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The impacts of seven uncertain biological parameters on simulated larval connectivity in the Florida Keys are investigated using Polynomial chaos
surrogates. These parameters describe biological traits and behaviours—such as mortality, swimming abilities, and orientation—and modulate
larval settlement as well as dispersal forecasts. However, these parameters are poorly constrained by observations and vary naturally between
individual larvae. The present investigation characterizes these input uncertainties with probability density functions informed by previous studies
of Abudefduf saxatilis. The parametric domain is sampled via ensemble calculations, then a polynomial-based surrogate is built to explicitly
approximate the dependence of the model outputs on the uncertain model inputs, which enables a robust statistical analysis of uncertainties.
This approach allows the computation of probabilistic dispersal kernels that are further analyzed to understand the impact of the parameter
uncertainties. We find that the biological input parameters influence the connectivity differently depending on dispersal distance and release
location. The global sensitivity analysis shows that the interactions between detection distance threshold, orientation ontogeny, and orientation
accuracy, are the dominant contributors to the uncertainty in settlement abundance in the Florida Keys. Uncertainties in swimming speed and
mortality, on the other hand, seem to contribute little to dispersal uncertainty.
Keywords: biophysical model, connectivity, coral reef, dispersal, fish larvae, orientation, Polynomial chaos analysis, uncertainty quantification.

Introduction

Biophysical models of dispersal are increasingly used to es-
timate population connectivity of many sessile and benthic
marine species (Swearer et al., 2019; Andrello et al., 2013;
Burgess et al., 2014). Populations of these species are mostly
connected by the exchange of larvae that are transported
in the open ocean during the dispersal phase (Cowen and
Sponaugle, 2009). Biophysical models are designed to simu-
late this transport and the biophysical interactions happening
during dispersal (Paris et al., 2005; Ayata et al., 2009; An-
drello et al., 2013; Almany et al., 2017). However, the util-
ity of these biophysical models in informing science and re-
source management—for example, determining which biolog-
ical traits are most relevant to connectivity (Staaterman et al.,
2012), helping the placement of Marine Protected Areas (An-
drello et al., 2015; Claro et al., 2018; Kough et al., 2018),
or advising sustainable fisheries management (García-García
et al., 2016)—is contingent on the confidence in the models’
output. This confidence can be enhanced by estimating the
uncertainties in the biophysical model outputs caused by un-
certainties in the model formulation and poorly constrained
input parameters. The study, herein, presents a novel applica-
tion of surrogate-based Uncertainty Quantification method-
ology to estimate the impact of uncertain biological parame-
ters on simulated fish larval connectivity in the Florida Keys.
The quantification of the impact of these uncertainties aims at
evaluating the reliability of connectivity estimates.

Biophysical models simulate larval exchange and transport
in the open ocean, first, by replicating oceanic conditions as ac-
curately as possible, and second, by representing larvae as par-
ticles endowed with certain attributes that model, as faithfully
as possible, known larval behaviours (Swearer et al., 2019).
The primary goal of biophysical connectivity models is in re-
producing the journey of successful larvae, the ones that find
their way to a reef and settle. Indeed, only larvae that survive
the pelagic phase take part in shaping populations connectiv-
ity. If most of the larvae were to survive the larval phase, one
could use the average values of the settling individuals to rep-
resent the common biological and behavioural traits of the
larvae modelled. However, very few larvae survive the pelagic
phase and successfully settle on the reefs (Houde, 2002); the
ones that do survive potentially have traits very different from
the others. Indeed, studies have shown that successful larvae
have specific traits such as faster growth (Shulzitski et al.,
2015; Goldstein and Sponaugle, 2020) and/or better orien-
tation abilities (Staaterman et al., 2012). Therefore, dispersal
models should not use only averaged values of larval traits as
they would misrepresent the larvae fraction that successfully
participate in population connectivity. One way to mitigate
this problem is to characterize the uncertainty in the biologi-
cal input parameters by their observed distributions and con-
sider runs of the biophysical model as stochastic realizations
of a probabilistic process (Leis, 2007). Such approach would
simulate the dispersal for the population of larvae rather than
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a subset, allowing an evaluation of the reliability of the model
and a better understanding of the impact of biological traits
on population connectivity.

The accuracy and reliability of connectivity estimates hinge
on the biophysical model’s ability to correctly represent math-
ematically the interaction between oceanic transport and lar-
vae behaviours (Staaterman and Paris, 2013). Higher relia-
bility can be achieved by: (i) using high resolution oceano-
graphic models, (ii) choosing experimentally validated biolog-
ical and behavioural traits, and (iii) quantifying uncertainties
(Ådlandsvik et al., 2009). Uncertainties in forecast model, such
as biophysical models of larval fish, can be categorized into
two classes: the model uncertainties caused by the abstrac-
tion of the true processes (physical or biological) into math-
ematical equations and the input data uncertainties due to
the empirical parameters involved in the model itself. The fo-
cus of this study is the characterization of this second type
of uncertainties. Uncertainties in biophysical models origi-
nate from the oceanographic and biological model compo-
nents, but the impacts of uncertain biological parameters are
far less documented and quantified than those of oceano-
graphic ones (see Clancy et al. (2010); Hu et al. (2012); and
Mattern et al. (2013) for a few examples). There are a lot
of uncertainties in the biological part of the model since it
aims at reproducing an inherently variable and adaptive sys-
tem. In addition, some of the active biological behaviours re-
cently implemented in biophysical models (Staaterman and
Paris, 2013; Simpson et al., 2013) rely on parameters, such
as onset of orientation, individual accuracy, and detection
distance of the cues, for which precise measurements (theo-
retical or empirical) are lacking (Leis, 2007), adding to the
uncertainties.

The objective of this study is to evaluate the reliability of
a complex biophysical model that includes a larval orien-
tation component. This is done by following four classical
Uncertainty Quantification analysis steps (Iskandarani et al.,
2016). First, the model input uncertainties are identified and
quantified. The present study focuses exclusively on biological
parameters that simulate larvae behaviour known to impact
the probability of settlement (Leis, 2006; Staaterman et al.,
2012). A total of seven uncertain inputs, related to the larvae
biological and behavioural models, are taken into account.
The characterization of the input uncertainties (i.e. specify-
ing the parameter ranges and distributions) were informed
by empirical information collected on Abudefduf saxatilis,
a common species of Pomacentridae with documented ecol-
ogy and larval traits (Fishelson, 1970; Foster, 1987; Prap-
pas et al., 1991; McAlary and McFarland, 1993; Aishuth
et al., 1998; Hogan and Mora, 2005). Second, the uncertain-
ties are forward propagated into a biophysical model, the
Connectivity Modelling System (CMS, Paris et al. (2013b)).
We perform an ensemble of simulations in order to sample
the parametric domain and compute the corresponding out-
puts. Third, the ensemble data are used to build and validate
surrogate models of the dispersal kernels. Polynomial chaos
(PC) surrogates are implemented, non-intrusively, to explic-
itly approximate the dependence of the model outputs on
the uncertain model inputs. Fourth, once validated, the sur-
rogates replace the original model for the statistical analy-
sis. This approach enables the generation of a probabilistic
connectivity estimate whose properties can be readily ana-
lyzed to determine the dominant contributors to the output
uncertainties.

The paper is structured as follows. Material and methods
introduce the general setting of this work including the bio-
physical model of dispersal, the oceanic conditions with the
associated Lagrangian Coherent Structures (LCS), the biolog-
ical and behavioural models, the parametric domain, and the
quantities of interest. The section Uncertainty propagation de-
tails the probabilistic framework associated with the biophys-
ical model of dispersal. The results start with an analysis that
focuses on a control run where all parameters are set to their
mean values. The primary goal of the control run is to as-
sess the role of oceanic conditions on larval dispersal. Then,
we present the results of the uncertainty propagation in two
analysis. The first is a uni-dimensional exploration of the bi-
ological parameters space where only one variable changes
at a time. The second analysis is a multi-dimensional investi-
gation that quantifies the impacts of the combined biological
uncertainties on dispersal with the goal of determining the rel-
ative importance of each input parameter for the model out-
put uncertainties. Discussion and conclusions are drawn in the
following section. The results of this study identify and rank
the uncertain input parameters that contribute the most to the
uncertainty in the connectivity estimates; this ranking can be
used to prioritize the list of future experimental studies needed
to improving connectivity estimates.

