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Abstract

The internal workings of biological systems are notoriously difficult to understand. Due to the prevalence of noise and degeneracy in
evolved systems, in many cases the workings of everything from gene regulatory networks to protein–protein interactome networks
remain black boxes. One consequence of this black-box nature is that it is unclear at which scale to analyze biological systems to best
understand their function. We analyzed the protein interactomes of over 1800 species, containing in total 8 782 166 protein–protein
interactions, at different scales. We show the emergence of higher order ‘macroscales’ in these interactomes and that these biological
macroscales are associated with lower noise and degeneracy and therefore lower uncertainty. Moreover, the nodes in the interactomes
that make up the macroscale are more resilient compared with nodes that do not participate in the macroscale. These effects are
more pronounced in interactomes of eukaryota, as compared with prokaryota; these results hold even after sensitivity tests where
we recalculate the emergent macroscales under network simulations where we add different edge weights to the interactomes. This
points to plausible evolutionary adaptation for macroscales: biological networks evolve informative macroscales to gain benefits of
both being uncertain at lower scales to boost their resilience, and also being ‘certain’ at higher scales to increase their effectiveness at
information transmission. Our work explains some of the difficulty in understanding the workings of biological networks, since they
are often most informative at a hidden higher scale, and demonstrates the tools to make these informative higher scales explicit.
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Insight Box
Protein interactomes are an insight into the inner workings of cells. Here we analyze the protein interactomes of over 1800 different
species using information theory to measure the amount of noise and uncertainty in protein interactions. We found that uncertainty
associated with protein interactions is higher in eukaryotes compared with prokaryotes. To explore why this is the case, we also
modeled the same protein interactomes at higher scales by coarse graining. We found that eukaryotes had much more informative
higher scales in their interactomes (in the form of less noise and uncertainty). We explore the benefits of such higher scale structure
and examine the relationship between evolution, information and scale in biological systems.

INTRODUCTION
Interactions in biological systems are noisy and degen-
erate in their functions, making them fundamentally
noisier and fundamentally different from those in engi-
neered systems [1, 2]. The sources of noise in biology are
nearly ubiquitous and vary widely. Noise may exist a gene
regulatory network, wherein a gene might upregulate
another gene but only probabilistically, or they may be
noisy in that a protein may bind randomly across a set
of possible pairings. There are numerous sources of such
indeterminism in cells and tissues, such as how cell

molecules are buffered by Brownian motion [3], to the
stochastic opening and closing of ion channels [4], and
even to the chaotic dynamics of neural activity [5].

There are also numerous sources of degeneracy within
the cellular, developmental and genetic operation of
organisms [6]. Degeneracy is when an end state or output,
like a phenotype, can come from a large number of
possible states or inputs [7].

Due to this indeterminism and degeneracy, the
dynamics and function of biological systems are
often uncertain. This hampers control of system-level
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properties for biomedicine and synthetic bioengineering,
as well as hampering the understanding of modelers and
experimentalists who wish to build ‘big data’ approaches
to biology like interactomes, connectomes and mapping
molecular pathways [8, 9]. Although there have been
many attempts to characterize and understand this
uncertainty in biological systems [7], the explanations
typically do not extend beyond the advantages of
redundancy in these systems [10].

How do noise and uncertainty span the tree of life?
Here we examine this question in biological networks, a
common type of model for biological systems [11, 12].
Specifically, we examine protein–protein interactomes
from organisms across a wide range of organisms to
investigate whether or not the noise and uncertainty in
biological networks increases or decreases across evolu-
tion. To quantify this noise and uncertainty, we make use
of the effective information (EI), an information-theoretic
network quantity based on the entropy of random walker
behavior on a network. A lower EI indicates greater noise
and uncertainty (a formal mathematical definition is
given in the section ‘Results’). Indeed, the EI of biological
networks has already been shown to be lower in biologi-
cal networks compared with technological networks [13],
which opens the question of why this is the case.

To see how EI changes across evolution, we examined
networks of protein–protein interactions (PPIs) from
organisms across the tree of life. The dataset consists
of interactomes from 1840 species (1539 bacteria, 111
archaea and 190 eukaryota) derived from the STRING
database [14, 15]. These interactomes have been pre-
viously used to study evolution of resilience, where
researchers found that species tended to have higher
values of network resilience with increasing evolution
(wherein ‘evolution’ was defined as the number of
nucleotide substitutions per site) [16]. In our work,
we take a similar approach, highlighting changes in
interactome properties as evolution progresses.

In addition, we focus on identifying when interactomes
have informative macroscales. A macroscale refers to
some dimension reduction, such as an aggregation,
coarse graining or grouping, of states or elements of
the biological system. In networks, this takes the form
of replacing subgraphs of the network with individual
nodes (macro-nodes). A network has an informative
macroscale when subgraphs of the network can be
grouped into macro-nodes such that the resulting
dimensionally reduced network gains EI [13]. When such
grouping leads to an increase in EI, we describe the
resulting macro-node as being part of an informative
macroscale. Following previous work, we refer to any
gain in EI at the macroscale as causal emergence
[17]. With these techniques, we can identify which PPI
networks have informative macroscales and which do
not. By correlating this property with where (in time)
each species lies in the evolutionary tree, we show
that informative macroscales tend to emerge later
in evolution, being associated more with eukaryota

than prokaryota (such as bacteria). Using a number of
sensitivity and robustness tests, we show that these
results are not explained by other network properties
such as network density or size.

