccharofermentans spp., Streptococcus spp., Actinomyces spp., Veillonella spp., Peptococcus spp., Olsenella spp., Arcanobacterium spp., Howardella spp., Parvimonas spp., Atopobium spp., Sneathia spp., Sutterella spp., Moryella spp., Peptostreptococcaceae family, Treponema spp., Fusobacterium spp., Pyramidobacter spp., Facklamia spp., Anaerosphaera spp., Kocuria spp., Megasphaera spp., Micrococcus spp., Gemella spp., Ralstonia spp.
(2) Peptoniphilus spp., Anaerococcus spp., Prevotella spp., Finegoldia spp., Murdochiella spp., Porphyromonas spp., Corynebacterium spp., Dialister spp., Negativicoccus spp., Peptostreptococcus spp., Mobiluncus spp., Gardnerella spp., Lactobacillus spp., Staphylococcus spp., Saccharofermentans spp., Streptococcus spp., Actinomyces spp., Veillonella spp., Peptococcus spp., Olsenella spp., Arcanobacterium spp., Howardella spp., Parvimonas spp., Atopobium spp., Sneathia spp., Sutterella spp., Moryella spp., Peptostreptococcaceae family, Treponema spp., Fusobacterium spp., Pyramidobacter spp., Facklamia spp., Anaerosphaera spp., Kocuria spp., Megasphaera spp., Micrococcus spp., Gemella spp., Ralstonia spp.
87Zozaya et al. (2016) USAUrethral and penile skinMale partners of women with (1) and without (2) BV (N = 130)NSPyrosequencingMegasphaera, BVAB1, P. bivia, Prevotella, Gardnerella, Aerococcus, L. iners, Porphyromonas, Sneathia, Leptotrichia, Atopobium, Actinomyces, Megasphaera1, Eggerthella, Anaerococcus, Dialister, BVAB2, M. hominis, Peptoniphilus, Lactobacillus sp., Barnesiella, Gemella, Peptostreptococcus, Parvimonas, P. disiens
Sample: Urine
88Virecoulon et al. (2005) FranceFfirst void urinePatients from infertile couples (N = 543)SPCRChlamydia
89Nelson et al. (2012) USAUrineAdolescent men (N = 18)NSSanger, PCR, pyrosequencingV1–V3, V3–V5, V6–V9NCBI using BLASTN, subset: SILVA databaseCorynebacteria, Staphylococcus, Anaerococcus, Peptoniphilus), Prevotella, Finegoldia, Porphyromonas, Propionibacterium, Delftia, Streptocccus, Lactobacillus, Staphylococcus, Gardnerella, Unclassified, Corynebacterium, Veillonella, Anaerococcus, Prevotella, Escherichia/Shigella
Table II

Included studies for the male reproductive tract. Overview of study characteristics and reported taxonomic assignments.