Material and methods

Biophysical model of dispersal

The CMS (Paris et al., 2013b) is a coupled biophysical model
used to simulate the dispersal of A. saxatilis larvae in the
Florida Keys. This type of model uses the outputs of a physi-
cal oceanographic model, here the HYbrid COordinate Model
(HYCOM; Chassignet et al., 2009), to simulate the trajecto-
ries of biological particles moving under the influence of var-
ious physical and biological mechanisms. Such connectivity
model is a useful tool to study the potential dispersal of plank-
tonic organisms and the CMS has been used to estimate the
connectivity of marine populations in several works including
Holstein et al. (2014), Kitchens et al. (2017), Truelove et al.
(2017), and Kough et al. (2019). A major feature of the CMS
is its ability to simulate biological traits and behaviours so that
their impacts on larval dispersal and populations connectivity
can be investigated (Staaterman et al., 2012; Faillettaz et al.,
2017). The CMS is composed of three interconnected mod-
ules: a physical oceanographic module, a habitat module, and
a behavioural/biological module. The biological module of the
publicly available CMS was enhanced to model larvae orien-
tation. The details of these enhancements will be summarized
in the section Biological and behavioural models.

South Florida configuration

The oceanic conditions are provided by the Florida Straits,
South Florida and the Florida Keys Hybrid Coordinate Ocean
Model (FKEYS-HYCOM), an oceanographic model devel-
oped to resolve the mesoscale (and also aspects of the sub-
mesoscale) circulation around South Florida and the Florida
Keys island chain (Kourafalou and Kang, 2012). The model
grid extends from 22.18◦N to 27.51◦N and from 78.0◦W to
84.5◦W with a horizontal resolution of 1/100◦ (∼900 m).
The model data are available with a temporal resolution of
6 h for a continuous period from 2004 to the present. The
study period of our experiment runs from May to October
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Figure 1. Map of the Florida Reef Tract. The reef habitat used in the biophysical simulations is composed of 360 grid cells each 4 km2 in area. The reef
polygons overlay the geolocalized reef map produced by the Coral Millenium Mapping Project (Andréfouët et al., 2006). Reef polygons are grouped in six
reef areas to facilitate the interpretation of the model outputs: DT, the MK, the LK, the MidK, KL, and B (respectively from Southwest to Northeast,
marked with different colours, see box insert).

2007 (spawning period for A. saxatilis). While general lar-
val supply is known to depend strongly on oceanic conditions
(Banks et al., 2007; Snyder et al., 2014), our experiment fo-
cuses only on the biological uncertainties, and therefore, re-
quires fixed oceanic environmental conditions. The CMS is
run offline, and the motion of the particles is integrated us-
ing a 4th order Runge–Kutta method with a time step of
1200 s.

The CMS is used to simulate the dispersal of A. saxatilis
larvae over the span of the Florida Reef Tract, USA. The
coral reefs are represented by 360 grid cells each 4 km2 in
area. The reef map is subdivided into six reef areas depicted
in Figure 1: Dry Tortugas (DT), the Marquesas Keys (MK),
the Lower keys (LK), the Middle Keys (MidK), Key Largo
(KL), and Biscayne (B). The grid cells, or reef polygons, are
built by overlaying the geolocalized reef map produced by
the Coral Reef Millenium Mapping Project (Andréfouët et al.,
2006), and supplemented by information from surveys con-
ducted by the Southeast Fisheries Science Center, NOAA (Ault
et al., 2005). Coral reefs from DT to B, with reported pres-
ence of A. saxatilis between 2004 and 2008, are used to lo-
calize spawning and settlement grounds for this species. From
May to September 2007, 100 larvae are released daily from
the center of each grid cell at a depth of 10 m, in accordance
with observations of reproductive behaviour (McAlary and
McFarland, 1993; Aishuth et al., 1998). No uncertainty is as-
sociated with the release depth to limit the complexity of the
analysis.

The biological module is configured to represent A. sax-
atilis, the sergeant major, a common species of damselfish from
the Pomacentridae family. This species is found in loose aggre-
gations on shallow coral reefs in the Subtropical Atlantic and
all along the Florida Reef Tract (Fishelson, 1970). This species
is selected because multiple biological and behavioural traits
of Pomacentridae larvae have been quantified by observa-
tions and experiments: swimming abilities (Fisher et al., 2000;
Bellwood and Fisher, 2001; Hogan and Mora, 2005), onto-
genetic development (Robertson, 1988), pelagic larval dura-
tion (PLD; Aishuth et al., 1998), hatching behaviours (Cha-
put et al., 2019b), and ontogenetic vertical migrations (Iris-
son et al., 2010; Corell et al., 2012). Furthermore, damselfish
species have been widely used as a model to study larval dis-
persal and settlement (Irisson et al., 2004; Leis et al., 2007;
Staaterman et al., 2012; Snyder et al., 2014; Vaz et al., 2016;
Berenshtein et al., 2018). Biological and behavioural traits
used to model the larvae of A. saxatilis are presented in the
next section.

Biological and behavioural models

Ontogenetic vertical migration
The ontogenetic vertical migrations of A. saxatilis are repre-
sented by a matrix of probability of vertical distribution for
a given developmental age (Staaterman et al., 2012). Larvae
start their pelagic journey at the depth of release and migrate
downward following the increase of their abilities during de-
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Table 1. Ontogenetic vertical migration matrix used to represent the verti-
cal distribution of A. saxatilis larvae during dispersal. The fraction of larvae
present at each depth is dependent on the age of the larvae. For each age
class, the sum over all the depths is equal to one.

Depth Hatching Pre-flexion Flexion Post-flexion
m Day 0 Days 1–9 Days 10–16 Days 16–34

5 0.10 0.05 0.05 0.01
10 0.80 0.55 0.35 0.19
30 0.10 0.30 0.32 0.33
50 0.00 0.06 0.16 0.25
70 0.00 0.03 0.09 0.18
90 0.00 0.01 0.03 0.04∑

1 1 1 1

velopment (Table 1). Depth and age distributions are based on
field observations and modelling studies of dispersal of Po-
macentridae larvae (Cha et al., 1989; Hendriks et al., 2001;
Huebert et al., 2010; Staaterman et al., 2012).

Orientation behaviours
The CMS is enhanced with an orientation module inspired
by Codling et al. (2004) and Staaterman et al. (2012). The
present section describes this module, especially the uncertain
parameters that modulate orientation. The aim of this orien-
tation behaviour is to simulate fish larvae actively swimming
towards the reefs at the end of their dispersal to find a settle-
ment habitat (Atema et al., 2002; Simpson et al., 2004; Paris
et al., 2013a). The orientation model assumes that the move-
ment of the larvae depends on (i) their swimming speed, (ii)
their orientation accuracy, (iii) the position of the nearest reef,
and (iv) their ability to detect the distant reefs.

When larvae are not orienting—early in their life and/or
far from the reefs—their displacements are estimated by sum-
ming the horizontal velocity of the ocean currents �ucur and the
stochastic velocity �uturb due to unresolved turbulence. Note
that the horizontal diffusivity is set to 0.7 m2 s

−1
while the

vertical diffusivity is set to 0.005 m2 s
−1

, in accordance with
the diffusion diagrams from Okubo (1971). The larva velocity
�u is then defined as

�u = �ucur + �uturb. (1)

When larvae are orienting they will tend to swim towards
the reefs, therefore, their displacements depend on the ocean
currents velocity as well as their orientation velocity �uorient.
Nevertheless, the turbulence effects are assumed to be negli-
gible in comparison to the orientation velocity (Staaterman
et al., 2012). In brief, the larva velocity �u is then defined as

�u = �ucur + �uorient, if age ≥ flexion and d ≤ β, (2)

where the orientation ability is controlled by two parameters:
the flexion parameter (in days after hatch), which controls
when larvae start to orient, and the β parameter (in km), which
is the detection distance threshold. The orientation behaviour
is activated when the larva sensory system and swimming abil-
ities are sufficiently developed (controlled by age), around the
flexion stage, and when d, the distance to the nearest reef, is
smaller than the detection distance.