What is the evolutionary advantage of having informa-
tive higher scales? This question is important because
higher scales minimize noise or uncertainty in biological
networks. Yet such uncertainty or noise represents a
fundamental paradox. The more noisy a network is, the
more uncertain and the less effective that network is;
effectiveness, here, refers to the ability to reliably trans-
form inputs into outputs (similar to the notion of speci-
ficity), such as being able to upregulate a particular gene
in response to a detected chemical in the environment.
In this sense, we might expect evolved networks to be
highly effective—that is, we might expect them to have
structures that reliably produce specific outputs given a
certain set of inputs/causes. Yet this is the opposite of
what we observe. Instead, we observe that effectiveness
of lower scales decreases later in evolution, as higher
scales that are effective emerge.

We argue here that this multiscale behavior is the res-
olution to a paradox: there are advantages to being effec-
tive, but there are also advantages to being less effective
and therefore more uncertain or noisy. For instance, less
effective networks might be more resistant to attack or
node failure due to redundancy. The paradox is that
networks that are certain are effective yet are vulnerable
to attacks or node failures, whereas networks that are
uncertain are less effective but are resilient in the face
of attacks or node failures. We argue that biological net-
works have evolved to resolve this ‘certainty paradox’ by
having informative higher scales. Specifically, we propose
that the macroscales of a biological network evolve to
have high effectiveness, but their underlying microscales
may have low effectiveness, therefore making the system
resilient without paying the price of a low effectiveness.

In a biological sense, node failures or attacks in a
cellular network may represent certain mutations in pro-
teins or other biochemical entities, which in turn may
prevent regular functioning of the system [18]. Biologi-
cal networks should then, over the course of evolution,
develop degeneracy and noise at lower scales to maintain
regular functioning, while at the same time developing
effectiveness at a higher level. This transformation can
be achieved by the action of both neutral and selective
processes in evolution. Neutral processes such as pre-
suppression, which, aided by mutations, increases the
number of interactions [19] and can therefore decrease
network effectiveness. On the other hand, selective pro-
cesses can weed out the noise that interferes with the
functioning and efficiency of the system [20]. An inter-
play of these evolutionary processes can lead to a reso-
lution of the ‘certainty paradox’ in cellular networks by
the development of informative macroscales.

This work therefore presents an explanation for the
observed trend in increased resiliency through evolu-
tion [16]: informative macroscales make networks more
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resilient. Finally, we offer insights into biological pro-
cesses at molecular level that might be responsible for
the emergence of informative macroscales in PPI net-
works, specifically looking at the differences between
bacteria, which have a low rate of nucleotide substi-
tutions per site, and eukaryota, which exhibit a higher
rate. Understanding the basic principles governing the
differences in efficiency and uncertainty between these
major divisions of life can help us comprehend the trade-
offs involved in information processes in PPIs across
evolution.

RESULTS
Effectiveness of protein interactomes across
the tree of life
EI is a network property reflecting the certainty (or uncer-
tainty) contained in that network’s connectivity [13]. It is
a structural property of a network calculated by travers-
ing its topology and is based on the uncertainty of a ran-
dom walker’s transitions between pairs of nodes and the
distribution of this uncertainty throughout the network.
It is calculated by examining the network’s connectivity.

In a protein interactome, the nodes are individual
proteins, and the edges of the network are interactions,
generally describing the possibility of binding between
two proteins. Therefore, the uncertainty we analyze is
uncertainty as to which protein(s) a given protein might
interact with, e.g. bind with. Each node in the network
has out-weights, which are represented by a vector, Wi

out.
For instance, protein A might share an edge with pro-
tein B and also protein C. Therefore, WA

out is [1/2, 1/2].
Since most protein interactomes are undirected, its edges
are normalized for each node (such that the sum of
Wi

out for each node is 1.0). Note that this process of
normalization implies that the probability of binding is
uniform across the different possible interactions. This
transformation into a direct network makes the networks
amenable to standard tools of network science, such as
analyzing random walk dynamics, and it is also nec-
essary to calculate the EI of the network. In addition,
the uniform distribution of 1/n is the simplest a priori
assumption. However, the actual probability of binding is
dependent on biological background conditions such as
protein prevalence and not included in most open-source
models, and therefore our analysis could change if such
detailed probabilities were known.

The uncertainty associated with each protein can be
mathematically captured by examining the entropy of
the outputs of a node, H(Wi

out), wherein a higher entropy
indicates more uncertainty as to interactions [21]. The
entropy of the distribution of weight across the entire
network, H(〈Wi

out〉), reflects the spread of uncertainty
across the network. A lower H(〈Wi

out〉) means that infor-
mation is distributed only over a small number of nodes.
A high H(〈Wi

out〉) signifies that information is dispersed
throughout the network. The EI of a network can then be
defined as the entropy of distribution of weights over the

network minus the average uncertainty inherent in the
weight of each node, or:

EI = H
(〈

Wout
i

〉)
–

〈
H

(
Wout

i

)〉
(1)

EI can itself be further decomposed into the degeneracy
and indeterminism of a network [13, 22], where each indi-
cates the lack of specificity in the network’s connectivity
or interactions. Degeneracy indicates a lack of specificity
in targeting nodes (many nodes target the same node),
whereas indeterminism indicates a lack of specificity in
targeted nodes (nodes target many nodes). In network
science, a node that is connected to many other nodes is
said to have a high degree, whereas here in this context
we refer to it as having high indeterminism; both terms
refer to the same structural property, but in this context,
we view nodes with high degree as sources of uncertainty
in the network (i.e. a random walker on a high-degree
node is more uncertain about which node it will visit next
compared with a random walker on a low-degree node).
Note that, if networks are considered deterministic in the
physical sense, the indeterminism term of EI still reflects
the uniqueness of targets in the network.