No.Year (Author) CountrySamplePopulation (N)Selective/non-selectiveTechnique16 S rRNA regionDatabaseTaxonomic assignment (reported)
Sample: Semen
66Virecoulon et al. (2005) FranceSemenPatients from infertile couples (N = 543)NSCulture, PCRCoagulase-negative Staphylococci, Streptococcus agalactiae, S. anginosus, S. constellatus, S. mitis, S. oralis, non-hemolytic Streptococci, Enterococcus spp., Escherichia coli, Proteus mirabilis, Gardnerella vaginalis, Corynebacterium spp., Lactobacillus spp., Ureaplasma urealyticum
67Gdoura et al. (2007) TunisiaSemenInfertile men (N = 120)SPCRU. parvum, M. hominis, M. genitalium
68Kiessling et al. (2008) USASemenMen undergoing fertility evaluation or vasectomy (N = 34)NSTaq polymeraseGenBank BLASTn searchPeptoniphilis, Anaerococcus, Finegoldia, Peptostreptococcus spp., Corynebacterium spp., Staphylococcus, Lactobacillus, Streptococcus, Pseudomonas spp., Haemophilus, Acinetobacter spp.
69Zinzendorf et al. (2008) AfricaSemenAsymptomatic men undergoing fertility evaluation (N = 927)NSCultureU. urealyticum, M. hominis
70Ivanov, Kuzmin, and Gritsenko (2009) RussiaSeminal fluidHealthy (1) men and men with chronic prostatis syndrome (2) (N = 108)NSCulture(1) S. haemolyticus, S. saprophyticus, S. capitis, S. hominis, S. aureus, Corynebacterium genitalium, C. pseudogenitalium, Lactobacillus spp., Streptococcus spp., Micrococcus spp.
71De Francesco et al. (2011) ItalySemenMen investigated for subfertility and healthy normo-zoospermic controls (N = 732)NSCultureGardnerella vaginalis, Escherichia coli, Enterococcus spp. Ureaplasma urealyticus, Staphylococcus spp., Streptococcus agalactiae, Enterococcus sp., Streptococcus viridans, Escherichia coli, Morganella morganii, Proteus mirabilis, Citrobacter koseri, Enterobacter aerogenes, Klebsiella pneumoniae, Serratia fonticola
72Domes et al. (2012) CanadaSemenNon-azoospermic subfertile men (N = 4935)NSCultureEnterococcus fecalis, E. coli, group B Streptococcus, Staphylococcus aureus, Klebsiella pneumoniae Proteus mirabilis, Citrobacter koseri, Morganella morganii
73Hou et al. (2013) ChinaSemenSperm donors and infertility patients (N = 77)NSCulture, pyrosequencingV1–V2SILVA bacterial sequence database with the use of MothurStreptococcus, Corynebacterium, Finegoldia, Veillonella. Lactobacillus, Prevotella, Staphylococcus, Anaerococcus, Peptoniphilus, Incertae sedis, Porphyromonas, Clostridiales, Corynebacterium, Finegoldia, Anaerococcus, Ralstonia, Streptococcus, Pelomonas, Acidovorax, Atopobium, Veillonella, Prevotella, Aerococcus, Gemella
74Bahaabadi et al. (2014) IranSemenInfertile men (N = 100)SqPCRNCBI gene bankMycoplasma, M. hominis
75Weng et al. (2014) TaiwanSemenMen (N = 96)NSNGSLactobacillus iners, Prevotella sp., Gardnerella sp., Lactobacillus sp., Pseudomonas sp., Prevotella bivia. Genera; Lactobacillus Pseudomonas, Prevotella, Gardnerella, Rhodanobacter, Streptococcus, Finegoldia, Haemophilus
76Filipiak et al. (2015) PolandSemenInfertile men (N = 72)SCultureE. faecalis, E. coli, S. aureus, Ureaplasma sp., Ch. Trachomatis, Klebsiella oxytoca, Morganella morganii, Proteus mirabilis, M. hominis, Chlamydia
77Palini et al. (2016) ItalySemenPatients admitted to semen analysis (N = 20)NS/SPCR, cultureStaphylococcus spp., viridans streptococci, Gram-negative bacilli (not identified), Proteus mirabilis, Escherichia coli, Enterococci
78Godovalov and Karpunina (2016) RussiaSeminal plasmaMen of infertile couples (N = 71)SCultureStreptococci, Enterococci, Staphylococci, Candida fungi, Enterobacteria, anaerobes
79Ahmadi et al. (2017) IranSeminal fluid(1) Infertile men having abnormal semen parameters and (2) healthy fertile men (N = 330)SqPCR, culture(2) M. hominis
80Mändar et al. (2017) EstoniaSemenMen with (1) and without (2) prostatitis (N = 67)NSNGSV6(2) Lactobacillus iners, Lactobacillus crispatus, Gardnerella vaginalis, Corynebacterium seminale, Peptoniphilus asaccharolyticus, Atopobium vaginae, Enterobacter cowanii, Pseudomonas veronii, Campylobacter rectus, Bacteroides ureolyticus, Anaerococcus hydrogenalis, Streptococcus infantis, Acinetobacter johnsonii, Varibaculum cambriense, Peptostreptococcus anaerobius, Janthinobacterium lividum
81Chen et al. (2018) ChinaSeminal plasma(1) Healthy men, (2) patients with obstructive and non-obstructive azoospermia (N = 17)NSNGSRDP classifier(1) Lactobacillus, Prevotella, Proteus, Pseudomonas, Veillonella, Corynebacterium, Rhodococcus, Staphylococcus and Bacillus
82ItalyUrine, semen(1) Infertile patients and (2) healthy volunteers (N = 660)NSCulture(2) Enterococcus faecalis, E. coli, Staphylococcus haemolyticus, Streptococcus agalactiae, Proteus mirabilis, Klebsiella pneumoniae
83Monteiro et al. (2018) PortugalSemen(1) Infertility-related cases and (2) controls (N = 118)NSNGSV3–V6Greengenes database(2) Enterococcus, Staphylococcus, Anaerococcus, Peptoniphilus, Caulobacteraceae, Pasteurellaceae Aggregatibacter, Pasteurellaceae Haemophilus, Enterobacteriaceae Klebsiella, Enterobacteriaceae Morganella, Actinobacteria Actinomycetaceae, Actinobacteria Corynebacterium, Actinobacteria Propionibacterium, Bacteriodetes Flavobacteriaceae
Anatomical region: Coronal Sulcus
84Price et al. (2010) UgandaCoronal sulcusHIV-negative men before (1) and after (2) circumcision (N = 12)NSPyrosequencingV3–V4Ribosomal Database Project (RDP) Naı¨ve Bayesian Classifier(1) Pseudomonadaceae, Oxalobacteraceae, Corynebacteriaceae, Clostridiales Family XI, Staphylococcaceae, Prevotellaceae, Moraxellaceae, Comamonadaceae, Bifidobacteriaceae. Xanthomonadaceae, Enterobacteriaceae, Fusobacteriaceae, Aeromonadaceae, Veillonellaceae, Sphingomonadaceae, Aerococcaceae, Peptostreptococcaceae, Carnobacteriaceae, Streptococcaceae, Micrococcaceae, Flavobacteriaceae, Burkholderiales Family V, Porphyromonadaceae, Caulobacteraceae, Enterococcaceae, Lachnospiraceae, Burkholderiaceae, Campylobacteraceae, Coriobacteriaceae, Rhodocyclaceae, Actinomycetaceae, Intrasporangiaceae, Planctomycetaceae, Halomonadaceae, Brevibacteriaceae, Bradyrhizobiaceae, Mycoplasmataceae, Pseudomonadales Family VI (2) Pseudomonadaceae, Oxalobacteraceae, Corynebacteriaceae, Clostridiales Family XI, Staphylococcaceae, Prevotellaceae, Moraxellaceae, Comamonadaceae, Bifidobacteriaceae. Xanthomonadaceae, Enterobacteriaceae, Fusobacteriaceae, Aeromonadaceae, Veillonellaceae, Sphingomonadaceae, Aerococcaceae, Peptostreptococcaceae, Carnobacteriaceae, Streptococcaceae, Micrococcaceae, Flavobacteriaceae, Burkholderiales Family V, Bacillaceae, Caulobacteraceae, Enterococcaceae, Burkholderiaceae, Rhodocyclaceae, Actinomycetaceae, Intrasporangiaceae, Planctomycetaceae, Halomonadaceae, Brevibacteriaceae, Neisseriaceae, Bradyrhizobiaceae, Dermabacteraceae, Rhodobacteraceae, Pseudomonadales Family VI
85Nelson et al. (2012) AmericaCoronal sulcusAdolescent men (N = 18)NSSanger, PCR, pyrosequencingV1–V3, V3–V5, V6–V9NCBI using BLASTN, subset: SILVA databaseCorynebacteria, Staphylococcus, Anaerococcus. Peptoniphilus, Prevotella, Finegoldia, Porphyromonas, Propionibacterium, Delftia. Corynebacterium, Staphylococcus, Anaerococcus, Unclassified, Prevotella, Peptoniphilus, Finegoldia, Porphyromonas, Propionibacterium, Delftia
86Liu et al. (2013) UgandaCoronal sulcusCircumcised (1) and uncircumcised (2) men (N = 156)NSqPCR, pyrosequencingV3–V6Ribosomal Database Project Naïve Bayesian Classifier(1) Peptoniphilus spp., Anaerococcus spp., Unclassified Clostridiales, Prevotella spp., Finegoldia spp., Murdochiella spp., Porphyromonas spp., Corynebacterium spp., Dialister spp., Negativicoccus spp., Peptostreptococcus sp., Mobiluncus spp., Gardnerella spp., Lactobacillus spp., Staphylococcus spp., Saccharofermentans spp., Streptococcus spp., Actinomyces spp., Veillonella spp., Peptococcus spp., Olsenella spp., Arcanobacterium spp., Howardella spp., Parvimonas spp., Atopobium spp., Sneathia spp., Sutterella spp., Moryella spp., Peptostreptococcaceae family, Treponema spp., Fusobacterium spp., Pyramidobacter spp., Facklamia spp., Anaerosphaera spp., Kocuria spp., Megasphaera spp., Micrococcus spp., Gemella spp., Ralstonia spp.
(2) Peptoniphilus spp., Anaerococcus spp., Prevotella spp., Finegoldia spp., Murdochiella spp., Porphyromonas spp., Corynebacterium spp., Dialister spp., Negativicoccus spp., Peptostreptococcus spp., Mobiluncus spp., Gardnerella spp., Lactobacillus spp., Staphylococcus spp., Saccharofermentans spp., Streptococcus spp., Actinomyces spp., Veillonella spp., Peptococcus spp., Olsenella spp., Arcanobacterium spp., Howardella spp., Parvimonas spp., Atopobium spp., Sneathia spp., Sutterella spp., Moryella spp., Peptostreptococcaceae family, Treponema spp., Fusobacterium spp., Pyramidobacter spp., Facklamia spp., Anaerosphaera spp., Kocuria spp., Megasphaera spp., Micrococcus spp., Gemella spp., Ralstonia spp.
87Zozaya et al. (2016) USAUrethral and penile skinMale partners of women with (1) and without (2) BV (N = 130)NSPyrosequencingMegasphaera, BVAB1, P. bivia, Prevotella, Gardnerella, Aerococcus, L. iners, Porphyromonas, Sneathia, Leptotrichia, Atopobium, Actinomyces, Megasphaera1, Eggerthella, Anaerococcus, Dialister, BVAB2, M. hominis, Peptoniphilus, Lactobacillus sp., Barnesiella, Gemella, Peptostreptococcus, Parvimonas, P. disiens
Sample: Urine
88Virecoulon et al. (2005) FranceFfirst void urinePatients from infertile couples (N = 543)SPCRChlamydia
89Nelson et al. (2012) USAUrineAdolescent men (N = 18)NSSanger, PCR, pyrosequencingV1–V3, V3–V5, V6–V9NCBI using BLASTN, subset: SILVA databaseCorynebacteria, Staphylococcus, Anaerococcus, Peptoniphilus), Prevotella, Finegoldia, Porphyromonas, Propionibacterium, Delftia, Streptocccus, Lactobacillus, Staphylococcus, Gardnerella, Unclassified, Corynebacterium, Veillonella, Anaerococcus, Prevotella, Escherichia/Shigella
No.Year (Author) CountrySamplePopulation (N)Selective/non-selectiveTechnique16 S rRNA regionDatabaseTaxonomic assignment (reported)
Sample: Semen
66Virecoulon et al. (2005) FranceSemenPatients from infertile couples (N = 543)NSCulture, PCRCoagulase-negative Staphylococci, Streptococcus agalactiae, S. anginosus, S. constellatus, S. mitis, S. oralis, non-hemolytic Streptococci, Enterococcus spp., Escherichia coli, Proteus mirabilis, Gardnerella vaginalis, Corynebacterium spp., Lactobacillus spp., Ureaplasma urealyticum
67Gdoura et al. (2007) TunisiaSemenInfertile men (N = 120)SPCRU. parvum, M. hominis, M. genitalium
68Kiessling et al. (2008) USASemenMen undergoing fertility evaluation or vasectomy (N = 34)NSTaq polymeraseGenBank BLASTn searchPeptoniphilis, Anaerococcus, Finegoldia, Peptostreptococcus spp., Corynebacterium spp., Staphylococcus, Lactobacillus, Streptococcus, Pseudomonas spp., Haemophilus, Acinetobacter spp.
69Zinzendorf et al. (2008) AfricaSemenAsymptomatic men undergoing fertility evaluation (N = 927)NSCultureU. urealyticum, M. hominis
70Ivanov, Kuzmin, and Gritsenko (2009) RussiaSeminal fluidHealthy (1) men and men with chronic prostatis syndrome (2) (N = 108)NSCulture(1) S. haemolyticus, S. saprophyticus, S. capitis, S. hominis, S. aureus, Corynebacterium genitalium, C. pseudogenitalium, Lactobacillus spp., Streptococcus spp., Micrococcus spp.
71De Francesco et al. (2011) ItalySemenMen investigated for subfertility and healthy normo-zoospermic controls (N = 732)NSCultureGardnerella vaginalis, Escherichia coli, Enterococcus spp. Ureaplasma urealyticus, Staphylococcus spp., Streptococcus agalactiae, Enterococcus sp., Streptococcus viridans, Escherichia coli, Morganella morganii, Proteus mirabilis, Citrobacter koseri, Enterobacter aerogenes, Klebsiella pneumoniae, Serratia fonticola
72Domes et al. (2012) CanadaSemenNon-azoospermic subfertile men (N = 4935)NSCultureEnterococcus fecalis, E. coli, group B Streptococcus, Staphylococcus aureus, Klebsiella pneumoniae Proteus mirabilis, Citrobacter koseri, Morganella morganii
73Hou et al. (2013) ChinaSemenSperm donors and infertility patients (N = 77)NSCulture, pyrosequencingV1–V2SILVA bacterial sequence database with the use of MothurStreptococcus, Corynebacterium, Finegoldia, Veillonella. Lactobacillus, Prevotella, Staphylococcus, Anaerococcus, Peptoniphilus, Incertae sedis, Porphyromonas, Clostridiales, Corynebacterium, Finegoldia, Anaerococcus, Ralstonia, Streptococcus, Pelomonas, Acidovorax, Atopobium, Veillonella, Prevotella, Aerococcus, Gemella
74Bahaabadi et al. (2014) IranSemenInfertile men (N = 100)SqPCRNCBI gene bankMycoplasma, M. hominis
75Weng et al. (2014) TaiwanSemenMen (N = 96)NSNGSLactobacillus iners, Prevotella sp., Gardnerella sp., Lactobacillus sp., Pseudomonas sp., Prevotella bivia. Genera; Lactobacillus Pseudomonas, Prevotella, Gardnerella, Rhodanobacter, Streptococcus, Finegoldia, Haemophilus
76Filipiak et al. (2015) PolandSemenInfertile men (N = 72)SCultureE. faecalis, E. coli, S. aureus, Ureaplasma sp., Ch. Trachomatis, Klebsiella oxytoca, Morganella morganii, Proteus mirabilis, M. hominis, Chlamydia
77Palini et al. (2016) ItalySemenPatients admitted to semen analysis (N = 20)NS/SPCR, cultureStaphylococcus spp., viridans streptococci, Gram-negative bacilli (not identified), Proteus mirabilis, Escherichia coli, Enterococci
78Godovalov and Karpunina (2016) RussiaSeminal plasmaMen of infertile couples (N = 71)SCultureStreptococci, Enterococci, Staphylococci, Candida fungi, Enterobacteria, anaerobes
79Ahmadi et al. (2017) IranSeminal fluid(1) Infertile men having abnormal semen parameters and (2) healthy fertile men (N = 330)SqPCR, culture(2) M. hominis
80Mändar et al. (2017) EstoniaSemenMen with (1) and without (2) prostatitis (N = 67)NSNGSV6(2) Lactobacillus iners, Lactobacillus crispatus, Gardnerella vaginalis, Corynebacterium seminale, Peptoniphilus asaccharolyticus, Atopobium vaginae, Enterobacter cowanii, Pseudomonas veronii, Campylobacter rectus, Bacteroides ureolyticus, Anaerococcus hydrogenalis, Streptococcus infantis, Acinetobacter johnsonii, Varibaculum cambriense, Peptostreptococcus anaerobius, Janthinobacterium lividum
81Chen et al. (2018) ChinaSeminal plasma(1) Healthy men, (2) patients with obstructive and non-obstructive azoospermia (N = 17)NSNGSRDP classifier(1) Lactobacillus, Prevotella, Proteus, Pseudomonas, Veillonella, Corynebacterium, Rhodococcus, Staphylococcus and Bacillus
82ItalyUrine, semen(1) Infertile patients and (2) healthy volunteers (N = 660)NSCulture(2) Enterococcus faecalis, E. coli, Staphylococcus haemolyticus, Streptococcus agalactiae, Proteus mirabilis, Klebsiella pneumoniae
83Monteiro et al. (2018) PortugalSemen(1) Infertility-related cases and (2) controls (N = 118)NSNGSV3–V6Greengenes database(2) Enterococcus, Staphylococcus, Anaerococcus, Peptoniphilus, Caulobacteraceae, Pasteurellaceae Aggregatibacter, Pasteurellaceae Haemophilus, Enterobacteriaceae Klebsiella, Enterobacteriaceae Morganella, Actinobacteria Actinomycetaceae, Actinobacteria Corynebacterium, Actinobacteria Propionibacterium, Bacteriodetes Flavobacteriaceae
Anatomical region: Coronal Sulcus
84Price et al. (2010) UgandaCoronal sulcusHIV-negative men before (1) and after (2) circumcision (N = 12)NSPyrosequencingV3–V4Ribosomal Database Project (RDP) Naı¨ve Bayesian Classifier(1) Pseudomonadaceae, Oxalobacteraceae, Corynebacteriaceae, Clostridiales Family XI, Staphylococcaceae, Prevotellaceae, Moraxellaceae, Comamonadaceae, Bifidobacteriaceae. Xanthomonadaceae, Enterobacteriaceae, Fusobacteriaceae, Aeromonadaceae, Veillonellaceae, Sphingomonadaceae, Aerococcaceae, Peptostreptococcaceae, Carnobacteriaceae, Streptococcaceae, Micrococcaceae, Flavobacteriaceae, Burkholderiales Family V, Porphyromonadaceae, Caulobacteraceae, Enterococcaceae, Lachnospiraceae, Burkholderiaceae, Campylobacteraceae, Coriobacteriaceae, Rhodocyclaceae, Actinomycetaceae, Intrasporangiaceae, Planctomycetaceae, Halomonadaceae, Brevibacteriaceae, Bradyrhizobiaceae, Mycoplasmataceae, Pseudomonadales Family VI (2) Pseudomonadaceae, Oxalobacteraceae, Corynebacteriaceae, Clostridiales Family XI, Staphylococcaceae, Prevotellaceae, Moraxellaceae, Comamonadaceae, Bifidobacteriaceae. Xanthomonadaceae, Enterobacteriaceae, Fusobacteriaceae, Aeromonadaceae, Veillonellaceae, Sphingomonadaceae, Aerococcaceae, Peptostreptococcaceae, Carnobacteriaceae, Streptococcaceae, Micrococcaceae, Flavobacteriaceae, Burkholderiales Family V, Bacillaceae, Caulobacteraceae, Enterococcaceae, Burkholderiaceae, Rhodocyclaceae, Actinomycetaceae, Intrasporangiaceae, Planctomycetaceae, Halomonadaceae, Brevibacteriaceae, Neisseriaceae, Bradyrhizobiaceae, Dermabacteraceae, Rhodobacteraceae, Pseudomonadales Family VI
85Nelson et al. (2012) AmericaCoronal sulcusAdolescent men (N = 18)NSSanger, PCR, pyrosequencingV1–V3, V3–V5, V6–V9NCBI using BLASTN, subset: SILVA databaseCorynebacteria, Staphylococcus, Anaerococcus. Peptoniphilus, Prevotella, Finegoldia, Porphyromonas, Propionibacterium, Delftia. Corynebacterium, Staphylococcus, Anaerococcus, Unclassified, Prevotella, Peptoniphilus, Finegoldia, Porphyromonas, Propionibacterium, Delftia
86Liu et al. (2013) UgandaCoronal sulcusCircumcised (1) and uncircumcised (2) men (N = 156)NSqPCR, pyrosequencingV3–V6Ribosomal Database Project Naïve Bayesian Classifier(1) Peptoniphilus spp., Anaerococcus spp., Unclassified Clostridiales, Prevotella spp., Finegoldia spp., Murdochiella spp., Porphyromonas spp., Corynebacterium spp., Dialister spp., Negativicoccus spp., Peptostreptococcus sp., Mobiluncus spp., Gardnerella spp., Lactobacillus spp., Staphylococcus spp., Saccharofermentans spp., Streptococcus spp., Actinomyces spp., Veillonella spp., Peptococcus spp., Olsenella spp., Arcanobacterium spp., Howardella spp., Parvimonas spp., Atopobium spp., Sneathia spp., Sutterella spp., Moryella spp., Peptostreptococcaceae family, Treponema spp., Fusobacterium spp., Pyramidobacter spp., Facklamia spp., Anaerosphaera spp., Kocuria spp., Megasphaera spp., Micrococcus spp., Gemella spp., Ralstonia spp.
(2) Peptoniphilus spp., Anaerococcus spp., Prevotella spp., Finegoldia spp., Murdochiella spp., Porphyromonas spp., Corynebacterium spp., Dialister spp., Negativicoccus spp., Peptostreptococcus spp., Mobiluncus spp., Gardnerella spp., Lactobacillus spp., Staphylococcus spp., Saccharofermentans spp., Streptococcus spp., Actinomyces spp., Veillonella spp., Peptococcus spp., Olsenella spp., Arcanobacterium spp., Howardella spp., Parvimonas spp., Atopobium spp., Sneathia spp., Sutterella spp., Moryella spp., Peptostreptococcaceae family, Treponema spp., Fusobacterium spp., Pyramidobacter spp., Facklamia spp., Anaerosphaera spp., Kocuria spp., Megasphaera spp., Micrococcus spp., Gemella spp., Ralstonia spp.
87Zozaya et al. (2016) USAUrethral and penile skinMale partners of women with (1) and without (2) BV (N = 130)NSPyrosequencingMegasphaera, BVAB1, P. bivia, Prevotella, Gardnerella, Aerococcus, L. iners, Porphyromonas, Sneathia, Leptotrichia, Atopobium, Actinomyces, Megasphaera1, Eggerthella, Anaerococcus, Dialister, BVAB2, M. hominis, Peptoniphilus, Lactobacillus sp., Barnesiella, Gemella, Peptostreptococcus, Parvimonas, P. disiens
Sample: Urine
88Virecoulon et al. (2005) FranceFfirst void urinePatients from infertile couples (N = 543)SPCRChlamydia
89Nelson et al. (2012) USAUrineAdolescent men (N = 18)NSSanger, PCR, pyrosequencingV1–V3, V3–V5, V6–V9NCBI using BLASTN, subset: SILVA databaseCorynebacteria, Staphylococcus, Anaerococcus, Peptoniphilus), Prevotella, Finegoldia, Porphyromonas, Propionibacterium, Delftia, Streptocccus, Lactobacillus, Staphylococcus, Gardnerella, Unclassified, Corynebacterium, Veillonella, Anaerococcus, Prevotella, Escherichia/Shigella
The reported microbiome composition of the female reproductive tract is discussed and subdivided in four anatomical regions: vaginal, cervix, endometrium and upper reproductive tract (including the fallopian tubes, ovaries and peritoneal fluid). The reported microbiome composition of the male reproductive tract is discussed and subdivided in two categories: semen and coronal sulcus. Figure 4 gives an overview of all the reported microbiota, at the family level for each part of the reproductive tracts. Overview of detected microbiota reported in a minimum of two independent scientific studies, per individual part of the tracts, are shown in Figs 5 and 6. We opted to mainly focus on results of non-selective studies, including both culture-dependent and culture-independent, to minimise bias and to compare the results as fairly as possible.