The orientation velocity is assumed to be horizontal and is
modelled by using the larvae swimming speed Sw (cm s−1) and

the orientation heading θ ,

�uorient = Sw ×
(

cos θ

sin θ

)
. (3)

As per observations (Bellwood and Fisher, 2001), the larvae
swimming speed increases with age and reaches a limit as
described by the near-linear relationship proposed by Fisher
and Bellwood (2003) and previously used by Staaterman et al.
(2012),

Sw(age) = Swhatch + (Swsettle − Swhatch)
log10age

log10PLD , (4)

where Swhatch denotes the hatching swimming speed (cm s−1),
Swsettle the settlement swimming speed (cm s−1), and PLD the
pelagic larval duration (days after hatch).

At each time step, the orientation heading θ (rad) of the
larva is randomly picked from a von Mises distribution (which
is the circular analogue of the normal distribution),

f (θ ) = exp
(
κ cos(θ − θ ′ − μζ )

)
2πI0(κ)

, (5)

where κ is the orientation accuracy (dimensionless), θ
′

the
heading at the previous time (rad), μζ the mean turning angle
(rad), and I0 the modified Bessel function (of the first kind) of
order 0. The orientation accuracy controls the standard devia-
tion of the distribution f(θ ) and its impact on the larvae disper-
sal can be appreciated from Figure 2 where the spread of tra-
jectories is plotted for κ = 0.5 (wider) and κ = 5 (tighter). The
mean turning angle of the larvae is modulated by the strength
of the orientation cues and expressed as

μζ = −
(

1 − C
β

)
× (

θ ′ − θreef
)
, (6)

where C (km) is the distance from the nearest reef, β (km) the
maximum detection distance, and θ reef the heading towards
the nearest reef. Headings are computed with the Haversine
formula using the latitudes and longitudes of the nearest reef
and the positions of the larva at time t and t − 1, as schemat-
ically illustrated in Figure 3.

Larvae mortality and settlement
The mortality rate in the CMS is expressed as an exponential
decay (Paris et al., 2007; Houde, 2008):

At+1 = At × exp
(

−2ln(2)
PLD

· t
)

, (7)

where At + 1 is the proportion of larvae alive at time t + 1 .
Larvae can settle in the reefs polygons if they are competent,

a period starting as early as 20 days after hatching, marked by
the competency parameter and continuing until the end of the
PLD. Larvae must be within the boundaries of a reef polygon
during the competency period to settle. If larvae reach the end
of the PLD without settling, or are being advected outside of
the domain, they die and are removed from the system. The
PLD parameter controls, therefore, both mortality during dis-
persal and maximum competency period.

Input parameters and their distributions

A total of seven biological and behavioural input parameters
of the model (in bold in Equations (4)–(7)) are considered un-
certain in this study, namely the hatching swimming speed, the
settlement swimming speed, the orientation accuracy, the flex-
ion (defined as the starting age of orientation), the maximum
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Figure 2. Simulated dispersal (10 larvae per release point) in absence of currents to illustrate the effect of the orientation accuracy κ on the spread of the
trajectories. The trajectories in blue and red correspond to κ = 0.5 and κ = 5, respectively. The detection distance β is set to 5000 km.

Figure 3. Computation of the heading of the larvae with the orientation behaviour. The heading θ at time t depends on the heading θ
′
at the previous

time step t − 1 and the direction of the reef θ reef. The angle μ is the actual turning angle of the larva approximating μζ = θ
′ − θ reef, the optimal turning

angle. In this illustration, the reef and trajectories are not represented to scale.

reef detection distance, the competency (defined as the start-
ing age of possible settlement), and the PLD. The ranges of
the uncertain input parameters (summarized in Table 2) are
estimated from a literature review on A. saxatilis. The val-

ues are derived from experimentation on fish larvae for the
swimming speeds, the flexion age, the competency age, and the
PLD (Aishuth et al., 1998; Bellwood and Fisher, 2001; Hogan
et al., 2007) and from theoretical modelling studies for the de-
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Table 2. List of the uncertain input parameters in the modelling of the dispersal of A. saxatilis. These parameters are assumed to be independent and
uniformly distributed. The ensemble of simulations relies on the ranges while the control run uses the average values of the parameters. The flexion,
competency, and PLD are in days after hatch. Range values for the swimming speeds reflect the mean plus or minus standard deviation and not minimum
and maximum reported values as for the other parameters.

Inputs Function Control run Ranges References

Swhatch Swimming speed [Equation (4)] 2.395 cm s−1 [2.02, 2.77] cm s−1 Bellwood and Fisher
(2001)

Swsettle Swimming speed [Equation (4)] 30.86 cm s−1 [17.54, 44.18] cm s−1 Hogan et al. (2007)
κ Orientation accuracy [Equation (5)] 2.75 [0.5, 5] Codling et al. (2004)
Flexion Start orientation 13.5 d [10, 17] d Aishuth et al. (1998)
β Detection distance [Equation (6)] 5 km [0, 10] km Staaterman et al. (2012)
Competency Start settlement 22 d [20, 24] d Robertson (1988)
PLD PLD [Equation (7)] 30 d [28, 32] d Aishuth et al. (1998)

tection distance and the orientation accuracy (Codling et al.,
2008; Staaterman et al., 2012). We consider the maximum
and minimum observed or theorized values for the parame-
ters. The swimming speed is the only exception, we use the
reported mean plus or minus one standard deviation instead
of extreme values given the tendencies of flume experiments
to overestimate the swimming speed sustained in the natural
environment by fish larvae (Leis and Carson-Ewart, 1997). In
the first part of this study, for the control run of the CMS,
averaged values of the input parameters are used. The second
part of this study aims at investigate the parameters space in
order to quantify the impact of the uncertainties in the model.

Quantities of interest

The dispersal—the sum of larval hatching, transport, survival,
and settlement (Pineda et al., 2007)—estimated by the CMS is
analyzed using two metrics: the connectivity matrix and a set
of dispersal kernels.

The connectivity matrix represents the probability of con-
nection between reefs using a matrix M of size n × n (where
n is the number of reefs in the system). The source reefs are
present on the y-axis while the settlement reefs are present on
the x-axis. Each element Mi j indicates the fraction of larvae
born in j and that settle in i. In particular, the diagonal line (j
= i) indicates local retention (Burgess et al., 2014). Exchanges
between reefs are presented using the proportion of settlement
(settlers over total release) on a logarithmic scale to highlight
differences between areas.

The dispersal kernel of a given reef measures the proba-
bility that a larva born on that reef settles at x km from it.
A dispersal kernel can be analyzed in a variety of ways de-
pending on the focus of the study. Here, we distinguish three
intervals: from 0 to 10 km (range of local retention), from 10
to 100 km (maximum distance of interest for ecological stud-
ies), and higher than 100 km (distance of interest for evolu-
tionary studies). The analysis of the connectivity is presented
here for two reefs, DT and LK, selected because they present
two distinct dispersal kernels; while the results for two other
reefs with significant recruitment levels, MK and MidK, are
made available in the Appendix. The two remaining reefs,
KL and B, are not presented in this study due to their sim-
ilarities with the results obtained for the LK and MidK al-
beit overall shorter dispersal distances and lower recruitment
levels.

Impact of oceanic circulation on dispersal

The oceanic features responsible for successful dispersal are
highlighted by a combined analysis of the time-series of set-
tlement and the hyperbolic Lagrangian Coherent Structures
(LCS). The LCS fields are used to identify the boundaries of
coherent structures, such as eddies, in the flow. LCS are useful
to predict and understand the transport of biological particles
in the oceans (Olascoaga et al., 2008; Kai et al., 2009; Haller,
2015). Here, the LCS are diagnosed with the Finite Time Lya-
punov Exponent (FTLE), a measure of the exponential rate of
separation of trajectories of particles over a finite time interval
(van Sebille et al., 2018). The trajectories of particles dispers-
ing in the system tend to follow attracting LCS that act as
transport barriers (van Sebille et al., 2018). We obtain the tra-
jectories by uniformly releasing particles over the Eulerian ve-
locity fields of the FKEYS-HYCOM hydrodynamic model and
backtracking (or foretracking) their trajectories over 14 d. At-
tracting LCS correspond to the ridges of the FTLE field calcu-
lated using backward integration (repulsing LCS, not shown
in the current study, are calculated using forward integration).
LCS are analyzed in correlation with settlement rates to iden-
tify the mechanisms responsible for high and low settlement.