A network where all the nodes target a single node will
have zero EI (since it has maximum degeneracy), as will a
network where all nodes target all other nodes (complete
indeterminism). EI will only be maximal if every node
has a unique output. This forces the EI of a network
to be bounded by log2(n), where n is the number of
nodes in the network. Therefore, to compare networks of
different sizes, EI can be normalized, and a new quantity,
effectiveness, can be defined as:

effectiveness = EI/log2(n) (2)

Again, we use the term ‘effectiveness’ in a way that
is slightly different from its colloquial meaning; we
instead use it to quantify the certainty that a given set of
outputs will follow a particular set of inputs. To explore
the change in effectiveness of biological networks, we
examined protein interactomes of 1840 species divided
between archaea, bacteria and eukaryota (see section
‘Methods’ for details on the origin and nature of these
protein interactomes). We found a clear pattern in the
effectiveness of the networks, based on where they are
located in the tree of life (Fig. 1), the position of which
is based on each protein interactome’s small subunit
ribosomal RNA gene sequence information [23] (see
section ‘Methods’ for details). Overall, we found that the
mean effectiveness of protein interactomes decreases
later in the tree of life as nucleotide substitutions
occurred. Specifically, bacteria were found to have a
greater effectiveness (0.77) compared with eukaryota
(0.72) on average (Student’s t-test, P < 10−8). Following
Zitnik et al., we restricted further statistical analysis
to interactomes with >1000 citations, to use the most
well-founded protein interactomes, but the directionality
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Figure 1. Effectiveness of protein interactomes. (A) Effectiveness of all 1840 species with their superphylum association. Interactomes with a lower
number of nucleotide substitutions per site tended to be prokaryota (yellow), whereas those higher tended to be eukaryota (blue). Solid line is a linear
regression comparing the effectiveness of bacteria and eukaryota (r = −0.40, P < 10−5), due to the small number of archaea that passed the threshold
for reliable datasets (see section ‘Results’). (B) The effectiveness of prokaryotic protein interactomes is greater than that of eukaryotic species,
indicating that effectiveness might decrease with more nucleotide substitutions per site.

and significance of the result are unchanged when all
interactomes are included (Student’s t-test, P < 10−11),
indicating that the selection procedure of only using the
most-cited organisms does not influence our results. Due
to the small number of archaea interactomes based on
above 1000 citations, we did not include those samples
in Figure 1B.

Causal emergence across the tree of life
At first the higher effectiveness in prokaryota interac-
tomes as compared to that of eukaryota (as shown in
Fig. 1) may seem counter intuitive. One might naively
expect the effectiveness of cellular machinery, including
or especially interactomes, to increase over evolutionary
time, instead of decreasing as we have shown.

One hypothesis to explain these results is that,
although the protein interactomes get less effective in
their microscales over evolutionary time, the interac-
tomes are able to nonetheless be effective due to the
emergence of informative macroscales as evolution
proceeds. To examine this hypothesis, we must first
define a procedure for finding macroscales in networks.

Network macroscales are defined as subgraphs (i.e.
connected sets of nodes and their associated links) that
can be grouped into single macro-nodes such that the
resulting network has a higher value of EI than the orig-
inal microscale network [13]. We denote the microscale
of a network as G and the macroscale as GM, which is
composed of both ungrouped nodes (micro-nodes) and
macro-nodes, μ. The macroscale network, GM, is a dimen-
sion reduction in that it always has fewer nodes than G.

To recast a particular subgraph into a macro-node,
its connectivity must be modified since the subgraph is
being transformed into a single node. In terms of input
to the new macro-node, μ, all out-weights that targeted

nodes in the subgraph now target the macro-node. In
terms of output, each micro-node, vi inside the subgraph
has some Wi

out. To recast the nodes inside a subgraph into
a macro-node, we replace the Wi

out of the nodes in the
subgraph with a single Wμ

out, which is a weighted average
of the set of each Wi

out in the subgraph. The weight is
based on the probability P of each node vi in the sta-
tionary distribution of the network, π . This forms macro-
nodes (μ|π ) that accurately recapitulate the microscale
random walk dynamics at the new macroscale [13]. A
macroscale is informative if it increases the EI of the
network compared with the original microscale. To find
macro-nodes that maximally increase EI, we make use
of a modified spectral algorithm to find locally opti-
mal micro-to-macro mappings, originally described in
Griebenow et al. [24].

Results from this analysis support our initial hypoth-
esis that effectiveness is actually being transitioned to
macroscales of biological networks in eukaryota over
evolutionary time, even though the microscales become
noisy and less effective over evolutionary time. The total
amount of causal emergence (the gain of EI by grouping
subgraphs into macro-nodes) was identified for each pro-
tein interactome from each species, normalized by the
total size of that protein interactome (Fig. 2B). Across the
tree of life, we observe that eukaryota have more infor-
mative macroscales and show a significant difference in
the percentage of microscale nodes that get grouped into
macro-nodes than prokaryota (Fig. 2A).