Figure 4

Representation of all the detected and reported microbiota of the 51 included articles. Bacteria are shown at the level of family, for each part of the reproductive tracts. The legend on the right explains the different bacteria by colour.

Figure 5

Representation of described bacteria described at the level of family per anatomical region or sample. Female: vagina, cervix, endometrium, upper genital tract. Male: semen and coronal sulcus. On the Y-axis are the names of the reported family of bacteria. The X-axis mentions the number of independent publications which detected and reported the microbiota.

Figure 6

Heatmaps indicating the presence or absence of the bacteria at the level of family classified in the publications per anatomical region or sample. Female: vagina, cervix, endometrium and upper genital tract. Male: semen and coronal sulcus. The numbers at the top of each heatmap refers to the selected article in Tables 1 and 2. The Y-axis represents the dendrogram of the reported bacteria.

Results and Discussion

Overview of reported microbiota in literature

Tables 1 and 2 summarise the results of the reported microbiota compositions of the different anatomical regions of the female and male reproductive tract. A subdivision has been made between articles that solely made use of culture-dependent techniques, culture-independent techniques or a combination of a culture-dependent technique followed by culture-independent techniques. In addition, a distinction can be made between articles that made use of a predetermined selection of microorganisms (selective studies) and articles that analysed the whole spectrum of detected microbiota (non-selective studies). To establish an visual overview of the composition of the microbial communities in the different anatomical regions of healthy individuals, we summarised all microbiota on family level when they were reported in at least two independent studies (Figs 4, 5 and 6). To minimise bias and distorted composition, non-selective studies were chosen to compare the microbiome results, since these cover and detect the most extensive overview of present bacteria.

The most common present microbial family present throughout the female reproductive tract as a whole, were Lactobacillaceae. However, each anatomical region seems to carry its own unique distinct composition of microbes (Figs 4, 5 and 6). Within the lowest part of the female reproductive tract, Bifidobacteriaceae, Prevotellaceae and Veillonellaceae, besides Lactobacillaceae, are the most commonly detected bacterial families in the vagina. In addition, only Lactobacillaceae were found regardless of the used technique. Although, the cervical channel is in direct contact with the environment of the vagina, the detected microbiota are different. The cervical microbiota are predominantly composed of Clostridiaceae, Enterobacteriaceae, Staphylococcaceae and Streptococcaceae, along with Lactobacillaceae. When the results are separated by the two different techniques, the compositions of the vaginal and cervical microbiome resemble each other. The culture-dependent technique results for both regions show Enterobacteriaceae, Staphylococcaceae and Streptococcaceae, whereas with the culture-independent technique Lactobacillaceae and Prevotellaceae are detected. In other words, the comparison of the results of the different studies which used the same techniques seems to be more similar.

The reported uterine cavity and endometrial microbiome mainly consist of Streptococcaceae, besides the above-mentioned Lactobacillaceae. As both families are also reported in the vagina (Lactobacillaceae) and cervix (Streptococcaceae), possible contamination during collection cannot be excluded, despite preventive measures. In order to correct for possible contamination by vaginal microbes, endometrial fluid paired with cervical or vaginal samples were compared in several studies (Fotouh and Al-Inany, 2008; Cicinelli et al., 2014a, b; Wee et al., 2017; Taylor et al., 2018). Contamination was assumed if microorganisms were detected in both samples, but the conclusions of these studies vary. Wee et al. (2017) reported that the dominant microbial community members are consistent in the vagina, cervix and endometrium, although the relative proportions varies, while Cicinelli et al. (2012) concluded that the cervical samples have a low concordance (33%) with the endometrial samples.

In our literature overview, no family was reported more than once in uterine or endometrial samples in the culture-dependent techniques articles. We conclude that it is not possible to determine the standard microbiome of the most commonly found bacterial families in the uterine cavity with this technique. However, in the culture-independent studies, Lactobacillaceae, Bifidobacteriaceae, Comamonadaceae and Streptococcaceae were reported more than once in the uterine cavity, suggesting that the culture-independent techniques are more valid. It seems that we can conclude that the microbiome in the uterus indeed has its own composition, since with the exception of Lactobacillaceae, the bacterial families reported were not previously found as the most common bacterial families in the vaginal and cervical microbiomes.

In the upper female reproductive tract, besides Lactobacillaceae, Peptostreptococcaceae and Propionibacteriaceae were detected, both of which have not been reported for any other anatomical part of the reproductive tract.

Microbial collections of the different internal anatomical regions of the male reproductive tract are more difficult to obtain and pose a great risk of contamination. It still needs to be determined whether each of these different parts carry a unique microbiome. Until then, the seminal microbiome is regarded as the collective end result to which all different parts have contributed. The microbial composition of the semen seems to contain Staphylococcaceae, Streptococcaceae, Enterobacteriaceae and Enterococcaceae as well as Lactobacillaceae. The reported presence of microbes in semen are in agreement with our own results (internal communication). The microbiome of the easy accessible coronal sulcus showed different bacterial families as compared to the semen, namely Porphyromonadaceae and Prevotellaceae. The results of the male reproductive tract also indicate the presence of a unique microbiome of the different accessible parts.

Clinical implications for reproductive health

The vagina is the gateway between the external environment and the reproductive tract higher up and can be affected by changes in both exogenous and endogenous sources. One of the possible roles of the microbiome is to protect the reproductive tract against various infections. The above-mentioned results show that the majority of women have a Lactobacillus spp. dominated reproductive tract microbiome, which seems to be essential for preventing entry or overgrowth of pathogens. An important characteristic of Lactobacillus is the production of lactic acid (Gajer et al., 2012), necessary to provide an acidic environment, which interferes with proliferation of other bacteria (Alakomi et al., 2000; O’Hanlon et al., 2011; O’Hanlon et al., 2013). The difference in vaginal microbial composition between women is reflected in their vaginal pH-levels (see below) (Gajer et al., 2012). Another property of the Lactobacilli that interferes with growth of other bacteria is the production of connections, called bacteriocines (Mendes-Soares et al., 2014; Ojala et al., 2014). Furthermore, Lactobacillus produces both d- and l-isomers of lactic acid, whereas the human body itself is only capable of producing the l-isomer (Mendes-Soares et al., 2014). The main advantage of d-lactic acid is that it down-regulates matrix metalloproteinase (MMP)−8, enabling the cervical plug to maintain integrity and thereby limit vertical transmission of vaginal bacteria into the uterus (Witkin et al., 2013). At the same time, Lactobacilli act as a mechanical barrier by binding to the surface of epithelial cells, which prevents the binding of other bacteria (Mendes-Soares et al., 2014; Ojala et al., 2014).

The vaginal microbiome can be divided into five specific major community state types (CST) I–V by using targeted sequencing of the 16 S rRNA gene (Ravel et al., 2011), of which four are dominated by Lactobacillus. Group I is dominated by the specie Lactobacillus crispatus (26.2%), group II by L. gasseri (6.3%), group III by L. iners (34.1%) and group V by L. jensenii (5.3%). Group IV is not dominated by Lactobacillus, but contains a variety of more strict anaerobes (Ravel et al., 2011). CST IV-A is characterised by some Lactobacillus spp. and a variety of strictly anaerobic bacteria, whereas CST IV-B is characterised by a mix of the genus Atopium, Prevotella, Sneathia and Gardnerella among others (Gajer et al., 2012). In addition, Albert et al. (2015) expanded the range of CSTs by using a slightly different technique and observed a CST dominated by Gardnerella subgroups (CST IVC and IVD). Although the impact of hormonal variations in a natural cycle or during ART (Jakobsson and Forsum, 2007; Hyman et al., 2012) on the human vaginal microbiome needs further research, in animal studies hormone therapy has been shown to alter the composition of the vaginal flora due to Lactobacillus being dependent on oestrogens (Bezirtzoglou et al., 2008).

The vaginal microbiome has been found to be dynamic, since women experience transitions between CSTs over time (Gajer et al., 2012). However, not all transitions between CSTs are equally common. CST IV-B often changes into III but rarely into I. CST-I often changes to III or IV-A. CSTIII changes twice as often to IV-B, as compared to IV-A. CST-II rarely changes and no change from CST-I to CST-II has been observed. In addition, CST-II is relatively stable compared to CST IV-A over a 16-week period (Gajer et al., 2012). These findings suggest that point estimates of community composition could be misleading in case participants belong to a community state type that shows considerable changes over time. Most of the transitions to other state types were, however, transient in nature with 35% of all alternative state types persisting for less than a week. Transition between CSTs seems mainly affected by the timing in the menstrual cycle e.g. menstruating or not, the community class itself and by sexual activity (Gajer et al., 2012).

The difference in microbial composition is also reflected in vaginal pH-levels, as mentioned above. CST-I seems to have the lowest median pH (4.0 ± 0.3), whereas CST-IV shows the highest median pH (5.3 ± 0.6). The difference in pH between the different CSTs is most likely explained by the specific dominance of Lactobacilli and ability per Lactobacillus to produce lactic acid (Gajer et al., 2012).

Ethnicity also seems to influence CST. Anahtar et al. (2015) reported a lower percentage (37%) of Lactobacillus dominance and 45% Gardnerella dominant communities in cervicovaginal microbiota of South African women when compared to the Lactobacillus percentage in white (90%) and black (62%) women from earlier publications (Ravel et al., 2011; Zhou et al., 2007). Of the investigated women with Lactobacillus dominance, 77% had L. iners (Anahtar et al., 2015). Despite a difference in CST, Anukam et al. (2006) and Pendharkar et al. (2013) demonstrated that African and Caucasian women are colonised by the same Lactobacillus species.

Vaginitis

Vaginal symptoms such as discharge, odour, itching or burning can be caused by vaginitis. The most common causes are bacterial vaginosis (BV), vulvovaginal candidiasis and trichomoniasis (Sobel, 1997), respectively, associated with overgrowth of the following species: Bacteroides and Mobiluncus, Candida spp. and Trichomonas vaginalis. The pathogens of vaginitis can be determined by use of combination of clinical symptoms and microscopy. Clinical methods to diagnose bacterial vaginosis are based on either Amsel et al. (1983) or Nugent et al. (1991). BV is the most common vaginal microbial disorder, described as a polybacterial dybiosis (van de Wijgert et al., 2014), affecting 30% of the women during reproductive age (Workowski and Bolan, 2015). Anaerobes like Gardnerella, Atopobium, Mobiluncus, Mycoplasma, Dialister, Sneathia and Prevotella are examples of possible agents in BV (Onderdonk et al., 2016; Liu et al. 2013a, b). With BV, the bacterial composition changes to a higher diversity (Gottschick et al., 2017), leading to an increase in vaginal pH (Brooks et al., 2017). Importantly, BV is associated with adverse reproductive outcomes, such as infertility, miscarriage (Donders et al., 2009), recurrent pregnancy loss (three or more successive miscarriages) (Işik et al., 2016) and preterm birth (Onderdonk et al., 2016). Besides microscopy, determination of the vaginal microbiome composition could have great clinical potential for assessing, predicting and treating BV.

Detection of budding yeast or pseudohyphae on wet mount by light microscopy or positive culture are used to diagnose vulvovaginal candidiasis (Workowski and Bolan, 2015).

Trichomoniasis is diagnosed through microscopic observation on wet mount, by culturing or by biochemical detection through antigen-, nucleic acid hybridisation-, or nucleic acid amplification-based assays (Prevention, 2015; Workowski and Bolan, 2015). Although these microbes are distinguishable by light microscopy, we expect the NGS-technique could play a bigger role in diagnosing vaginitis in the near future due to the lack of experienced clinical microscopists.

Infertility and ART

The microbiome of the reproductive tract has been associated with the chance of conception for natural conceptions as well as in ART cycles. Fertility problems could be caused by changes in the microbiome of the female genital tract by ascending pathogens from the vagina to parts of the upper genital tract, local microbial distortion due to haematogenous spread of infective microbes, retrograde spread from the peritoneal cavity (Schoenmakers et al., 2018) or hormonal influences ultimately leading to a dysbalanced and dysbiotic uterine environment (Haahr et al., 2016). Besides lactic acid, Lactobacilli produce bacteriocins (as mentioned above) and hydrogen peroxide (Petrova et al., 2015), which aid in inhibiting pathogens and promote a supportive environment for embryonic implantation and survival.