Uncertainty propagation

Principle

The biological and behavioural parameters used in the model
(see Table 2 for the ranges) are uncertain because of diverse
reasons including simplifications and idealizations, difficul-
ties in directly measuring these constants in the field, differ-
ences between laboratory and field conditions, as well as inter-
individual variations. The aim of the following section is to
quantify the uncertainties in the model output, the probability
of settlement, caused by uncertainties in the aforementioned
parameters using a probabilistic framework. The first step in
this process is the specification of the distribution of the uncer-
tain inputs. For this study, we assume that the distribution of
the input parameters over their individual ranges are uniform
and independent. This choice yields equiprobable realizations
over the parametric domain.

The second step consists in forward propagating the input
distributions to compute the corresponding output distribu-
tion. This is accomplished in practice with an ensemble of
runs that sample the parametric domain using for instance
a Monte Carlo method. Each ensemble member, or realiza-
tion, has a fixed value for each uncertain parameter; the CMS
can then be run and its output, the probability of settlement,
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calculated. The statistical analysis can proceed once enough
samples have been collected so as to estimate the output dis-
tributions. A reliable analysis requires that enough samples
(thousands to millions) be collected to gain confidence in the
output statistics.

The ensemble run constitutes the majority of computational
cost, particularly for large expensive models. The tension be-
tween mitigating the computational cost and improving the
statistical analysis can be resolved by introducing a surro-
gate model (also referred to as an emulator or a meta-model)
that approximates, everywhere in the parametric domain, the
changes in the model output (connectivity matrix or dispersal
kernel) caused by the changes in the model inputs. The surro-
gate is implemented non-intrusively by considering the direct
model as a "black-box" and exploiting the input–output rela-
tionships of the output quantity at the ensemble members. The
surrogate model can take several forms and here we rely on
the PC approach detailed below. If the surrogate is sufficiently
accurate, it can be used instead of the original model to carry
on the statistical analysis. For example, directly computing the
statistical moments of the model outputs, performing the vari-
ance analysis, and estimating the probability density function
of the model outputs.

PC description

Let ξ be the random vector collecting the seven uncertain input
parameters. A PC surrogate fp(ξ) of a model output f (ξ) (Le
Maitre and Knio, 2010; Iskandarani et al., 2016) is essentially
a polynomial expansion of the form:

f (ξ) ≈ fp(ξ) =
p∑

k=0

f̂kψk(ξ), (8)

where p + 1 denotes the number of terms in the truncated
series. The model output considered in our study is the prob-
ability of settlement at a given distance, the metric used to
compute the dispersal kernels. The PC expansion provides a
functional representation of the output in which f̂k are the de-
terministic series coefficients and ψk(ξ) are orthogonal (multi-
variate) polynomial basis functions in ξ. In practice, the com-
ponents of the vector ξ are linearly scaled from their physical
ranges listed in Table 2 to the dimensionless interval [−1, 1].
The scaling for the detection distance β is for example ξ5 =
2(β − βmin )/(βmax − βmin ) − 1. Because all the uncertain in-
put parameters are uniformly distributed, the orthogonal basis
functions are the products of univariate Legendre polynomi-
als (A more detailed explanation of the orthogonal polyno-
mial basis associated to each input distribution is presented in
Iskandarani et al. (2016) and Sudret (2014)).

The PC coefficients f̂k are determined with the ordinary
least squares method to filter out the noise produced by the
intrinsic stochasticity in the CMS, stemming from the turbu-
lence effect and the biased correlated random walk used in the
behavioural model. The PC coefficients are then determined
by minimizing the sum of the squared residuals at the N pre-
determined training points ξi, namely

∥∥ f − fp
∥∥2

LS =
N∑

i=1

(
f (ξi) − fp(ξi)

)2
. (9)

The least squares solution for the PC coefficients ̂f is

̂f = (
��	)−1

� f , (10)

Table 3. Number of parameters of the PC surrogates used in the unidi-
mensional (1D) and the multidimensional (5D) analysis. The 1D analysis
explores the space of the input parameters individually while the 5D anal-
ysis explores the space of all the input parameters and their interactions.
The training points are used to compute the coefficients of the surrogates
and the validation points are selected independently to quantify the fit of
the models.

1D 5D

Number of PC coefficients 5 95
Maximum PC degree 4 7

Number of training points 5 351
Number of validation points 4 100

where the design matrix � = [ψk(ξi)] has a size (p + 1) × N,
and the vector of outputs f = [ f (ξi)] has a size N (the number
of training points).

When using the least squares approach, random samplings
(e.g. Monte Carlo, quasi-Monte Carlo, or Latin Hypercube
Sampling) are commonly chosen to estimate the PC coeffi-
cients. The truncation strategy then relies on the total or-
der of the polynomial nord, leading to p + 1 = (ndim +
nord)!/(ndim!nord!) PC coefficients, where ndim is the number of
uncertain parameters. However, we rely here on sparse grid
points that provide a well-conditioned matrix ��	. To be
brief, a sparse grid is based on a quadrature rule associated
with partial tensorization and is classically associated to a
set of PC that are exactly integrated when using the sparse
pseudo-spectral projection method (Constantine et al., 2012;
Conrad and Marzouk, 2013). Traditional full tensorization
Gauss quadratures maximize the accuracy of the integration
per sample but are not suitable when multiple dimensions are
considered because of the large number of sampling points
needed. In our example, with five dimensions and a total poly-
nomial order 4, we would need (nord + 1)ndim = 3125 sample
points (One run taking approximately 1 h of parallel compu-
tation on 45 CPU cores of Intel Sandy Bridge E5-2670 (2.6
GHz)). Instead, we use a (level 3) sparse grid that contains
351 points and allows us to compute the 95 coefficients of the
truncated PC expansions.

Simulation scenarios

Working on the base provided by the control run, we con-
ducted several ensembles of simulations to quantify the im-
pact of the uncertain input parameters. These ensembles of
simulations are organized as follows:

1.Unidimensional analysis, also called one-at-a-time anal-
ysis , to investigate the impact of varying the 7 input pa-
rameters one by one and to quantify their impact on the
connectivity. As a result of this unidimensional analysis,
we decided to remove two parameters, hatching swim-
ming speed and PLD, for the rest of the experiment.
A validation test is performed for each unidimensional
study, and each test consisted of four independent vali-
dation points (Table 3).

2.Multidimensional analysis, also called global sensitivity
analysis, to investigate the combined impact of five bi-
ological input parameters. The contribution of each un-
certain input parameter, along with the contribution of
their interactions, to the variance in settlement are fur-
ther quantified with the Sobol indices (Sobol, 1993). The
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Figure 4. Control run probability connectivity matrix in the Florida Keys
presenting the proportion of larvae transitioning from sources/spawning
sites (y-axis) to settlement sites (x-axis). The reefs polygons are grouped
in six geographical areas: DT, MK, LK, MidK, KL, and B. Local retention
within a population is represented on the diagonal, while upstream and
downstream connectivity are represented above and below the diagonal
line, respectively. The proportion of settlement, in logarithmic scale, is
averaged over four neighboring polygons for downscaling and smoothing
the connectivity matrix (from 360 to 90 pixels).

accuracy of the multi-dimensional surrogate is assessed
using 100 validation points (Table 3) randomly selected
using latin hypercube sampling (near-random sampling
in multi-dimensional case). The surrogate validation can
be found in the Appendix.