Macroscales of interactomes are more resilient
than microscales
Ultimately, although there may be many reasons to see
an evolutionary increase in causal emergence, here, we
explore the evidence for a specific benefit of having
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Figure 2. Causal emergence in protein interactomes. (A) The protein interactomes of each species undergoes a modified spectral analysis to identify
the scale with EImax. The total dimension reduction of the network is shown, with there being a greater effect in eukaryota as more subgraphs are
grouped in macro-nodes. That is, as evolutionary time goes on the coarse-grained networks become a smaller fraction of their original microscale
network size (r = −0.46, P < 10−6). (B) To compare the degree of causal emergence in protein interactomes of different sizes, the total amount of causal
emergence is normalized by the size of the network, log2(n), and we see here a positive correlation between evolution and causal emergence (r = 0.457,
P < 10−7), results which do not change in directionality or significance when using either full data set of organisms or just the top 100 most cited. (C)
The amount of normalized causal emergence is significantly higher for eukaryota.

multiscale structure, which networks with only a single
scale lack. This specific benefit comes from the fact that
all networks face a ‘certainty paradox.’ The paradox is
that uncertainty in connectivity is desirable since it is
protective from node failures. For instance, a node failure
could be the removal of a protein due to a nonsense
mutation, or the inability to express a certain protein due
to an environmental effect, such as a lack of resources,
or even a viral attack. In turn, this could lead to a loss of
biological function or the development of disease or even
cell death. A protein interactome may be resilient to such
node failures by being highly uncertain or degenerate
in its protein–protein interactomes. However, this comes
at a cost. A high uncertainty can lead to problems with
reliability, uniqueness and control in terms of effects,
such as an inability for a particular protein to deter-
ministically bind with another protein. For instance, in
a time of environmental restriction of resources, certain
protein–protein interactomes may be necessary for con-
tinued cellular function, but if there is large-scale uncer-
tainty even significant upregulation of genes controlling
expression may not lead reliably to a certain interaction.

Here we explore these issues by examining the net-
work resilience of protein interactomes in response to
node removals, which represent either attacks or general
node failures. To measure the resilience of the network
in response to a node removal we follow [16] by using
the change in the Shannon entropy of the component
size distribution of the network following random node
removal. That is, if pc is the probability that a randomly
selected node is in connected component c ∈ C following
the removal of a fraction f of the nodes in the network,
the entropy associated with the component size distribu-
tion, H(Gf), is:

H
(
Gf

) = − 1
log2(N)

∑nc

c
pclog2

(
pc

)
(3)

where nc is the number of connected components
remaining after f fraction nodes have been removed
(note: ‘removed’ here indicates that the nodes become
isolates, still contributing to the component size distri-
bution though not retaining any of the original links). The
change in entropy, H(Gf), as f from 0.0 to 1.0 corresponds
to the resilience of the network in question. Specifically,
this resilience is defined as follows:

Resilience(G) = 1 −
∑1

f=0

H
(
Gf

)

rf
(4)

where rf is the rate of node removal (i.e. the increment
that the fraction f increases from 0 to 1). In this work,
we default to a value of rf = 100, which means that the
calculation of a network’s resilience involves iteratively
removing 1, 2, . . . 100% of the nodes in the network. For
each value of f , we simulate the node removal process 20
times.

Our hypothesis is that biological networks deal with
this ‘certainty paradox’ by maintaining uncertainty at
their microscale. This gives a pool of noise and degener-
acy, leading to resilience. Meanwhile, at the macroscale,
the networks can develop a high effectiveness, wherein
sets of proteins deterministically and non-degenerately
interact. To explore this hypothesis, we compare the net-
work’s resilience to removing micro-nodes that are mem-
bers of subgraphs grouped into macro-nodes to the net-
work’s resilience to removing micro-nodes that remain
ungrouped (shown in Fig. 3).

By isolating the calculation of network resilience to
only the micro- or macro-nodes of a network, we see a
stark trend emerge wherein nodes inside highly informa-
tive macro-nodes are more resilient than nodes outside.
That is, nodes in the original interactome that were
grouped into a macro-node contribute more to the overall
resilience of the interactome. This not only supports our
hypothesis that biological networks resolve the ‘certainty
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Figure 3. Resilience of micro- and macro-nodes following causal emergence in interactomes. The resilience of a species interactome changes across
the tree of life, as shown in previous research [16]. Using the mapping generated by computing causal emergence (Fig. 2B), we calculate the resilience
of the network, isolating the calculation to nodes that are either part of the macroscale or microscale. Points are color-coded according to the
evolutionary domain; points with dark outlines are associated with micro-nodes that have been grouped into a macro-node (macroscale), whereas the
points with light outlines have not been grouped into a macro-node (microscale). Nodes at the microscale contribute less to the overall resilience of a
given network (0.331) compared with nodes that contribute to macro-nodes (0.543) on average (t-test, P < 10−10). Note: plotted are the microscale and
macroscale resilience values for each interactome in the dataset, and the difference in resilience across scales holds even when only including species
with >10, 100 or 1000 citations.

paradox’ by building multiscale structure, but also pro-
vides further explanation and contextualization for the
recent findings of increasing resilience across evolution-
ary time [16].

DISCUSSION
In this work, we analyzed how the informativeness of
protein interactomes changed over evolutionary time.
Specifically, we made use of the EI to analyze the amount
of uncertainty (or noise) in the connectivity of protein
interactomes. We found that the effectiveness (the nor-
malized EI) of protein interactomes decreased over evo-
lutionary time, indicating that uncertainty in the connec-
tivity of the interactomes was increasing over evolution-
ary time. However, we discovered that this was due to
eukaryotic protein interactomes possessing higher (infor-
mative) scales, such that they had more EI when recast
as a coarse-grained network—a phenomenon known as
causal emergence. This lower effectiveness and higher
causal emergence in eukaryotic species was due to the
indeterminism and degeneracy in the network structure
of their PPIs.