Women with infertility problems show a reduced number of cervical Lactobacillus (Graspeuntner et al., 2018), a lower abundance of vaginal L. iners and a higher abundance of Candida, a higher prevalence of asymptomatic bacterial vaginosis, the presence of certain specific bacteria such as Atopobium vaginae, Ureaplasma vaginae, U. parvum, U. urealyticum and Gardnerella and a lower frequency of Mycoplasmateceae species, as compared to healthy women (Costoya et al., 2012; Urszula et al., 2014; Panda et al., 2016; Babu et al., 2017; Campisciano et al., 2017; Wee et al., 2017). In infertility due to infection (Graspeuntner et al., 2018), a decrease in Lactobacillus and a higher cervical microbial diversity was detected, with a significant higher read count of Gardnerella, Prevotella, Leptotrichia amnionii and Sneathia as compared to fertile controls (Di et al., 2018; Graspeuntner et al., 2018). In line with the protective and supportive characteristics of Lactobacilli, are the recent findings that a Lactobacillus-dominated (>90% Lactobacillus spp.) endometrial microbiome profile correlates with reproductive success (Moreno et al., 2016) and that the percentages of Lactobacilli spp. in both the vagina and the endometrium of IVF patients versus non-IVF patients and healthy volunteers were significantly lower (Kyono et al., 2018). Moreover, the presence of non-Lactobacillus-dominated microbiota, especially with detection of the genera Gardnerella (family Bifidobacteriaceae) and Streptococcus (family Streptococcaceae), in the endometrial fluid seems to be associated with significant decreases in implantation, ongoing pregnancy and live birth rates (Moreno et al., 2016). Women with a live birth showed a lower species diversity index of the vaginal microbiome as compared to women with no live birth, with a vaginal composition consisting solely of Lactobacillus yielding the highest chance of success (Hyman et al., 2014). In contrast, Fotouh and Al-Inany (2008) and Franasiak et al. (2016) demonstrated that the role of the microbial composition of, respectively, the cervical canal and the endometrium during embryo transfer is limited and does not significantly affect pregnancy rates. In addition, specific endometrial microbiome profiles could be related to chronic endometritis (CE; Cicinelli et al., 2014a, b), which seems to cause a predisposition to infertility caused by endometriosis (Khan et al., 2014), repeated implantation failure (Cicinelli et al., 2014a, b) and recurrent miscarriage (Cicinelli et al., 2014a, b). In IVF patients, a negative correlation was found between abnormal vaginal microbiota or BV and clinical pregnancy rate (Mangot-Bertrand et al., 2013; Haahr et al., 2016). However, it has been shown that an increase of opportunistic pathogens in the female genital tract always correlates with decreased frequency of Lactobacillus species (Aleshkin et al., 2006) and has been associated with lower success rates of ART. However, a Cochrane review investigating the prophylactic use of antibiotics in relation to the subsequent clinical pregnancy rate found no significant influence (Kroon et al., 2012). This conclusion is based on a study (Brook et al., 2006) with 350 ART patients in whom no difference was found in clinical pregnancy rate between those receiving antibiotics prior to embryo transfer and those not (OR 1.02, 95% CI 0.66–1.58), although genital tract colonisation was significantly more likely in women who did not receive antibiotics prior to ET compared to those who did (OR 0.59, 95% CI 0.37–0.95).

Obstetrical complications

After achieving an ongoing pregnancy, the microbiome of the female reproductive tract continues to play a role (Schoenmakers et al., 2018). Due to the pregnancy, only the vagina is accessible, limiting microbiome research of the reproductive tract during pregnancy. Embryonic development and growth are largely dependent on placental function, which suggests that the recently determined placental microbiome could influence foetal and pregnancy outcome (Aagaard et al., 2012). A state of dysbiosis in the vagina, endometrium or placenta could ultimately lead to an adverse implantation and pregnancy outcome. Although the timing of preterm birth (between 24 and <37 weeks of gestation) is outside of the scope of this review, it seems to find its origin just before mid-gestation (Stout et al., 2017).

At the end of the first trimester of pregnancy, the vaginal microbiome is mostly composed of L. crispatus, L. iners, L. gasseri or L. jensenii (Kim et al., 2017b). Son et al. (2018) concludes that abnormal vaginal colonisation, with Klebsiella pneumonia as the most significant microbe, in the second trimester is associated with a significant increase in preterm delivery before 28 weeks of gestation, whereas S. agalactiae colonisation in the second trimester demonstrated a higher late miscarriage rate. In addition, abnormal vaginal colonisation detected in the second trimester was associated with a lower rate of live births compared with the group without bacterial colonisation. Dominant presence of L. iners at 16 weeks of gestation is significantly associated with early preterm birth before 34 weeks, while high abundance of L. crispatus seems to predict term birth (Kindinger et al., 2017). Women who deliver at term seem to have a stable diversity and richness in vaginal microbes, whereas in women who deliver preterm, microbial richness and diversity is decreased significantly between the first and second trimester (Stout et al., 2017). Additionally, placentas of preterm birth show a different microbiome as compared to term placentas (McElrath et al., 2008).

Semen microbiome and reproductive health

Another route of introduction of microbiota into the female reproductive tract is via semen. Recent analyses have shown the presence of a seminal microbiome (Table 2), which most likely is the combined result of each part of the male reproductive tract. NGS techniques showed that seminal bacterial communities can be clustered into three groups, dominated by either Lactobacillus, Pseudomonas or Prevotella. Importantly, 80% of the normal semen samples belonged to the Lactobacillus-dominated group (Weng et al., 2014). Not only does the semen harbour its own microbiome, the microbiota also seems to be able to attach to spermatozoa prior to ejaculation (Toth et al., 1982; Svenstrup et al., 2003; Keith and Berger, 1985) and are able to hitchhike into the female reproductive tract.

The presence of Mycoplasma spp. has been associated with low sperm concentration and abnormal sperm morphology (Gdoura et al., 2007; Zinzendorf et al., 2008). According to the data of Ahmadi et al. (2017), the frequency of Mycoplasma hominis is significantly higher in infertile compared to fertile men and moreover, antibiotic therapy improved the semen quality of infertile men. In line with the female reproductive tract, less Lactobacilli and a higher species diversity was seen in male reproductive disease (Mändar et al., 2017). An increase of Neisseria, Klebsiella and Pseudomonas and a reduction in Lactobacillus has recently been linked to seminal hyperviscosity and oligoasthenoteratozoospermia (Monteiro et al., 2018), indicating that sexual transmitted diseases (STDs) hamper not only female fertility.

Interaction between male and female reproductive tract microbiomes

Besides discussing the microbiome of the female and male reproductive tract separately, we want to stress the fact that the male and female microbiome are influenced by each other and seem to interact.

When Mandar et al. (2015) compared the seminal and vaginal microbiomes of couples, they found a high number of shared DNA sequences or phylotypes (85%). Among the shared phylotypes, the most abundant genera were Lactobacillus, Veillonella, Streptococcus, Porphyromonas and Atopobium. Although, seminal communities were more diverse, in line with above-mentioned finding, semen had lower total bacterial concentrations than vaginal communities.

The semen microbiome significantly, although temporarily, affects the vaginal microbiome (Borovkova et al., 2011). Intercourse results in vaginal alkalisation, reflected in an increase in Nugent scores accompanied by shifts in local microbiota, with Staphylococci and Streptococci being the most frequent cultured species. Importantly, in case of lower Nugent scores, these shifts occurred less, indicating a protective role of the acid pH produced by Lactobacillus dominant microbiota. However, Eschenbach et al. (2001) showed no effect on vaginal Lactobacilli and pH measurement 8–12 h after intercourse, yet significantly more E. coli were found in the vagina. A physiological post-coital, but temporary, condition has been proposed by Leppaluoto (2011), which involves the replacement of vaginal Lactobacillus by Gardnerella vaginalis through the neutralising power of the ejaculate, resulting in pH changes.

Extensive research in rodents, has shown that exposure to seminal fluid leads to cytokine signalling within the female reproductive tract altering endometrium receptivity and dynamics of preimplantation embryo development. If in humans (repeated) exposure to seminal fluid will have the same effect also need to be determined (Robertson and Sharkey, 2016).

How the interaction between the female and male reproductive microbiome influences each other is still unknown. Also, whether a temporary combined female–male microbiome occurs during the post-coital period, perhaps even persisting into the preimplantation period and aiding in a successful conception (Fig. 7), should be clarified in future research.

Figure 7

The seminal microbiome and uterine microbiome of human reproduction before and during conception.

Future perspectives in microbiome research

Comparability

This review shows that the variety of studied cohorts and the different techniques used to assess the microbiota make it difficult to compare studies. Moreover, it has been shown that bacterial communities vary among different populations and ethnicities. Last but not least, it seems that there are discernible differences between microbiota from healthy controls and women with reproductive diseases. Lack of standardisation hampers reliable comparison between different study outcomes. These differences within and between women and men, either healthy (Gajer et al., 2012) or diseased (Mehta et al., 2015), or subjected to different interventions (Liu et al. 2013a, b), make it difficult to extend these results to a wider population of infertile couples. In this review, all microbial compositions of the included studies were analysed, which has resulted in a refined impression of the microbiota present per anatomical region of the reproductive tract in healthy women and men. Still, the need to define differences between individuals is essential to link bacterial community composition to states of health and treatment outcomes. In addition to the interpersonal variability, there might also be intrapersonal variability since most studies only sampled participants once. However, studies that sampled several times over a longer period of time do report microbial changes over time. Switches between CSTs has been observed in vaginal microbiota within the same women over time (Gajer et al., 2012; Mehta et al., 2015). In future studies, the Jensen–Shannon divergence index (Abou-Moustafa, 2014) should be used in order to measure the variability, to provides a quantitative measure of community stability. Moreover, precise phenotyping of patients and controls should be done in order to reduce differences between populations.

Dynamics

After the initial microbiome studies allowed definition of the microbial composition, nowadays research is focussing on factors that may impact on the composition of the microbiome, such as the effect of circumcision (Liu et al. 2013a, b) and the menstrual cycle (Johnson et al., 1985). Longitudinal studies have demonstrated that the vaginal microbiota can be dynamic. Dramatic shifts in bacterial composition and concentration have been observed in response to numerous endogenous and exogenous factors. It seems that the reproductive microbiome is responsive to sexual intercourse, a prior history of BV, a greater number of sexual partners and a greater number of recent episodes of receptive oral sex (Schwebke et al., 1999).

The fact that the microbiome in general, including that of the vagina, is dynamic, provides new opportunities to adjust a disbalanced composition or simply await a return to a balanced composition in order to improve reproductive outcomes.

Function

Understanding which microbial species or community types represent potentially dysbiotic states, and whether manipulation to reduce risk is feasible or effective, first requires a better understanding of the composition and their function. The ultimate goal is determining the function of the female and male reproductive tract microbiota, and which factors can change it for the better. Nonetheless, fluctuations in community composition through time or endogenous and exogenous factors does not necessarily lead to a change in community performance. Fluctuations could occur while maintaining community performance due to perseverance of the metabolic state, when there is functional redundancy among community members and when shifts in the relative abundances of species occur due to changes in environmental conditions that favour one population over another. Future research into the composition of the metabolome will possibly reveal this complex interaction between species and host-microbe interactions.

Applicability

Research into the reproductive tract microbiome has focused on identification of specific bacterial species or microbiome compositions that might impact on clinical outcomes. In this review, we described studies that investigated the role of the microbiome in female health, fertility, infertility, ART and obstetrical outcomes.

Standardisation remains a critical issue hampering implementation of microbiome analysis in clinical practice. Each research group should thoroughly describe the whole process of their microbiome assessment, including used protocols, platforms used, sequenced regions and databases used, including data analysis pipelines, which will probably accelerate the implementation of results into daily clinical practice.

Given the reported associations between the microbiome of the female and male reproductive tract and clinical outcomes in the field of reproductive health, clinical analysis of the microbiome could become a tool for possible risk assessment and therapeutics in the future. Routine screening of the vaginal microbiome, as a proxy for the reproductive outcome, in all women undergoing fertility treatments, might become an option.

Acknowledgements

We would like to thank D.A.J. Hilster for creating the figures.

Authors’ roles

R.K., S.M., A.B., J.L. and S.S. were involved in the design, execution and analysis of this review. All authors contributed to the drafting of the manuscript. R.K., S.M., D.F., S.S. and J.L. were responsible for the final editing, A.B., C.B., J.L. and S.S. reviewed and edited the manuscript. All authors approved the final version of the article.

Funding

S.M was supported by the Research Fund of Flanders (Fonds Wetenschappelijk Onderzoek (FWO), Flanders, Belgium, 11M9415N). Otherwise, no specific funding was sought for the study, and departmental funds were used to support the authors throughout the study period and manuscript preparation: Department of Obstetrics and Gynaecology, Erasmus University Medical Centre, Rotterdam, The Netherlands; Department of Medical Microbiology and Infection Control, Vrije Universiteit (VU) University Medical Centre, Amsterdam, The Netherlands; and Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.