Results of the control run

Spatial analysis of settlement

The control run presents the estimated larval connectivity as-
sociated with the average behavioural and biological traits,
whereby the biological parameters listed in Table 2 are set
to their mean values. The resulting connectivity matrix in
Figure 4 shows the probability of exchanges between all the
reef-polygons in the Florida Reef Tract system. We observe

a dominant downstream dispersal (below the diagonal) in
accordance with the Southwest–Northeast direction of the
Florida Current within the western part of the Straits of
Florida. Larvae spawned in the Southwestern part of the Keys
(DT, MK, and LK) end up settling in the reefs located further
North. A total of three reefs have important local retention
(around the diagonal line): DT, MK, and LK. The northern
reef B is a sink, receiving more larvae than sending away. This
feature is explained by its location at the northern end of the
reef system dominated by a downstream transport, which ac-
cumulates competent larvae over B in our model. The MidK
and KL reefs are characterized by larger export than import
of larvae. The hot spots of settlement in our estimate of con-
nectivity are located in DT, MK, and B. Finally, there is a non-
negligible upstream flux of larvae, especially from KL which
delivers larvae to the MidK, and the LK that sends settlers to
the MK.

In addition to the connectivity matrix, we analyse the dis-
persal kernel that provides the individual characteristic of a
reef. The dispersal kernel from DT (Figure 5a) is characterized
by two separate peaks with a high probability of dispersal, es-
pecially for short distances, reflecting local retention since no
other reef is located within 50 km. Local retention and ex-
ports to other reefs are separated on the dispersal kernel by
a break in settlement probability due to the absence of suit-
able habitat between DT and the MK. Further away from the
source reefs, the proportion of settlement fluctuates slightly
around 1 × 10−4 between 50 and 300 km. Successful disper-
sal probability increases to 5 × 10−4 after 300 km and is lim-
ited to 330 km (larvae reaching the northern most reefs on
B). The LK dispersal kernel (Figure 5b) is characterized by a
bi-modal distribution, with a first peak of successful disper-
sal over short to medium distances (between 0 and 75 km),
and a second over large dispersal distances (between 175 and
225 km). The highest proportion of settlement (5.7 × 10−4)
is located at 25 km and the highest proportion at long disper-
sal distance (4.5 × 10−4) is found at 180 km. Probabilities of
successful dispersal between 75 and 175 km are characterized
by lower values around 1.3 × 10−4. The maximum distance
of dispersal from the LK is 240 km. The dispersal kernels for
MK and the MidK can be found in appendix (Figure A1a and
b).

Figure 5. Control run dispersal kernels from (a) DT and (b) LK reefs.
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Temporal analysis of settlement

Analysis of the temporal pattern of release of successful—
future settlers—larvae (red bars on Figure 6) and settlement
(blue bars on Figure 6) shows multiple distinct peaks of re-
lease followed by similar peaks of settlement spread over the
reefs. The time-lag between release and settlement is about
22 d, which corresponds to the beginning of the competency
period, meaning that larvae typically settle shortly after be-
coming competent in the model. Because the daily release of
larvae is constant, fluctuations in settlement are due to the in-
fluence of the currents during larvae dispersal. Larvae released
over DT settle either back to DT, or seem to be advected by
the Florida Current and settle on the reefs downstream over
B (Figure 6a–h). Larvae released over the LK seem to be ad-
vected either upstream in June and settle over the MK and
back to the LK, or downstream and settle over the other reefs
(Figure 6i–n). There is almost no connection with DT, except
for one settlement event at the beginning of June.

Lagrangian Coherent Structures

The spatial representation of the LCS, coupled with an analy-
sis of the settlement time-series, shows which configuration of
the currents enhances successful larvae dispersal. Figure 7(a)–
(d) show four snapshots of FTLE fields showing the features
responsible for high and low settlement rates. The ridges of the
backward-time FTLEs correspond to attracting LCS positions
during the selected 14 d time-span.

The first FTLE field (Figure 7a) highlights the presence
of an eddy north of DT, just preceding the peak of settle-
ment in DT observed at the end of June (Figure 6). Such
mesoscale eddies (with characteristic length scales larger than
30 km; Kourafalou and Kang, 2012) are known to act as a
mechanism to entrain larvae and retain them, as they are ad-
vected along the Florida Current, eventually delivering them
to downstream reefs (Sponaugle et al., 2005; Vaz et al., 2016).
This eddy traps larvae released from DT and drive them to-
wards the Florida Keys reefs, where they are released due to
eddy breaking through interaction with the island topogra-
phy, or through splitting to smaller eddies (Kourafalou and
Kang, 2012). When this eddy is not present (Figure 7b), lar-
vae are advected further away from the reefs, which results in a
low settlement event. We can also observe another eddy south
of DT in Figure 7(a). This eddy travels with the Florida Cur-
rent from Southwest to Northeast. It retains larvae and can
distribute them all along the reefs of the Florida Keys when
its path nears the reef tract (the eddy trajectory is controlled
by the meandering of the Florida Currents; Kourafalou and
Kang, 2012).

Figure 7(c) shows two eddies travelling along the coast at
the end of July. These eddies are associated with high settle-
ment rates for larvae released over the LK at the end of July
and the beginning of August (Figure 6). Larvae originating
from the Southern Keys (Marquesas and LK) and from DT
are carried by these eddies and retained over the reefs of the
upper Keys. The dynamic of this type of eddy activity may ex-
plain the upstream connectivity observed in the connectivity
matrix (Figure 4). When, however, these eddies travel further
away offshore as the Florida Current meanders away from the
Florida Keys (Figure 7d), they retain larvae far from the reefs,
resulting in low recruitment periods. These eddies often con-
verge towards the reefs around B, before moving North along

the Gulf Stream. This dynamic could explain why the reefs in
B act as sink in our simulations.

Results of uncertainty analysis

Unidimensional analysis

Analysis of the impact of individual input parameters on the
output estimates of connectivity are used to classify the rela-
tive importance of each parameter for the different reefs. As
mentioned before, three settlement distances are considered in
the analysis: from 0 to 10 km, from 10 to 100 km, and higher
than 100 km (Figure 8). These dispersal distances have dif-
ferent ecological implications and consequences for local fish
populations, and need to be analyzed separately.

Of all the six reef areas, DT is the one where input parame-
ters induce the most important variance in the estimates of set-
tlement (see y-scale of left panels of Figure 8). For this reef, we
observe that the impact of the input parameters is mostly re-
stricted to the short dispersal distances (blue curves). The main
influential parameter on the proportion of settlement is the de-
tection distance of the reefs (β), followed by the orientation
accuracy (κ). Unsurprisingly, both are positively correlated
with the proportion of settlement. In contrast, there are nega-
tive correlations between the proportion of settlement and the
flexion (beginning of orientation) and competency (beginning
of settlement) parameters. The probability of dispersal over
short distance dispersal decreases when the larvae are forced
to remain in the pelagic realm for longer, delaying settlement.
Finally, the hatching swimming speed (Swhatch), the settlement
swimming speed (Swsettle), and the PLD do not seem to influ-
ence the settlement of larvae released in DT in our simulations
when varied individually in the range of values tested.

The right panels of Figure 8 show that the LK exhibit a dif-
ferent response to the analysis. We observe for this reef that the
proportion of settlement varies similarly over short and long
distances, but settlement is one order of magnitude smaller
than DT (see the y-axis scale). Larvae released over the reefs of
the LK have higher probability of settling over short and long
dispersal distances (Figure 5) and the impact of input param-
eters is more important on these dispersal ranges (Figure 8,
right panel). The proportion of settlement is positively cor-
related with the detection distance and the orientation accu-
racy (as for DT), but this time it is also positively correlated
with the settlement swimming speed. In contrast, we observe
a negative correlation for the competency and flexion param-
eters. Again, variations of the hatching swimming speed and
the PLD have a limited impact on the proportion of settlement
in the context of this model.

The results of the unidimensional analysis on the two other
reefs (Figure A2) are comparable to the LK results but with
a higher variance level of the proportion of settlement. As
for DT and LK, the hatching swimming speed and the PLD
have a weak influence on the results. Analysis shows that these
two input parameters produce the smallest output variance for
three out of the four reefs considered (Table A1). Therefore,
these parameters are held fixed to their mean values for the
following multi-dimensional analysis. It is likely that the in-
teraction of these two parameters with the five others would
increase their impact on the output variance. However, this
decision is motivated by the need to decrease the number of
samples necessary to assess all of the interaction between pa-
rameters.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/79/3/609/6541347 by guest on 24 April 2024



618 R. Chaput et al.

Figure 6. (a) Time series of settlers release (red) over DT, and (b)–(g) time-series of settlement over the Florida Keys Reefs (blue) between May and
September 2007. (h) Time series of settlers release (red) over the LK, and (i)–(n) time-series of settlement for these larvae (blue). Peaks of release of
successful larvae are followed by peaks of settlement with a time lag due to the pre-competency period.