We used a dataset from the STRING database [14, 15]
that spans >1800 species (1539 bacteria, 111 archaea and
190 eukaryota), which has been shown to have consid-
erable advantages compared with previous collections
of protein interactomes [16]. However, we cannot rule
out the possibility that biases might exist in the specific

manner of data collection, such as high under repre-
sentation of specific types of difficult-to-detect interac-
tions, which could potentially introduce errors in the
calculations of effectiveness in eukaryotic interactomes.
As such, we conducted a series of statistical robustness
tests that accounted for potential biases in both the
data collection and network structures of interactomes
in our dataset (see Fig. 4 in section ‘Methods’ for further
details about these statistical tests). In short, the results
we observed in this study cannot be explained by two
plausible sources of bias: (1) Random rewiring of network
edges does not produce similar results and (2) Network
null models of each interactome in this study produce
only a fraction of the observed causal emergence in
our dataset (the maximum causal emergence values for
a species’ network null model only reached 3% of the
causal emergence of the original interactome). Notwith-
standing these statistical tests, as technology and meth-
ods continue to improve, these results and hypotheses
should continue to be tested.

Macroscales themselves may be important both from
the perspective of the studying biologist understanding
what the intrinsic or functionally relevant scales of a
biological system are and also from the perspective of the
system themselves. For instance, possessing informative
macroscales might make for easier control of particular
outcomes or processes, such as cell differentiation; they
may also be easier for evolution to construct or evolve,
since macroscales are by definition multiply realizable.
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Figure 4. Statistical controls and network robustness tests. (A) As a greater fraction of network links are randomly rewired, we observe a decrease in
the causal emergence values of the resulting networks (normalized by the causal emergence value of the original network). This appears not to be
dependent on evolutionary domain, network size, density or other network properties. Error bands are 95% confidence intervals. (B) A second
statistical control known as a soft configuration model assesses whether there is anything intrinsic to the network’s degree distribution that could be
driving a given result. Here, we divide the average causal emergence of 10 such configuration model networks by the causal emergence values of the
original protein interactome and observe that the null model networks preserve only a small fraction of the original amount of information gain (at
most, the configuration models may show 3% of the original causal emergence).

To analyze one further specific possible cause for why
macroscales of biological networks evolved, we calcu-
lated how resilience differed for nodes inside of or outside
of macro-nodes. We found that resilience of nodes left
outside the macro was far lower, on average, than the
resilience of nodes grouped into macro-nodes. This indi-
cates that there are direct measurable benefits of having
macroscales, such as increased resilience, and that sys-
tems with informative macroscales can still have a high
effectiveness but also maintain the benefits of having
low effectiveness at a microscale. This is in line with the
existing research showing that resilience increases with
evolution [16].

These findings present evidence that biological sys-
tems are sensitive to the tradeoff between effectiveness
and robustness by examining whether evolution brings
about multiscale structure in biological networks. Sys-
tems with a single level of function face an irresolvable
paradox: uncertainty in the connections and interactions
between nodes leads to resilience to attack and robust-
ness to node failures, but this decreases the effectiveness
of that network. However, multiscale systems, defined
as those with an informative higher scale, can solve
this ‘certainty paradox’ by having high uncertainty in
their connectivity at the microscale while having high
certainty in their connectivity at the macroscale. The
tradeoffs between being effective at a microscale (typ-
ically in prokaryotes, e.g. bacteria) and being noisy at
microscale while transitioning the information to higher
scales (eukaryota) might have played a key role in evo-
lutionary dynamics. Indeed, the drive from a prokary-
otic ancestor to a eukaryotic one might have occurred
based on this trade-off, however explaining such a phe-
nomenon is outside the scope of the current work.

It is worth noting that our results on the ‘certainty
paradox’ may be similar to results showing a relationship
between evolution and the criticality of biological sys-
tems, wherein criticality reflects how close to the ‘edge of
chaos’ a system is. Criticality has been shown in a diverse
set of biological systems, such as uniquely distinguishing
biological gene regulatory networks [25], or in protein
evolution where criticality has been linked to robust-
ness [26], and criticality is even an outcome of evolved
artificial neural agents [27]. Although mathematically
possessing an informative macroscale is not the same
as criticality for a biological system, they both may be
important biological properties that drive evolutionary
adaptations and are worthy of further investigation.

While we have illuminated many of the advantages
of biological macroscales and posited a functional rea-
son for their existence as the solution to the ‘certainty
paradox,’ what are the biological mechanisms behind
the evolution of multiscale structure? We offer here a
few hypotheses about biological mechanisms that are
concordant with the hypothesis of multiscale advantages
in terms of having both effectiveness and robustness.

Notably, evolution can proceed both via neutral pro-
cesses and selection-based contexts. A well-known neu-
tral process that affects interactions at cellular scale,
such as those between proteins, is presuppression (also
termed constructive neutralism) [20]. This refers to the
complexity arising in the dependencies between inter-
acting molecules in the absence of positive selection
[19]. Simply put, the likelihood of maintaining indepen-
dence between partners is less than that of moving away
from the original state (by accumulating changes), and
therefore random changes can increase the number of
interactions between proteins in a system by chance
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alone and result in ‘noisiness’ in the interactions. This
may offer a biological mechanism behind the result in
low effectiveness in an interactome. Because eukaryota
have both a larger number of proteins and a higher
substitution rate than bacteria [16], eukaryotic interac-
tomes might be expected to feature a higher number
of neutral processes, all of which would combine to
make interaction networks noisier and less effective. One
hypothesis is that neutral evolution specifically drives
the noise at the microscale but not the macroscale. At the
macroscale, interactomes would be trimmed and evolved
under evolutionary constraints and selective pressures
[28], which would eventually reinforce beneficial rela-
tionships, thinning out those that can cause negative
effects on survival or growth [20]. These processes may
lead to formation of subgroups of proteins in the network
with more and stronger interactions within the group
compared with fewer or weaker interactions between
those in different subgroups [20, 29]—thereby leading
to the emergence of modular, macroscale structures in
these networks, which we hypothesize to be correlated
with organismal function [11].