Conflict of interest

A.B. reports funding from IS-Diagnostics Ltd, outside the submitted work, and has a patent 392EPP0 pending. C.B. reports honoraria and/or research grants from MSD, Ferring, Merck, Abbott and Besins. J.L. reports grants from Dutch Heart Foundation, Ferring, Metagenics Inc. J.L. has also received personal consultancy fees from ARTPred B.V., Danone, Euroscreen and Roche, during the conduct of the study. In addition, J.L. is a co-applicant on a Erasmus MC patent, that predicts IVF outcome based on the urinary microbiome. This particular patent is licensed to ARTPred B.V. The other authors declare that they have no conflict of interest.

References

Aagaard
K
,
Petrosino
J
,
Keitel
W
,
Watson
M
,
Katancik
J
,
Garcia
N
,
Patel
S
,
Cutting
M
,
Madden
T
,
Hamilton
H
et al. 
The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters
.
FASEB J
2013
;
27
:
1012
1022
.

Aagaard
K
,
Riehle
K
,
Ma
J
,
Segata
N
,
Mistretta
T-A
,
Coarfa
C
,
Raza
S
,
Rosenbaum
S
,
Van den Veyver
I
,
Milosavljevic
A
.
A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy
.
PLoS One
2012
;
7
:
e36466
.

Abou-Moustafa
KT
Divergence Measures as Diversity Indices. arXiv preprint arXiv:1408.2863
2014
.

Ahmadi
MH
,
Mirsalehian
A
,
Gilani
MAS
,
Bahador
A
,
Talebi
M
.
Asymptomatic infection with Mycoplasma hominis negatively affects semen parameters and leads to male infertility as confirmed by improved semen parameters after antibiotic treatment
.
Urology
2017
;
100
:
97
102
.

Alakomi
HL
,
Skyttä
E
,
Saarela
M
,
Mattila-Sandholm
T
,
Latva-Kala
K
,
Helander
IM
.
Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane
.
Appl Environ Microbiol
2000
;
66
:
2001
2005
.

Albert
AYK
,
Chaban
B
,
Wagner
EC
,
Schellenberg
JJ
,
Links
MG
,
Van Schalkwyk
J
,
Reid
G
,
Hemmingsen
SM
,
Hill
JE
,
Money
D
.
A study of the vaginal microbiome in healthy Canadian women utilizing cpn60-based molecular profiling reveals distinct Gardnerella subgroup community state types
.
PLoS One
2015
;
10
:
e0135620
.

Aleshkin
VA
,
Voropaeva
EA
,
Shenderov
BA
.
Vaginal microbiota in healthy women and patients with bacterial vaginosis and nonspecific vaginitis
.
Microb Ecol Health Dis
2006
;
18
:
71
74
.

Amsel
R
,
Totten
PA
,
Spiegel
CA
,
Chen
KC
,
Eschenbach
D
,
Holmes
KK
.
Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations
.
Am J Med
1983
;
74
:
14
22
.

Anahtar
MN
,
Byrne
EH
,
Doherty
KE
,
Bowman
BA
,
Yamamoto
HS
,
Soumillon
M
,
Padavattan
N
,
Ismail
N
,
Moodley
A
,
Sabatini
ME
et al. 
Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract
.
Immunity
2015
;
42
:
965
976
.

Anukam
KC
,
Osazuwa
EO
,
Ahonkhai
I
,
Reid
G
.
Lactobacillus vaginal microbiota of women attending a reproductive health care service in Benin city, Nigeria
.
Sex Transm Dis
2006
;
33
:
59
62
.

Babu
G
,
Singaravelu
BG
,
Srikumar
R
,
Reddy
SV
.
Comparative study on the vaginal flora and incidence of asymptomatic vaginosis among healthy women and in women with infertility problems of reproductive age
.
J Clin Diagn Res
2017
;
11
:
DC18
.

Bahaabadi
SJ
,
Moghadam
NM
,
Kheirkhah
B
,
Farsinejad
A
,
Habibzadeh
V
.
Isolation and molecular identification of Mycoplasma hominis in infertile female and male reproductive system
.
Nephrourol Mon
2014
;
6
.

Baker
GC
,
Smith
JJ
,
Cowan
DA
.
Review and re-analysis of domain-specific 16 S primers
.
J Microbiol Methods
2003
;
55
:
541
555
.

Bennett
JE
,
Dolin
R
,
Blaser
MJ
Principles and practice of infectious diseases
2014
. Elsevier Health Sciences.

Bezirtzoglou
E
,
Voidarou
C
,
Papadaki
A
,
Tsiotsias
A
,
Kotsovolou
O
,
Konstandi
M
.
Hormone therapy alters the composition of the vaginal microflora in ovariectomized rats
.
Microb Ecol
2008
;
55
:
751
759
.

Bordenstein
SR
,
Theis
KR
.
Host biology in light of the microbiome: ten principles of holobionts and hologenomes
.
PLoS Biol
2015
;
13
:
e1002226
.

Borovkova
N
,
Korrovits
P
,
Ausmees
K
,
Turk
S
,
Joers
K
,
Punab
M
,
Mandar
R
.
Influence of sexual intercourse on genital tract microbiota in infertile couples
.
Anaerobe
2011
;
17
:
414
418
.

Brook
N
,
Khalaf
Y
,
Coomarasamy
A
,
Edgeworth
J
,
Braude
P
.
A randomized controlled trial of prophylactic antibiotics (co-amoxiclav) prior to embryo transfer
.
Hum Reprod
2006
;
21
:
2911
2915
.

Brooks
JP
,
Buck
GA
,
Chen
G
,
Diao
L
,
Edwards
DJ
,
Fettweis
JM
,
Huzurbazar
S
,
Rakitin
A
,
Satten
GA
,
Smirnova
E
.
Changes in vaginal community state types reflect major shifts in the microbiome
.
Microbial Ecol Health Dis
2017
;
28
:
1303265
.

Brotman
RM
,
Shardell
MD
,
Gajer
P
,
Fadrosh
D
,
Chang
K
,
Silver
M
,
Viscidi
RP
,
Burke
AE
,
Ravel
J
,
Gravitt
PE
.
Association between the vaginal microbiota, menopause status and signs of vulvovaginal atrophy
.
Menopause (New York, NY)
2014
;
21
:
450
.

Budding
AE
,
Grasman
ME
,
Lin
F
,
Bogaards
JA
,
Soeltan-Kaersenhout
DJ
.
Vandenbroucke-Grauls CMJE, van Bodegraven AA, and Savelkoul PHM. IS-pro: high-throughput molecular fingerprinting of the intestinal microbiota
.
FASEB J
2010
;
24
:
4556
4564
.

Campisciano
G
,
Florian
F
,
D’Eustacchio
A
,
Stanković
D
,
Ricci
G
,
De Seta
F
,
Comar
M
.
Subclinical alteration of the cervical–vaginal microbiome in women with idiopathic infertility
.
J Cell Physiol
2017
;
232
:
1681
1688
.

Campos
GB
,
Marques
LM
,
Rezende
IS
,
Barbosa
MS
,
Abrão
MS
,
Timenetsky
J
.
Mycoplasma genitalium can modulate the local immune response in patients with endometriosis
.
Fertil Steril
2018
;
109
:
549
560. e544
.

Caporaso
JG
,
Kuczynski
J
,
Stombaugh
J
,
Bittinger
K
,
Bushman
FD
,
Costello
EK
,
Fierer
N
,
Pena
AG
,
Goodrich
JK
,
Gordon
JI
.
QIIME allows analysis of high-throughput community sequencing data
.
Nat Methods
2010
;
7
:
335
.

Caporaso
JG
,
Lauber
CL
,
Walters
WA
,
Berg-Lyons
D
,
Huntley
J
,
Fierer
N
,
Owens
SM
,
Betley
J
,
Fraser
L
,
Bauer
M
et al. 
Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms
.
ISME J
2012
;
6
:
1621
1624
.

Chafee
M
,
Maignien
L
,
Simmons
SL
.
The effects of variable sample biomass on comparative metagenomics
.
Environ Microbiol
2015
;
17
:
2239
2253
.

Chen
C
,
Song
X
,
Wei
W
,
Zhong
H
,
Dai
J
,
Lan
Z
,
Li
F
,
Yu
X
,
Feng
Q
,
Wang
Z
et al. 
The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases
.
Nat Commun
2017
;
8
:
875
.

Chen
W
,
Zhang
CK
,
Cheng
Y
,
Zhang
S
,
Zhao
H
.
A comparison of methods for clustering 16 S rRNA sequences into OTUs
.
PLoS One
2013
;
8
:
e70837
.

Chu
DM
,
Seferovic
M
,
Pace
RM
,
Aagaard
KM
.
The microbiome in preterm birth
.
Best Pract Res Clin Obstet Gynaecol
2018
;
52
:
103
113
.

Cicinelli
E
,
Ballini
A
,
Marinaccio
M
,
Poliseno
A
,
Coscia
MF
,
Monno
R
,
De Vito
D
.
Microbiological findings in endometrial specimen: our experience
.
Arch Gynecol Obstet
2012
;
285
:
1325
1329
.

Cicinelli
E
,
Matteo
M
,
Tinelli
R
,
Lepera
A
,
Alfonso
R
,
Indraccolo
U
,
Marrocchella
S
,
Greco
P
,
Resta
L
.
Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy
.
Hum Reprod
2014
a;
30
:
323
330
.

Cicinelli
E
,
Matteo
M
,
Tinelli
R
,
Pinto
V
,
Marinaccio
M
,
Indraccolo
U
,
De Ziegler
D
,
Resta
L
.
Chronic endometritis due to common bacteria is prevalent in women with recurrent miscarriage as confirmed by improved pregnancy outcome after antibiotic treatment
.
Reprod Sci
2014
b;
21
:
640
647
.

Cole
JR
,
Wang
Q
,
Cardenas
E
,
Fish
J
,
Chai
B
,
Farris
RJ
,
Kulam-Syed-Mohideen
AS
,
McGarrell
DM
,
Marsh
T
,
Garrity
GM
.
The Ribosomal Database Project: improved alignments and new tools for rRNA analysis
.
Nucleic Acids Res
2008
;
37
:
D141
D145
.

Costoya
A
,
Morales
F
,
Borda
P
,
Vargas
R
,
Fuhrer
J
,
Salgado
N
,
Cárdenas
H
,
Velasquez
L
.
Mycoplasmateceae species are not found in Fallopian tubes of women with tubo-peritoneal infertility
.
Braz J Infect Dis
2012
;
16
:
273
278
.

Cresci
GA
,
Bawden
E
.
Gut microbiome: what we do and don’t know
.
Nutr Clin Pract
2015
;
30
:
734
746
.

de Vieira Santos-Greatti
MM
,
da Silva
MG
,
Ferreira
CST
,
Marconi
C
.
Cervicovaginal cytokines, sialidase activity and bacterial load in reproductive-aged women with intermediate vaginal flora
.
J Reprod Immunol
2016
;
118
:
36
41
.

De Francesco
MA
,
Negrini
R
,
Ravizzola
G
,
Galli
P
,
Manca
N
.
Bacterial species present in the lower male genital tract: a five-year retrospective study
.
Eur J Contracept Reprod Health Care
2011
;
16
:
47
53
.

Di
MP
,
Filardo
S
,
Porpora
MG
,
Recine
N
,
Latino
MA
,
Sessa
R
.
HPV/Chlamydia trachomatis co-infection: metagenomic analysis of cervical microbiota in asymptomatic women
.
New Microbiol
2018
;
41
:
34
41
.

DiGiulio
DB
,
Callahan
BJ
,
McMurdie
PJ
,
Costello
EK
,
Lyell
DJ
,
Robaczewska
A
,
Sun
CL
,
Goltsman
DSA
,
Wong
RJ
,
Shaw
G
.
Temporal and spatial variation of the human microbiota during pregnancy
.
Proc Natl Acad Sci
2015
;
112
:
11060
11065
.

Domes
T
,
Lo
KC
,
Grober
ED
,
Mullen
JBM
,
Mazzulli
T
,
Jarvi
K
.
The incidence and effect of bacteriospermia and elevated seminal leukocytes on semen parameters
.
Fertil Steril
2012
;
97
:
1050
1055
.

Donders
GG
,
Van Calsteren
K
,
Bellen
G
,
Reybrouck
R
,
Van den Bosch
T
,
Riphagen
I
,
Van Lierde
S
.
Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic vaginitis during the first trimester of pregnancy
.
BJOG
2009
;
116
:
1315
1324
.

Doré
J
,
Blottière
H
.
The influence of diet on the gut microbiota and its consequences for health
.
Curr Opin Biotechnol
2015
;
32
:
195
199
.

D’Amore
R
,
Ijaz
UZ
,
Schirmer
M
,
Kenny
JG
,
Gregory
R
,
Darby
AC
,
Shakya
M
,
Podar
M
,
Quince
C
,
Hall
N
.
A comprehensive benchmarking study of protocols and sequencing platforms for 16 S rRNA community profiling
.
BMC Genomics
2016
;
17
:
55
.

Edgar
RC
.
Updating the 97% identity threshold for 16 S ribosomal RNA OTUs
.
Bioinformatics
2018
;
34
:
2371
2375
.

Ehrlich
PR
.
Phenetic and phylogenetic classification
.
Evolution
1965
;
19
:
263
264
.

Ekanem
E
,
Efiok
E
,
Udoh
A
,
Inyang-Out
A
.
Study of the bacterial flora of the vagina and cervix in women of childbearing age in rural community of Niger Delta Region, Nigeria
.
Gynecol Obstetric
2012
;
2
:
1
4
.