Multidimensional analysis

This section presents the uncertainty analysis of the combined
effects of the five (remaining) uncertain input parameters on
the dispersal kernels. Figure 9 shows the dispersal kernels
mean with plus or minus the standard deviation estimated
by the PC surrogates for DT and the LK after accounting for
the uncertainties in the five uncertain input parameters. The

shape of the dispersal kernels, produced by the PC surrogates,
remains similar to the estimates produced by the control run
(also plotted), meaning that variation in input parameters do
not affect qualitatively the distribution of the dispersal kernels
in our model. However, the mean dispersal kernel shows that
the control run overestimates the proportion of settlers espe-
cially for long distances where the control dispersal kernel is
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Figure 8. Variation of the proportion of settlement as predicted by the PC surrogate within the seven input parameter ranges for three dispersal
distances: short (0–10 km: blue), medium (10–100 km: orange), and long (>100 km: green). Results are presented for larvae released from DT (left) and
the LK (right). Input parameters are varied one-at-a-time, with the values of the other non-varied parameters fixed to their mean. Red points represent
the settlement as predicted by 28 validation runs of the CMS and show that the surrogate model gives a close approximation of the CMS predictions.
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Figure 9. PC statistical moments of dispersal kernels from (a) DT and (b) LK reefs: mean dispersal M̂ and standard deviation σ . Dispersal kernels means
have similar shapes as the control run dispersal kernels for both reefs. Average proportion of settlement is lower than control run estimate (CR: blue
dotted line) across most dispersal distances, highlighting an overestimation in the control scenario. Standard deviations for both reefs are larger for short
and long distance dispersal, matching the peaks of the distributions, and show larger impact of larval behaviours in these regions.

roughly superimposed on the dispersal kernel mean plus one
standard deviation. The standard deviation is roughly propor-
tional to the mean; we observe large values for the high peaks
of settlement meaning that parameter uncertainties mainly im-
pact the dispersal distances with high settlement. Similar con-
clusions can be drawn for the LK (Figure 9b), and both MK
and MidK (Figure A3a and b).

Analysis of variance
A global sensitivity analysis of the variance is performed to
identify the dominant contributors to the dispersal kernel vari-
ance. Variation in the standard deviation of the dispersal ker-
nels shows that the impact of the input parameters depends on
the distance of dispersal. The analysis of variance is, therefore,
performed by considering the three dispersal distance groups
established earlier (short (0–10 km), medium (10–100 km),
and long (> 100 km)) to estimate the first order and total
sensitivity indices. The so-called Sobol indices decompose the
variance of the model outputs into fraction attributed to the
input parameters.

The first-order sensitivity index measures the variance in the
model output caused by the uncertainty in each input param-
eters acting on its own. In our model, the first-order sensitivity
index shows that the detection distance (β) is the most influ-
ential parameter in the proportion of settlement for all the
dispersal distances and from both reefs of interest (Figure 10a
and c). Interestingly, β has an opposite behaviour for DT and
the LK. For DT, the impact of β on the variance decreases with
the distance of dispersal (explaining from 17% down to 5%
of the total variance). In contrast, for the LK, the impact of β

on the variance increases with the dispersal distances (explain-
ing from 12% up to 29% of the total variance). This means
that better orientation behaviour retains more larvae over DT,
but favours the export of larvae from the LK, an effect which
could be due to the different oceanographic regimes over these
two reefs (see the subsection on LCS). The other input param-
eters explain less than 10% of the total variance. For both
reefs, only a small fraction of the total variance of settlement
is explained by the first-order sensitivity index.

The total-order index measures the contribution to the out-
put variance of an input parameter, including all variance
caused by its interactions, up to the fourth-order here, with
the other input parameters. Analysis of Figure 10(b) and (d)
highlights the importance of interactions between parame-
ters. Indeed, a larger fraction of the settlement variance is ex-
plained by the total-order index than the first-order index.
The input parameter β—and its interactions with the other
parameters—remains the main driver of variability for both
reefs, explaining from 40 to 29% of the variance for DT (de-
creasing with distance), and from 35 to 47% for the LK (in-
creasing with distance). At short dispersal distances from DT,
the Flexion parameter—and its interactions—explains 28% of
the variance while the orientation accuracy (κ) explains 19%
of it. For the two other dispersal distances, the remaining vari-
ance is explained equally (around 20%) by the four input pa-
rameters, excluding β. For dispersal from the LK, κ—and its
interactions—is the parameter explaining the most variance
after β. Its importance decreases with the dispersal distance.
At long dispersal distance (> 100 km) the parameter Flex-
ion explains as much variance as κ (around 18%). The input
parameters Swimming speed and Competency period explain
less than 10% of the total variance.

The two other reefs exhibit a similar trend as the LK
(Figure A4). More variance is explained by interactions be-
tween input parameters than by the first-order sensitivity in-
dices. The input parameter β explains a large fraction of the
variance for all three dispersal distances, while the remaining
variance is shared between the other four parameters with a
higher contribution of the parameters κ and Flexion.

Discussion

Biophysical models are subject to many uncertainties that hin-
der our ability to accurately simulate the dispersal of fish lar-
vae. While uncertainties are unavoidable, they must be identi-
fied and quantified (Ådlandsvik et al., 2009). We demonstrate
how this can be done using the PC approach. First, uncer-
tainties in input parameters are characterized through their
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Figure 10. (a) and (c) Sobol indices of first order (S1....5) and (b) and (d) total order sensitivity (T1....5) for the input parameters: Settlement swimming
speed, κ, Competency, Flexion, and β. Variances induced by the parameters are presented for DT (a) and (b) and the LK (c) and (d) at three dispersal
ranges: short (0–10 km), medium (10–100 km), and long (> 100 km).

ranges using the available data on A. saxatilis; second these
uncertainties are propagated through the connectivity model
to construct a surrogate model that is subsequently analyzed
to extract the uncertainties in the model forecasts. We gener-
ally find that uncertainties in the dispersal kernels are due to
a few understudied behavioural traits and that the impacts of
biological uncertainties depend on the release location of the
larvae.

The dispersal kernels for A. saxatilis in the Florida Keys de-
pend on larvae behaviours and on larvae reactions to oceanic
conditions. The supply of A. saxatilis larvae is conditioned
on the presence of two types of oceanic features, which con-
trol the location of attracting LCS over the reefs: an eddy lo-
cated in the vicinity of DT and the propagation of mesoscale
eddies along the Florida Reef Tract (Kourafalou et al., 2009;
Kourafalou and Kang, 2012). These eddies aggregate and re-
tain the larvae over the reef during their dispersal, and there-
fore increase settlement. In our model, as well as in previous
modelling studies of fish and coral larvae dispersal, pulses of
settlement are observed in conjunction with the displacement
of attracting LCS over the reefs (Vaz et al., 2016; Frys et al.,
2020). Observed arrival of Pomacentridae larvae on the reefs
in the Florida Keys is also correlated with the propagation
of these eddies (Sponaugle et al., 2005, 2012; D’Alessandro
et al., 2007). Interestingly, both Sponaugle et al. (2005) and
D’Alessandro et al. (2007) observed a similar number of ed-
dies for three different years as in our study (approximately

three mesoscale eddies associated with peaks in larval settle-
ment), confirming that the year selected for our study is rep-
resentative of the oceanic circulation in the Florida Keys. The
settlement predicted by our simulations also matched the ar-
rival of Stegastes partitus (another common Pomacentridae)
larvae observed in 2007 by Sponaugle et al. (2012). Larger set-
tlement rates were observed over the LK than the Upper Keys
(equivalent to KL in our study). However, our simulations do
not show the relatively large settlement observed in the LK in
the first half of August 2007 (Sponaugle et al., 2012).