Another possible explanation as to the biological
mechanism behind our observed results of a decrease in
effectiveness is that prokaryotes are more metabolically
diverse than eukaryotes, possessing more metabolic
processing pathways [30]. Together with changed usage
patterns (such as carbon catabolite repression in
bacteria), this specificity of metabolite processing
reduces energy demand and allows for more effective
usage of resources [31]. These processes would make
biochemical inputs and outputs more streamlined
and efficient in prokaryotes, which in turn should
increase the effectiveness of their protein interactomes,
given energy and genomic size constraints [32]. In
contrast, eukaryota, as a group, are less constrained by
energy than prokaryotes [33] but must contend with a
constrained number of metabolites, channelizing them
to perform cellular functions in morphologically more
complex environments [30, 33]. Eukaryotic cells are
about three orders of magnitude larger than prokaryotes
[33], requiring more and different sets of controls and
organizational processes. Prokaryotes depend on free
diffusion for intracellular transport, whereas eukaryota
have elaborate mechanisms for targeted transfers [34].
This reliance on cellular transport mechanisms can
lead to higher modular (and thus more degenerate or
indeterministic) structure in protein interactomes and
other intracellular entities, which, as we show here,
can be associated with less noise at higher scales of
interaction. These higher scale inter module transfer
mechanisms ensure the proper and less noisy flow of
important molecules among these modules (such as
protein or metabolite transport among organelles) [11].
Each of these larger scale processes, such as transport
among organelles, relies on only a handful of inputs
and outputs from outside its module, as compared with
much more diverse interactions within the modules

themselves [11], which arise due to both functional and
neutral processes. In terms of networks, this hierarchical
organizational structure is apt to lead to a higher
network effectiveness score at the module/process scale
compared with the microscale.

Such mechanistic biological explanations for why we
might observe these differences in effectiveness are in
line with the theoretical reasoning that biological sys-
tems need to resolve the paradox they face at indi-
vidual scales and therefore construct multiscale struc-
ture. We seek to tie the ‘certainty paradox’ directly to
the notion of scale in biological systems and provide a
means for researchers to reduce the ‘black box’ nature
of these systems by searching across scales for mod-
els with low uncertainty. Understanding the mechan-
ics of information transfer and noise in biological sys-
tems, and how they affect functionality, remains a major
challenge in biology today. One can imagine that the
drive from unicellular to multicellular life was based
on some form of similar trade-offs, as those between
prokaryotes and eukaryotes, that allowed multicellular
life to operate via effective macro-states while reserving
a pool of noise and degeneracy. Thus, understanding the
information structure of these interactomes lends us an
eye into the inner workings of long-term evolutionary
processes and trade-offs that might have resulted in the
two biggest phenotypic splits in evolutionary history—
that of prokaryotic and eukaryotic cells, and of uni-
cellular and multicellular life. We hope this developed
framework is applied to other interactomes and other
biological networks, such as gene regulatory networks,
or even functional brain networks, to examine both how
uncertainty plays a role in robustness, how informative
higher scales change across evolution and what funda-
mental tradeoffs biological systems face.

METHODS
Protein interactomes
Protein interactomes are complex models of intracellular
activity, often based on high-throughput experiments
[35, 36]. Here protein interactomes formed from a curated
set of high-quality interactions between proteins ( PPIs)
are taken from the STRING database [14, 15] the curation
of which is outlined in Zitnik et al. [16]. In this curation,
the STRING database (Search Tool for the Retrieval of
Interacting Genes/Proteins, found at http://string-db.org)
is used to derive a protein interactome for each species.
Each PPIs in the protein interactome is an undirected
edge where the edges are based on experimentally doc-
umented physical interactions in the species itself or on
human expert-curated interactions (e.g. no interactions
are based on text-mining or associations). The dataset is
curated to only include interactions derived from direct
biophysical PPIs, metabolic pathway interactions, reg-
ulatory protein–DNA interactions and kinase–substrate
interactions. The details of the curation of these interac-
tomes can be found in Zitnik et al. [16].
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The evolutionary history of the set of PPIs was obtained
by Zitnik et al. [16] and is derived from a high-resolution
phylogenetic tree [23]. The tree is composed of archaea,
bacteria and eukaryota and captures a diversity of
species in each lineage. The phylogenetic tree is used to
characterize the evolution of each species based on the
total branch length (which takes the form of nucleotide
substitutions per site) from the root of the tree to the leaf
of the species. The phylogenetic taxonomy, the names of
species and lineages of each species were taken from
the NCBI Taxonomy database [37]. Details of how this
is associated with each species can be found at (http://
snap.stanford.edu/tree-of-life), and we refer to Zitnik
et al. [16] for further specifics on how each species
was assigned an average nucleotide substitution rate.
Ultimately these protein interactomes are incomplete
models that may change as time goes on. Because we
do not wish to bias our results, our statistical analyses
were performed only over the interactomes of the species
based on >1000 citations in the literature.

Spectral analysis for identifying causal
emergence
Spectral methods have proved to be successful in iden-
tifying good graph partitions in a wide variety of appli-
cations [38]. Given an undirected network, we take the
degree normalized adjacency matrix A and compute the
eigendecomposition A = EΛET, where the ith column of E
is the normalized eigenvector corresponding to the ith
eigenvalue, and Λ is the matrix with the ith eigenvalue
on the ith diagonal and zeros elsewhere. The eigenvector
matrix E contains rich information about the structure
of the network, including information about the optimal
scale of a network. The rows of E correspond to nodes
in the network, so we construct a vector representation
of each node’s contribution to the network topology by
weighting the columns of E by their corresponding eigen-
values, removing columns that correspond to null eigen-
values, and associating the resulting row vectors with
the nodes of the network. We construct a distance met-
ric that reflects similarity in causal structure between
pairs of nodes by taking the cosine similarity between
the vectors corresponding to nodes. If a pair of nodes
are not in each other’s Markov blankets, coarse graining
them together cannot increase the EI, so we define the
distance between them to be ∞ (or simply very large,
in this case, 1000). We use this metric to cluster the
nodes of the network using the OPTICS algorithm [39]
which we can interpret as a coarse graining to construct
a macroscale network, where micro-nodes are placed in
the same macro-node if they are placed in the same clus-
ter. Note that this method for detecting causal emergence
in networks is explored in detail in other sources [13].