Eschenbach
DA
,
Patton
DL
,
Hooton
TM
,
Meier
AS
,
Stapleton
A
,
Aura
J
,
Agnew
K
.
Effects of vaginal intercourse with and without a condom on vaginal flora and vaginal epithelium
.
J Infect Dis
2001
;
183
:
913
918
.

Filipiak
E
,
Marchlewska
K
,
Oszukowska
E
,
Walczak‐Jedrzejowska
R
,
Swierczynska‐Cieplucha
A
,
Kula
K
,
Slowikowska‐Hilczer
J
.
Presence of aerobic micro‐organisms and their influence on basic semen parameters in infertile men
.
Andrologia
2015
;
47
:
826
831
.

Flint
HJ
,
Scott
KP
,
Louis
P
,
Duncan
SH
.
The role of the gut microbiota in nutrition and health
.
Nat Rev Gastroenterol Hepatol
2012
;
9
:
577
.

Forney
LJ
,
Foster
JA
,
Ledger
W
.
The vaginal flora of healthy women is not always dominated by Lactobacillus species
.
J Infect Dis
2006
;
194
:
1468
1469
.

Fotouh
IA
,
Al-Inany
MG
The levels of bacterial contamination of the embryo transfer catheter relate negatively to the outcome of embryo transfer.
2008
.

Franasiak
JM
,
Werner
MD
,
Juneau
CR
,
Tao
X
,
Landis
J
,
Zhan
Y
,
Treff
NR
,
Scott
RT
.
Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16 S ribosomal subunit
.
J Assist Reprod Genet
2016
;
33
:
129
136
.

Freitas
AC
,
Hill
JE
.
Quantification, isolation and characterization of Bifidobacterium from the vaginal microbiomes of reproductive aged women
.
Anaerobe
2017
;
47
:
145
156
.

Fredricks
DN
,
Fiedler
TL
,
Marrazzo
JM
.
Molecular identification of bacteria associated with bacterial vaginosis
.
N Engl J Med
2005
;
353
:
1899
1911
.

Gajer
P
,
Brotman
RM
,
Bai
G
,
Sakamoto
J
,
Schütte
UME
,
Zhong
X
,
Koenig
SSK
,
Fu
L
,
Ma
ZS
,
Zhou
X
.
Temporal dynamics of the human vaginal microbiota
.
Sci Transl Med
2012
;
4
:
132ra152
.

Garg
KB
,
Ganguli
I
,
Das
R
,
Talwar
GP
. Spectrum of Lactobacillus species present in healthy vagina of Indian women.
2009
.

Gautam
R
,
Borgdorff
H
,
Jespers
V
,
Francis
SC
,
Verhelst
R
,
Mwaura
M
,
Delany-Moretlwe
S
,
Ndayisaba
G
,
Kyongo
JK
,
Hardy
L
.
Correlates of the molecular vaginal microbiota composition of African women
.
BMC Infect Dis
2015
;
15
:
86
.

Gdoura
R
,
Kchaou
W
,
Chaari
C
,
Znazen
A
,
Keskes
L
,
Rebai
T
,
Hammami
A
.
Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis and Mycoplasma genitalium infections and semen quality of infertile men
.
BMC Infect Dis
2007
;
7
:
129
.

Gevers
D
,
Knight
R
,
Petrosino
JF
,
Huang
K
,
McGuire
AL
,
Birren
BW
,
Nelson
KE
,
White
O
,
Methé
BA
,
Huttenhower
C
.
The Human Microbiome Project: a community resource for the healthy human microbiome
.
PLoS Biol
2012
;
10
:
e1001377
.

Gill
SR
,
Pop
M
,
DeBoy
RT
,
Eckburg
PB
,
Turnbaugh
PJ
,
Samuel
BS
,
Gordon
JI
,
Relman
DA
,
Fraser-Liggett
CM
,
Nelson
KE
.
Metagenomic analysis of the human distal gut microbiome
.
Science
2006
;
312
:
1355
1359
.

Godovalov
AP
,
Karpunina
TI
.
Microbiological and morpho-functional features of ejaculate from infertile men with asymptomatic bacteriospermia
.
Международный научно-исследовательский журнал
2016
;
34
38
.

Gottschick
C
,
Deng
Z-L
,
Vital
M
,
Masur
C
,
Abels
C
,
Pieper
DH
,
Wagner-Döbler
I
.
The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment
.
Microbiome
2017
;
5
:
99
.

Graspeuntner
S
,
Bohlmann
MK
,
Gillmann
K
,
Speer
R
,
Kuenzel
S
,
Mark
H
,
Hoellen
F
,
Lettau
R
,
Griesinger
G
,
König
IR
.
Microbiota-based analysis reveals specific bacterial traits and a novel strategy for the diagnosis of infectious infertility
.
PLoS One
2018
;
13
:
e0191047
.

Gray
MW
,
Sankoff
D
,
Cedergren
RJ
.
On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA
.
Nucleic Acids Res
1984
;
12
:
5837
5852
.

Haahr
T
,
Jensen
JS
,
Thomsen
L
,
Duus
L
,
Rygaard
K
,
Humaidan
P
.
Abnormal vaginal microbiota may be associated with poor reproductive outcomes: a prospective study in IVF patients
.
Hum Reprod
2016
;
31
:
795
803
.

Haas
BJ
,
Gevers
D
,
Earl
AM
,
Feldgarden
M
,
Ward
DV
,
Giannoukos
G
,
Ciulla
D
,
Tabbaa
D
,
Highlander
SK
,
Sodergren
E
et al. 
Chimeric 16 S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons
.
Genome Res
2011
;
21
:
494
504
.

Hiergeist
A
,
Gläsner
J
,
Reischl
U
,
Gessner
A
.
Analyses of intestinal microbiota: culture versus sequencing
.
ILAR J
2015
;
56
:
228
240
.

Hillier
SL
,
Nugent
RP
,
Eschenbach
DA
,
Krohn
MA
,
Gibbs
RS
,
Martin
DH
,
Cotch
MF
,
Edelman
R
,
Pastorek
JG
,
Rao
AV
.
Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant
.
N Engl J Med
1995
;
333
:
1737
1742
.

Hou
D
,
Zhou
X
,
Zhong
X
,
Settles
ML
,
Herring
J
,
Wang
L
,
Abdo
Z
,
Forney
LJ
,
Xu
C
.
Microbiota of the seminal fluid from healthy and infertile men
.
Fertil Steril
2013
;
100
:
1261
1269
. e1263.

Huijsdens
XW
,
Linskens
RK
,
Mak
M
,
Meuwissen
SG
,
Vandenbroucke-Grauls
CM
,
Savelkoul
PH
.
Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR
.
J Clin Microbiol
2002
;
40
:
4423
4427
.

Human Microbiome Project C
.
Structure, function and diversity of the healthy human microbiome
.
Nature
2012
;
486
:
207
214
.

Huttenhower
C
,
Gevers
D
,
Knight
R
,
Abubucker
S
,
Badger
JH
,
Chinwalla
AT
,
Creasy
HH
,
Earl
AM
,
FitzGerald
MG
,
Fulton
RS
.
Structure, function and diversity of the healthy human microbiome
.
Nature
2012
;
486
:
207
.

Hyman
RW
,
Fukushima
M
,
Jiang
H
,
Fung
E
,
Rand
L
,
Johnson
B
,
Vo
KC
,
Caughey
AB
,
Hilton
JF
,
Davis
RW
.
Diversity of the vaginal microbiome correlates with preterm birth
.
Reprod Sci
2014
;
21
:
32
40
.

Hyman
RW
,
Herndon
CN
,
Jiang
H
,
Palm
C
,
Fukushima
M
,
Bernstein
D
,
Vo
KC
,
Zelenko
Z
,
Davis
RW
,
Giudice
LC
.
The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer
.
J Assist Reprod Genet
2012
;
29
:
105
115
.

Ivanov
IB
,
Kuzmin
MD
,
Gritsenko
VA
.
Microflora of the seminal fluid of healthy men and men suffering from chronic prostatitis syndrome
.
Int J Androl
2009
;
32
:
462
467
.

Işik
G
,
Demirezen
Ş
,
Dönmez
HG
,
Beksaç
MS
.
Bacterial vaginosis in association with spontaneous abortion and recurrent pregnancy losses
.
J Cytol
2016
;
33
:
135
.

Jakobsson
T
,
Forsum
U
.
Lactobacillus iners: a marker of changes in the vaginal flora?
J Clin Microbiol
2007
;
45
:
3145
.

Jespers
V
,
van de Wijgert
J
,
Cools
P
,
Verhelst
R
,
Verstraelen
H
,
Delany-Moretlwe
S
,
Mwaura
M
,
Ndayisaba
GF
,
Mandaliya
K
,
Menten
J
.
The significance of Lactobacillus crispatus and L. vaginalis for vaginal health and the negative effect of recent sex: a cross-sectional descriptive study across groups of African women
.
BMC Infect Dis
2015
;
15
:
115
.

Johnson
SR
,
Petzold
CR
,
Galask
RP
.
Qualitative and quantitative changes of the vaginal microbial flora during the menstrual cycle
.
Am J Reprod Immunol Microbiol
1985
;
9
:
1
5
.

Kasprzykowska
U
,
Elias
J
,
Elias
M
,
Maczynska
B
,
Sobieszczanska
BM
.
Colonization of the lower urogenital tract with Ureaplasma parvum can cause asymptomatic infection of the upper reproductive system in women: a preliminary study
.
Arch Gynecol Obstet
2014
;
289
:
1129
1134
.

Keith
G
,
LouisBerger
G.
Common Infections
.
1985
. doi: 10.1007/978-94-009-4878-5.

Khan
KN
,
Fujishita
A
,
Kitajima
M
,
Hiraki
K
,
Nakashima
M
,
Masuzaki
H
.
Intra-uterine microbial colonization and occurrence of endometritis in women with endometriosis
.
Hum Reprod
2014
;
29
:
2446
2456
.

Kiessling
AA
,
Desmarais
BM
,
Yin
H-Z
,
Loverde
J
,
Eyre
RC
.
Detection and identification of bacterial DNA in semen
.
Fertil Steril
2008
;
90
:
1744
1756
.

Kim
D
,
Hofstaedter
CE
,
Zhao
C
,
Mattei
L
,
Tanes
C
,
Clarke
E
,
Lauder
A
,
Sherrill-Mix
S
,
Chehoud
C
,
Kelsen
J
.
Optimizing methods and dodging pitfalls in microbiome research
.
Microbiome
2017
a;
5
:
52
.

Kim
TK
,
Thomas
SM
,
Ho
M
,
Sharma
S
,
Reich
CI
,
Frank
JA
,
Yeater
KM
,
Biggs
DR
,
Nakamura
N
,
Stumpf
R
.
Heterogeneity of vaginal microbial communities within individuals
.
J Clin Microbiol
2009
;
47
:
1181
1189
.

Kim
JH
,
Yoo
SM
,
Sohn
YH
,
Jin
CH
,
Yang
YS
,
Hwang
IT
,
Oh
KY
.
Predominant Lactobacillus species types of vaginal microbiota in pregnant Korean women: quantification of the five Lactobacillus species and two anaerobes
.
J Matern-Fetal Neonatal Med
2017
b;
30
:
2329
2333
.

Kindinger
LM
,
Bennett
PR
,
Lee
YS
,
Marchesi
JR
,
Smith
A
,
Cacciatore
S
,
Holmes
E
,
Nicholson
JK
,
Teoh
TG
,
MacIntyre
DA
.
The interaction between vaginal microbiota, cervical length, and vaginal progesterone treatment for preterm birth risk
.
Microbiome
2017
;
5
:
6
.

Knight
R
,
Callewaert
C
,
Marotz
C
,
Hyde
ER
,
Debelius
JW
,
McDonald
D
,
Sogin
ML
.
The microbiome and human biology
.
Annu Rev Genomics Hum Genet
2017
;
18
:
65
86
.

Kroon
B
,
Hart
RJ
,
Wong
B
,
Ford
E
,
Yazdani
A
.
Antibiotics prior to embryo transfer in ART
.
Cochrane Database Syst Rev
2012
;
3
:
CD008995
. 008991-CD008995. 008921.

Kyono
K
,
Hashimoto
T
,
Nagai
Y
,
Sakuraba
Y
.
Analysis of endometrial microbiota by 16 S ribosomal RNA gene sequencing among infertile patients: a single‐center pilot study
.
Reprod Med Biol
2018
;
17
:
297
306
.

Lane
DJ
,
Pace
B
,
Olsen
GJ
,
Stahl
DA
,
Sogin
ML
,
Pace
NR
.
Rapid determination of 16 S ribosomal RNA sequences for phylogenetic analyses
.
Proc Natl Acad Sci
1985
;
82
:
6955
6959
.

Leppaluoto
PA
.
Bacterial vaginosis: what is physiological in vaginal bacteriology? An update and opinion
.
Acta Obstet Gynecol Scand
2011
;
90
:
1302
1306
.

Li
J
,
Jia
H
,
Cai
X
,
Zhong
H
,
Feng
Q
,
Sunagawa
S
,
Arumugam
M
,
Kultima
JR
,
Prifti
E
,
Nielsen
T
et al. 
An integrated catalog of reference genes in the human gut microbiome
.
Nat Biotechnol
2014
;
32
:
834
841
.