The analysis of the probabilistic dispersal kernels shows
that the maximum detection distance threshold, the orien-
tation accuracy, and the development of the orientation be-
haviour are the parameters, together with their interaction, re-
sponsible for most of the variation in settlement of A. saxatilis.
It is likely that the dispersal of species with similar orientation
behaviours would also be sensitive to these uncertainties. The
orientation behaviour parameters are poorly constrained by
previous observations and their values remain hypothetical.
The maximum detection distance is thought to vary depend-
ing on the type of orientation cues. Here, we assumed that
olfactory and/or acoustic cues are coming from the reef. Stud-
ies have shown that both are used by coral reef fish larvae
during dispersal and settlement (Lecchini et al., 2005; Ger-
lach et al., 2007; Simpson et al., 2011; Gordon et al., 2018).
While odors from the reefs could only spread to hundreds of
meters (Atema, 2006; Paris et al., 2013a), sounds could reach
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much further, on the order of tens of kilometers (Staaterman,
2015). However, the distance at which these cues are detected
remains poorly known. The uncertainties associated with this
parameter can be decreased with further experiments on fish
larvae orientation. More experiments would also be required
to decrease the uncertainties associated with the beginning of
orientation. Pomacentridae larvae have well-developed olfac-
tory and auditory abilities at the pre-settlement stages (Wright
et al., 2005), and studies on other species have found func-
tional sensory systems as soon as hatching occurs (Hu et al.,
2019). Larvae could potentially orient early during dispersal,
which could increase retention rate and settlement (Staater-
man et al., 2012); therefore, the development of orientation
behaviour need to be studied more in depth. Finally, the ori-
entation accuracy is responsible for some variations in the
dispersal kernel estimates. The uncertainties in this parame-
ter are compounded by our limited knowledge of its actual
distribution range in fish larvae. Experimental work on the
orientation of fish larvae have shown the wide disparity of be-
haviours between tested individuals (see for examples Cresci
et al. (2019b), Berenshtein et al. (2014), and Leis et al. (2014)).
However, these studies have traditionally focused on the mean
direction of orientation rather than the spread of directions,
which would be more informative to estimate the larvae’s ori-
entation accuracy.

Interestingly, the uncertainties in swimming speed and PLD
did not affect the dispersal kernels substantially in the con-
text of our model. Development of the swimming abilities has
been extensively described for various coral reef fish species
(Bellwood and Fisher, 2001; Clark et al., 2005; Hogan et al.,
2007). The uncertainties associated with this parameter in our
model are largely caused by inter-individual variability. Previ-
ous modelling studies have shown that the mere presence of
swimming ability increases settlement rates and, overall, in-
fluences the connectivity (Leis et al., 2007; Drake et al., 2018;
Faillettaz et al., 2018; Cresci et al., 2020b). Changes in swim-
ming speeds (both at hatching and settlement), however, do
not significantly influence the dispersal kernels in the context
of our study. This could either mean that inter-individual dif-
ferences in swimming speed do not influence connectivity in
this region with strong currents, or that the model chosen to
represent the larval orientation decreases the importance of
the swimming speed. Indeed, the swimming speed only acts on
short distances—determined by the detection distance—at the
end of dispersal. Over these short distances, differences intro-
duced by the variation in swimming speed could be too small
to make a difference. On the other hand, these small varia-
tions in swimming speed could be important for other func-
tions during dispersal. Slightly higher swimming speed could
be beneficial during feeding activity, to avoid predators, or
to maintain group cohesion (Mackenzie and Kiørboe, 1995;
Chaput et al., 2019a), which would influence the larval sup-
ply. The limited impact of the PLD on settlement in our model
could be linked to the interaction between mortality and ori-
entation behaviour. Because of the mortality, very few larvae
remain at the end of the competency period. In addition, we
find that most larvae settle as soon as they enter their com-
petency period. Therefore, variance in PLD has a limited im-
pact on the estimated settlement. The PLD, however, has been
found to have large effect on settlement in models without ori-
entation behaviours (Treml et al., 2012; Andrello et al., 2013),
and the limited impact could be specific to our case study on
A. saxatilis.

The PC estimates show that the variability in biological and
behavioural traits does not affect the shape of the dispersal
kernels, but rather the relative number of settlers per disper-
sal distance. We hypothesize that the shape of dispersal kernels
is mainly due to the interaction with the oceanic currents, the
distribution of suitable habitat, and finally the type of orien-
tation behaviours that larvae use during dispersal. Here, we
tested only one type of orientation behaviour with the biased
correlated random walk model. Our goal was to represent a
direct orientation mechanism that would be based on the de-
tection of olfactory or acoustic cues coming from the reefs.
This type of orientation has been documented, or hypothe-
sized, for many coral reef fish larvae (Lecchini et al., 2005;
Wright et al., 2005; Paris et al., 2013a; Hu et al., 2019). How-
ever, it is not the only type of orientation used by larvae. In-
deed, previous studies have documented the use of magnetic
compass (Bottesch et al., 2016; Cresci et al., 2019b) or celes-
tial orientation (Mouritsen et al., 2013; Faillettaz et al., 2015;
Cresci et al., 2019a) by fish larvae. As larvae react diversely
to different environmental cues during dispersal, the orien-
tation mechanism could impact significantly the connectivity
patterns and modify the dispersal kernels. Furthermore, lar-
vae could also use more than one type of orientation cue at
different stages of dispersal, depending on the environmen-
tal context (Cresci et al., 2020a). In this case, more complex
behavioural models would be needed to accurately simulate
larval dispersal. However, it is necessary to improve our un-
derstanding of the environmental cues followed by the larvae
during dispersal before increasing the complexity of biophys-
ical models, especially since our study shows that the highest
uncertainties are associated with orientation behaviour.

The probabilistic approach adopted here increases the relia-
bility of the model using a twofold advantage. First, it quanti-
fies the impact of the combined uncertain inputs on the output,
providing the user with an estimate of the model usefulness.
Second, the PC approach reduces the computational burden
through its surrogate and simplifies the subsequent statisti-
cal analysis by avoiding a large Monte Carlo ensemble. Both
methods, Monte Carlo and PC, rely on sampling to compute
the output statistics. However, whereas Monte Carlo treats
each sample independently, PC methods attempt to find a re-
lationship between samples. In both cases, the computational
cost rises linearly with the number of realizations N. However,
the error for Monte Carlo sampling decreases by

√
1/N for the

mean, whereas it decreases exponentially fast (1/NN) for PC
methods, meaning that fewer samples are required for a sim-
ilar accuracy. The number of realizations needed to achieve a
certain accuracy for PC, however, depends on the degree of the
polynomial used and the number of uncertain parameters (the
so-called curse of dimensionality): the number of samples can
increase exponentially fast with the number of dimensions.
Fortunately, more sophisticated sampling strategies, like the
sparse quadrature used in this study, can reduce this number
tremendously.

Other methods have been used to quantify the uncertainties
in biophysical models. Linear regression models synthesize the
impact of a large number of input variables (Treml et al., 2012;
Torrado et al., 2021), but are limited to linear relationships
and lack the precision offered by the PC surrogate estimates.
Multi-factor, multi-variable analysis of variance (MANOVA)
can similarly be used to quantify the combined impact of pa-
rameters but requires large number of simulations (Edwards
et al., 2007). The advantage of the PC procedure, over those
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methods, is that it produces a surrogate that is essentially a
polynomial series that lends itself to straightforward analysis
and simplifies the estimation of the mean, variance, and Sobol
indices (Alexanderian et al., 2012). Finally, the PC approach
is limited to models with continuous inputs and outputs dis-
tributions, and therefore, could not be used to compare the
impact of different orientation behaviours (Fox et al., 2016;
Fobert et al., 2019), or to estimate ecosystem-wide connectiv-
ity where multiple dispersal strategies cohabit (Treml et al.,
2015; Gary et al., 2020). Regardless of the method chosen,
similar sensitivity studies should be conducted to understand
how dispersal is modulated by the orientation behaviours used
by fish larvae of different species, and in different areas of the
world. Complete validation, or rejection, of biophysical mod-
els might not be attainable (Oreskes et al., 1994), but uncer-
tainty quantification in modelled and empirical estimates of
connectivity (Kaplan et al., 2017; D’Aloia et al., 2018) will in-
crease the confidence in our ability to correctly describe larval
dispersal.