Robustness of causal emergence differences
across species
To ensure that the differences observed in the causal
emergence values of the PPI networks were not merely a

statistical artifact, we conducted a series of robustness
tests of our analysis. These tests were necessary for
two key reasons. First, the nature of interaction data in
biology is inherently difficult to obtain. Although many of
the tools we use to collect, clean and interpret biological
systems are sophisticated, they are nonetheless subject
to potential biases. However, if there were systematic
biases in the network construction process for the pro-
tein interactomes used in this study (for example, if
the interaction networks of eukaryotic species system-
atically over estimated certain interactions), randomiza-
tion procedures should clarify the extent to which the
results we observed are truly a property of the species
themselves.

Second, these robustness tests offer insights into
whether there is anything intrinsic to the network
structures of the eukaryotic or prokaryotic species that
could be contributing to their causal emergence values.
For example, the protein-interaction networks of the
eukaryote, Rattus norvegicus (the common sewer rat),
have a certain amount of causal emergence. Would an
arbitrary, simulated network with the same number
of nodes and edges, connected randomly, also have a
similar amount of causal emergence? By performing
a series of robustness tests on the protein interaction
networks in our study, we can get closer to the question
of whether or not there is anything intrinsic to the protein
interaction network of R. norvegicus, or any other species,
that makes it particularly prone to displaying higher
scale informative structures?

To address the two concerns above, we performed two
separate but similar robustness tests. The first uses a
network null model known as the configuration model to
randomize the connectivity of the protein interactomes
while also preserving the number of nodes, edges and
distribution of node degree [40]. The second robustness
test involves random edge rewiring [41]. For each network
in our study, we iteratively increased the fraction of
random edges to rewire in the network; an edge, eij, that
connects nodes vi and vj, becomes reconnected to a new
node, vk, forming a new edge, eik, instead of the original eij.
We do this with an iteratively increasing fraction of edges,
starting with 1% of edges and increasing until 100% of the
network’s edges are rewired.

If the causal emergence values of the networks
in this study decrease following the robustness tests
above—and in particular, if they decrease differently
for eukaryota and prokaryotes—then the differences we
observe are unlikely to have arisen simply from chance,
noisy/biased data, or otherwise coincidental, ad hoc
network properties. Instead, our testing of the robustness
of our analysis lends credence to the main finding of
this paper, which is that species that emerged later in
evolutionary time are associated with more informative
macroscale protein interaction networks.

In Figure 4A, we show how the causal emergence
of archaea, bacteria and eukaryota interactomes all
decreases as a higher and higher amount of network
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Figure 5. Schematic of edge reweighting procedure. Consider a network, G (A), and its transition probability matrix, W (A). Each element wij of W
corresponds to the probability that a random walker on node vi will transition to node vj at the following timestep; for each node vi, wij is 1/ki, where ki
is the out-degree of node vi. (C, D, E) Examples of the transition probabilities (i.e. the rows of W) for three nodes in G. The edge reweighting procedure
introduced here involves two steps: (F) First, we select a row of W and add small uniform noise to it. Next, we apply a softmax function to the noisy

vector, which is defined as σ
(
Wi

)
= eθWi∑n

j=1 e
θwij

. In (G, H, I) we show how the output of a softmax function relies on the θ parameter—as θ increases, the

slightest differences become accentuated in the resulting value, which we show using the noisy W0 vector and three different values of θ . (J) We
iteratively span values of θ , and we are able to approximate the causal emergence of networks with (tunable) non-uniform edge weights; here we plot
the resulting causal emergence values as a percentage of the original causal emergence. Error bands are 95% confidence intervals.

edges are rewired, indicating that random rewiring has a
similar effect on all datasets. This analysis suggests that
if there were significant noise in the network data itself
(i.e. connections between proteins where there otherwise
should not be or a lack of connections where there
should be), we should not expect to see the magnitude
of causal emergence values that we indeed do see.
This adds evidence that the inherent noise in the data
collection process is not sufficient to produce the results
we see.

In Figure 4B, we show that random null models of
the networks used in this study are characteristically
unlikely to have values for causal emergence values that
are at all similar to the original interactomes. On the
contrary, the maximum average causal emergence value
for any of the networks used here reaches only 3% of the
original network’s values. This suggests that random null
models of networks are less likely to contain higher scale
structure but also that the observed differences in the
causal emergence values for prokaryotic and eukaryotic
species are unlikely to be driven merely due to basic
properties like their edge density or degree distribution.