Li
JV
,
Swann
J
,
Marchesi
JR
.
Biology of the Microbiome 2: metabolic role
.
Gastroenterol Clin North Am
2017
;
46
:
37
47
.

Liu
CM
,
Hungate
BA
,
Tobian
AAR
,
Serwadda
D
,
Ravel
J
,
Lester
R
,
Kigozi
G
,
Aziz
M
,
Galiwango
RM
,
Nalugoda
F
et al. 
Male circumcision significantly reduces prevalence and load of genital anaerobic bacteria
.
MBio
2013
a;
4
:
e00076
13
.

Liu
M-B
,
Xu
S-R
,
He
Y
,
Deng
G-H
,
Sheng
H-F
,
Huang
X-M
,
Ouyang
C-Y
,
Zhou
H-W
.
Diverse vaginal microbiomes in reproductive-age women with vulvovaginal candidiasis
.
PLoS One
2013
b;
8
:
e79812
.

Lloyd-Price
J
,
Abu-Ali
G
,
Huttenhower
C
.
The healthy human microbiome
.
Genome Med
2016
;
8
:
51
.

Loman
NJ
,
Misra
RV
,
Dallman
TJ
,
Constantinidou
C
,
Gharbia
SE
,
Wain
J
,
Pallen
MJ
.
Performance comparison of benchtop high-throughput sequencing platforms
.
Nat Biotechnol
2012
;
30
:
434
439
.

MacIntyre
DA
,
Chandiramani
M
,
Lee
YS
,
Kindinger
L
,
Smith
A
,
Angelopoulos
N
,
Lehne
B
,
Arulkumaran
S
,
Brown
R
,
Teoh
TG
et al. 
The vaginal microbiome during pregnancy and the postpartum period in a European population
.
Sci Rep
2015
;
5
:
8988
.

Malinen
E
,
Kassinen
A
,
Rinttila
T
,
Palva
A
.
Comparison of real-time PCR with SYBR Green I or 5’-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria
.
Microbiology
2003
;
149
:
269
277
.

Mandar
R
,
Punab
M
,
Borovkova
N
,
Lapp
E
,
Kiiker
R
,
Korrovits
P
,
Metspalu
A
,
Krjutskov
K
,
Nolvak
H
,
Preem
JK
et al. 
Complementary seminovaginal microbiome in couples
.
Res Microbiol
2015
;
166
:
440
447
.

Mangot-Bertrand
J
,
Fenollar
F
,
Bretelle
F
,
Gamerre
M
,
Raoult
D
,
Courbiere
B
.
Molecular diagnosis of bacterial vaginosis: impact on IVF outcome
.
Eur J Clin Microbiol Infect Dis
2013
;
32
:
535
541
.

Maranduba
CMdC
,
De Castro
SBR
,
Souza
GTd
,
Rossato
C
,
da Guia
FC
,
Valente
MAS
,
Rettore
JVP
,
Maranduba
CP
,
Souza
CMd
,
Carmo
AMRd
.
Intestinal microbiota as modulators of the immune system and neuroimmune system: impact on the host health and homeostasis
.
J Immunol Res
2015
;
2015
:
931574
.

Marchesi
JR
,
Ravel
J
The vocabulary of microbiome research: a proposal.
2015
. BioMed Central.

Margulies
M
,
Egholm
M
,
Altman
WE
,
Attiya
S
,
Bader
JS
,
Bemben
LA
,
Berka
J
,
Braverman
MS
,
Chen
Y-J
,
Chen
Z
.
Genome sequencing in microfabricated high-density picolitre reactors
.
Nature
2005
;
437
:
376
.

Martin
BD
,
Schwab
E
.
Current usage of symbiosis and associated terminology
.
Int J Biol
2012
;
5
:
32
.

McDonald
D
,
Price
MN
,
Goodrich
J
,
Nawrocki
EP
,
DeSantis
TZ
,
Probst
A
,
Andersen
GL
,
Knight
R
,
Hugenholtz
P
.
An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea
.
ISME J
2012
;
6
:
610
.

McElrath
TF
,
Hecht
JL
,
Dammann
O
,
Boggess
K
,
Onderdonk
A
,
Markenson
G
,
Harper
M
,
Delpapa
E
,
Allred
EN
,
Leviton
A
.
Pregnancy disorders that lead to delivery before the 28th week of gestation: an epidemiologic approach to classification
.
Am J Epidemiol
2008
;
168
:
980
989
.

Mehta
SD
,
Donovan
B
,
Weber
KM
,
Cohen
M
,
Ravel
J
,
Gajer
P
,
Gilbert
D
,
Burgad
D
,
Spear
GT
.
The vaginal microbiota over an 8-to 10-year period in a cohort of HIV-infected and HIV-uninfected women
.
PLoS One
2015
;
10
:
e0116894
.

Mendes-Soares
H
,
Suzuki
H
,
Hickey
RJ
,
Forney
LJ
.
Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal Lactobacilli to their environment
.
J Bacteriol
2014
;
196
:
1458
1470
.

Methé
BA
,
Nelson
KE
,
Pop
M
,
Creasy
HH
,
Giglio
MG
,
Huttenhower
C
,
Gevers
D
,
Petrosino
JF
,
Abubucker
S
,
Badger
JH
.
A framework for human microbiome research
.
Nature
2012
;
486
:
215
.

Metzker
ML
.
Emerging technologies in DNA sequencing
.
Genome Res
2005
;
15
:
1767
1776
.

Mitchell
CM
,
Haick
A
,
Nkwopara
E
,
Garcia
R
,
Rendi
M
,
Agnew
K
,
Fredricks
DN
,
Eschenbach
D
.
Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women
.
Am J Obstet Gynecol
2015
;
212
:
611. e611
611. e619
.

Mizrahi-Man
O
,
Davenport
ER
,
Gilad
Y
.
Taxonomic classification of bacterial 16 S rRNA genes using short sequencing reads: evaluation of effective study designs
.
PLoS One
2013
;
8
:
e53608
.

Monteiro
C
,
Marques
PI
,
Cavadas
B
,
Damião
I
,
Almeida
V
,
Barros
N
,
Barros
A
,
Carvalho
F
,
Gomes
S
,
Seixas
S
.
Characterization of microbiota in male infertility cases uncovers differences in seminal hyperviscosity and oligoasthenoteratozoospermia possibly correlated with increased prevalence of infectious bacteria
.
Am J Reprod Immunol
2018
;
79
:
e12838
.

Moore
DE
,
Soules
MR
,
Klein
NA
,
Fujimoto
VY
,
Agnew
KJ
,
Eschenbach
DA
.
Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization
.
Fertil Steril
2000
;
74
:
1118
1124
.

Moreno
I
,
Cicinelli
E
,
Garcia-Grau
I
,
Gonzalez-Monfort
M
,
Bau
D
,
Vilella
F
,
De Ziegler
D
,
Resta
L
,
Valbuena
D
,
Simon
C
.
The diagnosis of chronic endometritis in infertile asymptomatic women: a comparative study of histology, microbial cultures, hysteroscopy, and molecular microbiology
.
Am J Obstet Gynecol
2018
;
218
:
602 e601
602 e616
.

Moreno
I
,
Codoñer
FM
,
Vilella
F
,
Valbuena
D
,
Martinez-Blanch
JF
,
Jimenez-Almazán
J
,
Alonso
R
,
Alamá
P
,
Remohí
J
,
Pellicer
A
.
Evidence that the endometrial microbiota has an effect on implantation success or failure
.
Am J Obstet Gynecol
2016
;
215
:
684
703
.

Morgan
XC
,
Segata
N
,
Huttenhower
C
.
Biodiversity and functional genomics in the human microbiome
.
Trends Genet
2013
;
29
:
51
58
.

Mändar
R
,
Punab
M
,
Korrovits
P
,
Türk
S
,
Ausmees
K
,
Lapp
E
,
Preem
JK
,
Oopkaup
K
,
Salumets
A
,
Truu
J
.
Seminal microbiome in men with and without prostatitis
.
Int J Urol
2017
;
24
:
211
216
.

Nadkarni
MA
,
Martin
FE
,
Hunter
N
,
Jacques
NA
.
Methods for optimizing DNA extraction before quantifying oral bacterial numbers by real-time PCR
.
FEMS Microbiol letters
2009
;
296
:
45
51
.

Nasioudis
D
,
Forney
LJ
,
Schneider
GM
,
Gliniewicz
K
,
France
MT
,
Boester
A
,
Sawai
M
,
Scholl
J
,
Witkin
SS
.
The composition of the vaginal microbiome in first trimester pregnant women influences the level of autophagy and stress in vaginal epithelial cells
.
J Reprod Immunol
2017
;
123
:
35
39
.

Nelson
DE
,
Dong
Q
,
Van der Pol
B
,
Toh
E
,
Fan
B
,
Katz
BP
,
Mi
D
,
Rong
R
,
Weinstock
GM
,
Sodergren
E
et al. 
Bacterial communities of the coronal sulcus and distal urethra of adolescent males
.
PLoS One
2012
;
7
:
e36298
.

Nguyen
NP
,
Warnow
T
,
Pop
M
,
White
B
.
A perspective on 16 S rRNA operational taxonomic unit clustering using sequence similarity
.
NPJ Biofilms Microbiomes
2016
;
2
:
16004
.

Nugent
RP
,
Krohn
MA
,
Hillier
SL
.
Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation
.
J Clin Microbiol
1991
;
29
:
297
301
.

Nyrén
P
,
Pettersson
B
,
Uhlén
M
.
Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay
.
Anal Biochem
1993
;
208
:
171
175
.

Ojala
T
,
Kankainen
M
,
Castro
J
,
Cerca
N
,
Edelman
S
,
Westerlund-Wikström
B
,
Paulin
L
,
Holm
L
,
Auvinen
P
.
Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis
.
BMC Genomics
2014
;
15
:
1070
.

Onderdonk
AB
,
Delaney
ML
,
Fichorova
RN
.
The human microbiome during bacterial vaginosis
.
Clin Microbiol Rev
2016
;
29
:
223
238
.

Ott
SJ
,
Musfeldt
M
,
Ullmann
U
,
Hampe
J
,
Schreiber
S
.
Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora
.
J Clin Microbiol
2004
;
42
:
2566
2572
.

O’Hanlon
DE
,
Moench
TR
,
Cone
RA
.
In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide
.
BMC Infect Dis
2011
;
11
:
200
.

O’Hanlon
DE
,
Moench
TR
,
Cone
RA
.
Vaginal pH and microbicidal lactic acid when Lactobacilli dominate the microbiota
.
PLoS One
2013
;
8
:
e80074
.

Palini
S
,
Primiterra
M
,
De Stefani
S
,
Pedna
MF
,
Sparacino
M
,
Farabegoli
P
,
Benedetti
S
,
Bulletti
C
,
Sambri
V
.
A new micro swim-up procedure for sperm preparation in ICSI treatments: preliminary microbiological testing
.
JBRA Assist Reprod
2016
;
20
:
94
98
.

Panda
PS
,
Kashyap
B
,
Prasad
S
.
Microbiological profile of cervix of females attending in-vitro fertilization clinic of a tertiary care hospital, North India
.
J Reprod Health Med
2016
;
2
:
S7
S10
.

Pascual
LM
,
Daniele
MB
,
Pájaro
C
,
Barberis
L
.
Lactobacillus species isolated from the vagina: identification, hydrogen peroxide production and nonoxynol-9 resistance
.
Contraception
2006
;
73
:
78
81
.

Pelzer
ES
,
Allan
JA
,
Waterhouse
MA
,
Ross
T
,
Beagley
KW
,
Knox
CL
.
Microorganisms within human follicular fluid: effects on IVF
.
PLoS One
2013
;
8
:
e59062
.

Pelzer
ES
,
Allan
JA
,
Cunningham
K
,
Mengersen
K
,
Allan
JM
,
Launchbury
T
,
Beagley
K
,
Knox
CL
.
Microbial colonization of follicular fluid: alterations in cytokine expression and adverse assisted reproduction technology outcomes
.
Hum Reprod
2011
;
26
:
1799
1812
.

Pelzer
ES
,
Allan
JA
,
Theodoropoulos
C
,
Ross
T
,
Beagley
KW
,
Knox
CL
.
Hormone-dependent bacterial growth, persistence and biofilm formation--a pilot study investigating human follicular fluid collected during IVF cycles
.
PLoS One
2012
;
7
:
e49965
.

Pendharkar
S
,
Magopane
T
,
Larsson
P-G
,
de Bruyn
G
,
Gray
GE
,
Hammarström
L
,
Marcotte
H
.
Identification and characterisation of vaginal Lactobacilli from South African women
.
BMC Infect Dis
2013
;
13
:
43
.

Peterson
J
,
Garges
S
,
Giovanni
M
,
McInnes
P
,
Wang
L
,
Schloss
JA
,
Bonazzi
V
,
McEwen
JE
,
Wetterstrand
KA
,
Deal
C
.
The NIH human microbiome project
.
Genome Res
2009
;
19
:
2317
2323
.

Peterson
SN
,
Snesrud
E
,
Liu
J
,
Ong
AC
,
Kilian
M
,
Schork
NJ
,
Bretz
W
.
The dental plaque microbiome in health and disease
.
PLoS One
2013
;
8
:
e58487
.

Petrova
MI
,
Lievens
E
,
Malik
S
,
Imholz
N
,
Lebeer
S
.
Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health
.
Front Physiol
2015
;
6
:
81
.