Lastly, EI is sensitive not only to the network structure
but also to the distribution of edge weights within the

network. However, we do not have edge weights data for
the particular networks included in this work; as such,
we assign uniform weights of 1/ki to the ki edges of
node vi, which means that edge weights correspond to
the probability that a random walker will traverse from
node vi to node vj in the next time step. This assumption
likely distorts the true- (likely non-uniform) weighted
interaction patterns between proteins. This could affect
the main results of this work, and as such, we devised
an edge weight randomization procedure that allows us
to systematically vary the shape of the distribution of
edge weights in the networks we study. That is, whereas
we usually assume that nodes have ‘flat’ edge weights
(uniform, summing to 1.0) to neighboring nodes, under
the edge weight randomization, we can create versions
of a given network where nodes’ edge weights distribu-
tions are more or less heavy-tailed. Take, for example,
a node connected to four other nodes; originally, its
vector of edge weights would be [0.25, 0.25, 0.25, 0.25].
The procedure introduced here allows us to continuously
vary the shape of the edge weight distribution to some-
thing more heavy-tailed, such as [0.025, 0.05, 0.025, 0.9].
A schematic of the randomization procedure is shown
in Figure 5, the results of which are shown in Figure 6
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Figure 6. Comparison of causal emergence of bacteria and eukaryota.
Using the procedure in Figure 5, we select a random sample of bacteria
species and eukaryota species and perform the edge reweighting on
their interactomes. Notably, the two domains do not substantially differ
under this re-weighting scheme, at least partially validating the results
from the main text. Error bands are 95% confidence intervals.

and a full description of the randomization procedure
below.

To reweight the edges in a given network, we first mul-
tiply each row of Wout by vectors of uniformly distributed
noise. This multiplication ensures that the vectors of
noise will preserve the presence and absence of outgoing
edges for each node. After this, we renormalize each row
so that they sum to 1.0. Next, we want to introduce
tunable non-uniformity to each node’s edge weights. For
example, if node vi connects to nodes vj and vk each with
a weight wij = wik = 0.5, we want to track how the net-
work’s causal emergence changes if these edge weights
were, for example, [0.45, 0.55] or [0.7, 0.3] or [0.9, 0.1], etc.
For this, we use a softmax function—a common tool in
machine learning and statistics. Softmax functions have
many purposes and can be used to exaggerate or depress
probabilities in vectors; the function is defined as:

σ (Wi) = eθWi

∑N
j=1 e

θwij
(5)

where θ modulates the extent to which higher probability
values will become even higher. For example, the vector
[0.1, 0.2, 0.3, 0.4], when passed through a softmax func-
tion with θ = 10, becomes [0.03, 0.09, 0.24, 0.64]; when
θ = 0, it becomes [0.25, 0.25, 0.25, 0.25]. This θ parame-
ter, when varied, can generate a range of uniform and
non-uniform vectors—precisely what this edge reweight-
ing procedure requires. We repeatedly create noisy Wout

matrices and apply the softmax function under a variety
of θ values. We can then compute the causal emergence
of this new matrix, ω, and calculate its percentage of the
original network’s causal emergence value. We plot this
for an example network under a range of θ values in
Figure 5J.

To compare the effect of uniform versus non-uniform
edge weights in the protein interaction networks studied
in this work, we randomly sample 50 bacteria and 50
eukaryota to perform this procedure on. We compare

the effect of this reweighting procedure in Figure 6, find-
ing little differences between bacteria and eukaryota.
This result and procedure are important controls for
characterizing the higher informative scales of different
protein networks, as there does not seem to be especially
consistent descriptions of the expected shape of indi-
vidual proteins’ edge weight distributions across species.
Note that here we make the minimal assumption that
there should not be domain-specific differences between
how this reweighting scheme impacts the causal emer-
gence of bacteria versus eukaryota. The introduction of
this technique opens a wide number of novel research
questions for future work. Importantly, we do not want
to introduce additional assumptions about how this non-
uniform weight is distributed (e.g. we do not want to
artificially impose correlations between edge weight and
degree of incident nodes, as we did not find evidence for
this in the literature).

Although it is impossible to exhaust all possible
sources of bias or confounding variables in biological
networks, the two statistical controls performed here get
us closer to validating the hypotheses underlying this
work: that evolution brings about higher informative
scales in protein networks.
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5. Başar E. Chaos in Brain Function: Containing Original Chapters by E.
Basar and TH Bullock and Topical Articles Reprinted from the Springer
Series in Brain Dynamics. Berlin, Germany: Springer Science &
Business Media, 2012.

6. Brennan MD, Cheong R, Levchenko A. How information theory
handles cell signaling and uncertainty. Science 2012;338:334–5.
10.1126/science.1227946.

7. Tononi G, Sporns O, Edelman GM. Measures of degeneracy and
redundancy in biological networks. Proc Natl Acad Sci U S A
1999;96:3257–62. 10.1073/pnas.96.6.3257.

8. Dolinski K, Troyanskaya OG. Implications of big data for
cell biology. Mol Biol Cell 2015;26:2575–8issn: 19394586.
10.1091/mbc.E13-12-0756.

9. Marx V. The big challenges of big data. Nature 2013;498:
255–60issn: 00280836. 10.1038/498255a.

10. Whitacre JM. Degeneracy: a link between evolvability, robust-
ness and complexity in biological systems. Theor Biol Med Model
2010;7:1–17. 10.1186/1742-4682-7-6.

11. Alon U. Biological networks: the tinkerer as an engineer. Science
2003;301:1866–7. 10.1126/science.1089072.

12. Bray D. Molecular networks: the top-down view. Science
2003;301:1864–5. 10.1126/science.1089118.

13. Klein B, Hoel E. The emergence of informative higher
scales in complex networks. Complexity 2020;2020:1–12.
10.1155/2020/8932526.

14. Szklarczyk D, Franceschini A, Kuhn M et al. The STRING
database in 2011: functional interaction networks of proteins,
globally integrated and scored. Nucleic Acids Res 2011;39:561–8.
10.1093/nar/gkq973.

15. Szklarczyk D, Morris JH, Cook H et al. The STRING database in
2017: quality-controlled protein-protein association networks,
made broadly accessible. Nucleic Acids Res 2017;45:D362–8.
10.1093/nar/gkw937.
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