Pirih
N
,
Kunej
T
.
An updated taxonomy and a graphical summary tool for optimal classification and comprehension of omics research
.
OMICS
2018
;
22
:
337
353
.

Prabha
V
,
Aanam
TD
,
Kaur
S
.
Bacteriological study of the cervix of females suffering from unexplained infertility
.
Am J Biomed Sci
2011
;
3
.

Prevention CfDCa
. Trichomoniasis.
2015
.

Price
LB
,
Liu
CM
,
Johnson
KE
,
Aziz
M
,
Lau
MK
,
Bowers
J
,
Ravel
J
,
Keim
PS
,
Serwadda
D
,
Wawer
MJ
et al. 
The Effects of Circumcision on the Penis Microbiome
.
PLoS One
2010
;
5
.

Pruesse
E
,
Quast
C
,
Knittel
K
,
Fuchs
BM
,
Ludwig
W
,
Peplies
J
,
Glöckner
FO
.
SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB
.
Nucleic acids Res
2007
;
35
:
7188
7196
.

Qin
J
,
Li
R
,
Raes
J
,
Arumugam
M
,
Burgdorf
KS
,
Manichanh
C
,
Nielsen
T
,
Pons
N
,
Levenez
F
,
Yamada
T
.
A human gut microbial gene catalogue established by metagenomic sequencing
.
Nature
2010
;
464
:
59
.

Ranjan
R
,
Rani
A
,
Metwally
A
,
McGee
HS
,
Perkins
DL
.
Analysis of the microbiome: advantages of whole genome shotgun versus 16 S amplicon sequencing
.
Biochem Biophysical Res Commun
2016
;
469
:
967
977
.

Ravel
J
,
Gajer
P
,
Abdo
Z
,
Schneider
GM
,
Koenig
SSK
,
McCulle
SL
,
Karlebach
S
,
Gorle
R
,
Russell
J
,
Tacket
CO
.
Vaginal microbiome of reproductive-age women
.
Proc Natl Acad Sci
2011
;
108
:
4680
4687
.

Robertson
SA
,
Sharkey
DJ
.
Seminal fluid and fertility in women
.
Fertil Steril
2016
;
106
:
511
519
.

Romero
R
,
Hassan
SS
,
Gajer
P
,
Tarca
AL
,
Fadrosh
DW
,
Nikita
L
,
Galuppi
M
,
Lamont
RF
,
Chaemsaithong
P
,
Miranda
J
.
The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women
.
Microbiome
2014
;
2
:
4
.

Roumpeka
DD
,
Wallace
RJ
,
Escalettes
F
,
Fotheringham
I
,
Watson
M
.
A review of bioinformatics tools for bio-prospecting from metagenomic sequence data
.
Frontiers in genetics
2017
;
8
:
23
.

Salter
SJ
,
Cox
MJ
,
Turek
EM
,
Calus
ST
,
Cookson
WO
,
Moffatt
MF
,
Turner
P
,
Parkhill
J
,
Loman
NJ
,
Walker
AW
.
Reagent and laboratory contamination can critically impact sequence-based microbiome analyses
.
BMC Biol
2014
;
12
:
87
.

Sandle
T
.
History and development of microbiological culture media
.
Inst Sci Technol
2011
;
10
14
.

Sanger
F
,
Coulson
AR
.
A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase
.
J Mol Biol
1975
;
94
:
441
448
.

Seo
SS
,
Oh
HY
,
Lee
JK
,
Kong
JS
,
Lee
DO
,
Kim
MK
.
Combined effect of diet and cervical microbiome on the risk of cervical intraepithelial neoplasia
.
Clin Nutr
2016
;
35
:
1434
1441
.

Simhan
HN
,
Krohn
MA
.
First-trimester cervical inflammatory milieu and subsequent early preterm birth
.
Am J Obstet Gynecol
2009
;
200
:
377
e371-374.

Schellenberg
JJ
,
Oh
AY
,
Hill
JE
.
Microbial profiling of cpn60 universal target sequences in artificial mixtures of vaginal bacteria sampled by nylon swabs or self-sampling devices under different storage conditions
.
J Microbiol Methods
2017
;
136
:
57
64
.

Schloss
PD
,
Westcott
SL
,
Ryabin
T
,
Hall
JR
,
Hartmann
M
,
Hollister
EB
,
Lesniewski
RA
,
Oakley
BB
,
Parks
DH
,
Robinson
CJ
.
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities
.
Appl Environ Microbiol
2009
;
75
:
7537
7541
.

Schoenmakers
S
,
Steegers-Theunissen
R
,
Faas
M
.
The matter of the reproductive microbiome
.
Obstetric Med
2018
;
1753495X18775899
.

Schwebke
JR
,
Gaydos
CA
,
Nyirjesy
P
,
Paradis
S
,
Kodsi
S
,
Cooper
CK
.
Diagnostic performance of a molecular test versus clinician assessment of vaginitis
.
J Clin Microbiol
2018
;
56
:
e00252
18
.

Schwebke
JR
,
Richey
CM
,
Weiss
HL
.
Correlation of behaviors with microbiological changes in vaginal flora
.
J Infect Dis
1999
;
180
:
1632
1636
.

Sender
R
,
Fuchs
S
,
Milo
R
.
Revised estimates for the number of human and bacteria cells in the body
.
PLoS Biol
2016
;
14
:
e1002533
.

Smith
BC
,
McAndrew
T
,
Chen
Z
,
Harari
A
,
Barris
DM
,
Viswanathan
S
,
Rodriguez
AC
,
Castle
P
,
Herrero
R
,
Schiffman
M
et al. 
The cervical microbiome over 7 years and a comparison of methodologies for its characterization
.
PLoS One
2012
;
7
:
e40425
.

Sobel
JD
.
Vaginitis
.
N Engl J Med
1997
;
337
:
1896
1903
.

Son
K-A
,
Kim
M
,
Kim
YM
,
Kim
SH
,
Choi
S-J
,
Oh
S-y
,
Roh
C-R
,
Kim
J-H
.
Prevalence of vaginal microorganisms among pregnant women according to trimester and association with preterm birth
.
Obstet Gynecol Sci
2018
;
61
:
38
47
.

Stout
MJ
,
Zhou
Y
,
Wylie
KM
,
Tarr
PI
,
Macones
GA
,
Tuuli
MG
.
Early pregnancy vaginal microbiome trends and preterm birth
.
Am J Obstet Gynecol
2017
;
217
:
356. e351
356. e318
.

Svenstrup
HF
,
Fedder
J
,
Abraham‐Peskir
J
,
Birkelund
S
,
Christiansen
G
.
Mycoplasma genitalium attaches to human spermatozoa
.
Hum Reprod
2003
;
18
:
2103
2109
.

Tao
X
,
Franasiak
JM
,
Zhan
Y
,
Scott
RT
,
Rajchel
J
,
Bedard
J
,
Newby
R
,
Treff
NR
,
Chu
T
.
Characterizing the endometrial microbiome by analyzing the ultra-low bacteria from embryo transfer catheter tips in IVF cycles: Next generation sequencing (NGS) analysis of the 16S ribosomal gene
.
Hum Microbiome J
2017
;
3
:
15
21
.

Taylor
BD
,
Totten
PA
,
Astete
SG
,
Ferris
MJ
,
Martin
DH
,
Ness
RB
,
Haggerty
CL
.
Toll‐like receptor variants and cervical Atopobium vaginae infection in women with pelvic inflammatory disease
.
Am J Reprod Immunol
2018
;
79
:
e12804
.

Toth
A
,
O’Leary
WM
,
Ledger
W
.
Evidence for microbial transfer by spermatozoa
.
Obstet Gynecol
1982
;
59
:
556
559
.

Tremblay
J
,
Singh
K
,
Fern
A
,
Kirton
ES
,
He
S
,
Woyke
T
,
Lee
J
,
Chen
F
,
Dangl
JL
,
Tringe
SG
.
Primer and platform effects on 16 S rRNA tag sequencing
.
Front Microbiol
2015
;
6
:
771
.

Turnbaugh
PJ
,
Ley
RE
,
Hamady
M
,
Fraser-Liggett
CM
,
Knight
R
,
Gordon
JI
.
The human microbiome project
.
Nature
2007
;
449
:
804
.

Urszula
K
,
Joanna
E
,
Marek
E
,
Beata
M
,
Magdalena
SB
.
Colonization of the lower urogenital tract with Ureaplasma parvum can cause asymptomatic infection of the upper reproductive system in women: a preliminary study
.
Arch Gynecol Obstet
2014
;
289
:
1129
1134
.

van de Wijgert
JHHM
,
Borgdorff
H
,
Verhelst
R
,
Crucitti
T
,
Francis
S
,
Verstraelen
H
,
Jespers
V
.
The vaginal microbiota: what have we learned after a decade of molecular characterization?
PLoS One
2014
;
9
:
e105998
.

Verstraelen
H
,
Vilchez-Vargas
R
,
Desimpel
F
,
Jauregui
R
,
Vankeirsbilck
N
,
Weyers
S
,
Verhelst
R
,
De Sutter
P
,
Pieper
DH
,
Van De Wiele
T
.
Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene
.
PeerJ
2016
;
4
:
e1602
.

Větrovský
T
,
Baldrian
P
.
The variability of the 16 S rRNA gene in bacterial genomes and its consequences for bacterial community analyses
.
PLoS One
2013
;
8
:
e57923
.

Virecoulon
F
,
Wallet
F
,
Fruchart‐Flamenbaum
A
,
Rigot
JM
,
Peers
MC
,
Mitchell
V
,
Courcol
RJ
.
Bacterial flora of the low male genital tract in patients consulting for infertility
.
Andrologia
2005
;
37
:
160
165
.

Walker
AW
,
Lawley
TD
.
Therapeutic modulation of intestinal dysbiosis
.
Pharmacol Res
2013
;
69
:
75
86
.

Ward
DM
,
Weller
R
,
Bateson
MM
.
16 S rRNA sequences reveal numerous uncultured microorganisms in a natural community
.
Nature
1990
;
345
:
63
.

Wee
BA
,
Thomas
M
,
Sweeney
EL
,
Frentiu
FD
,
Samios
M
,
Ravel
J
,
Gajer
P
,
Myers
G
,
Timms
P
,
Allan
JA
.
A retrospective pilot study to determine whether the reproductive tract microbiota differs between women with a history of infertility and fertile women
.
Aust N Z J Obstet Gynaecol
2017
;
58
:
341
348
.

Weng
S-L
,
Chiu
C-M
,
Lin
F-M
,
Huang
W-C
,
Liang
C
,
Yang
T
,
Yang
T-L
,
Liu
C-Y
,
Wu
W-Y
,
Chang
Y-A
.
Bacterial communities in semen from men of infertile couples: metagenomic sequencing reveals relationships of seminal microbiota to semen quality
.
PLoS One
2014
;
9
:
e110152
.

Westcott
SL
,
Schloss
PD
.
De novo clustering methods outperform reference-based methods for assigning 16 S rRNA gene sequences to operational taxonomic units
.
PeerJ
2015
;
3
:
e1487
.

Witkin
SS
,
Mendes-Soares
H
,
Linhares
IM
,
Jayaram
A
,
Ledger
WJ
,
Forney
LJ
.
Influence of vaginal bacteria and D-and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections
.
MBio
2013
;
4
:
e00460
00413
.

Woese
CR
,
Kandler
O
,
Wheelis
ML
.
Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya
.
Proc Natl Acad Sci
1990
;
87
:
4576
4579
.

Workowski
KA
,
Bolan
GA
.
Sexually transmitted diseases treatment guidelines, 2015. MMWR. Recommendations and reports: morbidity and mortality weekly report
.
Recomm Rep
2015
;
64
:
1
.

Yang
F
,
Zeng
X
,
Ning
K
,
Liu
KL
,
Lo
CC
,
Wang
W
,
Chen
J
,
Wang
D
,
Huang
R
,
Chang
X
et al. 
Saliva microbiomes distinguish caries-active from healthy human populations
.
ISME J
2012
;
6
:
1
10
.

Yarza
P
,
Yilmaz
P
,
Pruesse
E
,
Glöckner
FO
,
Ludwig
W
,
Schleifer
K-H
,
Whitman
WB
,
Euzéby
J
,
Amann
R
,
Rosselló-Móra
R
.
Uniting the classification of cultured and uncultured bacteria and archaea using 16 S rRNA gene sequences
.
Nat Rev Microbiol
2014
;
12
:
635
645
.

Zhou
X
,
Brown
CJ
,
Abdo
Z
,
Davis
CC
,
Hansmann
MA
,
Joyce
P
,
Foster
JA
,
Forney
LJ
.
Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women
.
ISME J
2007
;
1
:
121
.

Zinzendorf
NY
,
Kouassi-Agbessi
BT
,
Lathro
JS
,
Don
C
,
Kouadio
L
,
Loukou
YG
.
Ureaplasma urealyticum or Mycoplasma hominis infections and semen quality of infertile men in Abidjan
.
J Reprod Contracept
2008
;
19
:
65
72
.

Zozaya
M
,
Ferris
MJ
,
Siren
JD
,
Lillis
R
,
Myers
L
,
Nsuami
MJ
,
Eren
AM
,
Brown
J
,
Taylor
CM
,
Martin
DH
.
Bacterial communities in penile skin, male urethra, and vaginas of heterosexual couples with and without bacterial vaginosis
.
Microbiome
2016
;
4
:
16
.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)