Authors’ contributions

RC designed the study, implemented and ran the model,
analyzed the data, interpreted the results, and wrote the
manuscript. PS analyzed the data, interpreted the results,
and wrote the manuscript. PM designed the LCS study, an-
alyzed the data, and wrote the manuscript. VHK provided
the oceanographic data, interpreted the results, and wrote the
manuscript. MI designed the study, implemented the model,
interpreted the results, wrote the manuscript, and funded the
research.

Conflict of interest

The authors declare no competing interests.

Data availability

The data underlying this article will be shared on rea-
sonable request to the corresponding author. Source codes
for the Connectivity Modelling System (CMS) are avail-
able at https://github.com/beatrixparis/connectivity-modelin
g-system. Codes for the orientation module are avail-
able at https://github.com/RomainChaput/connectivity-mod
eling-system. Finally, codes for the uncertainty quantifica-
tion, and a sample of the model outputs are available
at https://github.com/RomainChaput/Uncertainty-estimation
-in-biophysical-model-of-connectivity.

Acknowledgements

This research comprises a portion of RC’s doctoral thesis re-
quirements (University of Miami). The simulations were per-
formed with resources provided by the University of Miami
Center for Computational Science. We thank HeeSook Kang
for help with the oceanographic data and Natalie Perlin for
help with the CMS. We thank Maria Josefina Olascoaga and
David M. Kaplan for their constructive discussions on the
subject of LCS and biological uncertainties. Finally, we thank
an anonymous reviewer and Marco Andrello for constructive
comments and suggestions, which greatly improved our paper.

References
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Appendix A:

Figure A1. Dispersal kernels from the MK (left panel) and the MidK (right panel). The dispersal kernels are estimated with the CMS using the average
values for the input parameters.
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Figure A2. Variation of the proportion of settlement as predicted by the PC surrogate within the seven input parameter ranges for short distance
dispersal (0–10 km: blue), medium distance dispersal (10–100 km: orange), and long distance dispersal (> 100 km: green). Results are presented for
larvae released from the MK (left) and the MidK (right). Input parameters are varied one-at-a-time, with the values of the other non-varied parameters
fixed to their mean. Red points show the proportion of settlement as predicted by 28 validation runs of the CMS.

Table A1. Output variance of the proportion of short distance settlement estimated for each of the seven input parameters tested in the uni-dimensional
analysis. The smallest variance per reef is highlighted in bold. Swimming speed at hatching and PLD are the two variables producing the least variance
for three out of four reefs considered.

Swhatch Swsettle κ Flexion β Competency PLD

DT 1.21e-08 2.56e-09 1.42e-07 2.77e-07 3.99e-07 5.56e-09 2.61e-08
LK 6.32e-10 4.39e-09 1.34e-08 2.69e-09 1.86e-08 4.62e-09 1.07e-09
Marquesas 1.42e-09 4.49e-09 5.28e-09 9.01e-09 1.57e-08 2.41e-09 1.54e-09
MidK 8.70e-11 1.03e-09 3.09e-09 9.21e-10 4.87e-09 1.19e-09 2.12e-10
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Figure A3. PC estimates of the dispersal kernels for the MK (left panel) and the MidK (right panel). The PC surrogate gives a statistical representation of
the uncertainties brought by the biological inputs. Dispersal kernels for both reefs have similar shapes as the CMS control run estimate (CR: blue dotted
line). Average proportion of settlement is lower than control run estimate across most dispersal distances, highlighting an overestimation in the control
scenario. Standard deviations for both reefs match the peaks of the distributions, and show larger impact of larval behaviours in these regions.

Figure A4. First order (S1....5, left) and total order sensitivity indices (T1....5, right) for the input parameters Settlement swimming speed, Kappa,
Competency, Flexion, and Beta. Variances induced by the parameters are presented for the MK (Top) and the MidK (Bottom) at three dispersal ranges:
short (0–10 km), medium (10–100 km), and long (> 100 km).

Appendix B: surrogate validation

The reliability of the uncertainty analysis presented here
hinges on the ability of the surrogate to substitute for actual

model runs. We, therefore, perform validation tests to gauge
the surrogate’s accuracy. These tests consist of comparing sur-
rogate and model predictions at a set of Nvp additional val-
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Figure B1. Analysis of the PC surrogate fit with the CMS estimates. Root Mean Square Errors (RMSE) between the surrogate estimates and the CMS
predictions for 100 validation points are analyzed along the dispersal kernels for (a) DT and (d) the LK. RMSE are about one order of magnitude lower
than the predicted proportion of settlement for all dispersal distances. (b) and (e) Normalization of the RMSE produces the scatter index for both reefs
shows increased precision of the surrogate for dispersal distances with a large proportion of settlement and lower precision for dispersal distances with
low proportion of settlement. (c) and (f) The quantile to quantile plots show the quantiles of the CMS validation points (x-axis) against the quantiles of the
surrogate (y-axis). The surrogate estimates are close to the CMS validation points distribution (the diagonal line representing a perfect fit). Only a few
points on both extreme quantiles seem to be overestimated by the surrogate for DT (c).

Figure B2. Analysis of the PC surrogate fit with the CMS estimates. Root Mean Square Errors (RMSE) between the surrogate estimates and the CMS
predictions for 100 validation points are analysed along the dispersal kernels for the (a) MK and (d) the MidK. RMSE are about one order of magnitude
lower than the predicted proportion of settlement for all dispersal distances. (b) and (e) Normalization of the RMSE produces the scatter index for both
reefs shows increased precision of the surrogate for dispersal distances with a large proportion of settlement and lower precision for dispersal distances
with low proportion of settlement. (c) and (f) The quantile to quantile plots show the quantiles of the CMS validation points (x-axis) against the quantiles
of the surrogate (y-axis). The surrogate estimates are close to the CMS validation points distribution (the diagonal line representing a perfect fit). Only a
few points on both extreme quantiles seem to be overestimated by the surrogate for MK (c).
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idation sampling points {ξv
i }1≤i≤Nvp that are distinct from the

training samples. The surrogate prediction error is quantified
using the Root Mean Square Errors (RMSE):

RMSE =
√

1
Nvp

∑ (
f (ξv

i ) − fP(ξv
i )

)2
. (B1)

In addition, a quantile to quantile plot is used to determine if
the surrogate and the CMS estimates follow a similar distri-
bution.

The RMSE, computed based on 100 random validation
points, follow closely the shape of the dispersal kernels both
for DT and the LK (see Figure B1a and d). For both reefs, the
RMSE seems to be larger at low values of settlement. This di-
agnostic is confirmed by the scatter index, the RMSE normal-
ized by the mean of proportion of settlement per dispersal dis-
tance (Figure B1b and e). The scatter index is the inverse of the
RMSE. The surrogate, therefore, estimates better the high val-
ues of settlement compared to low values of settlement. Anal-
ysis of the quantile to quantile plots (qqplots: Figure B1c and
f) shows that both the surrogate and the CMS estimates share
a similar distribution, with only a few points, for DT, at the
extremes of the distribution that are underestimated by the
surrogate (Y quantile on the plot). These diagnostics show a
particularly good estimation of the PC surrogate. The RMSE
and sensitivity analysis for the reefs of the MK and the MidK
(Figure B2) show that the fit of the PC surrogate is better in
the case of the MidK than for the MK.

Appendix C: description of the orientation
module

The files described here (available at https://github.com/Rom
ainChaput/connectivity-modeling-system) are an addition to
the open source version of the CMS (Paris et al., 2013b, avail-
able at https://github.com/beatrixparis/connectivity-modelin
g-system). All the modifications made to the original CMS
code are explained and commented in the code. All references
used to develop the code are cited in the code itself.

The orientation module can simulate one out of five differ-
ent orientation scenarios:

(a) Direct orientation, where the larvae swim towards the
nearest reef. The algorithms for this mechanisms have
been developed by Codling et al. (2004) and previously
integrated in the CMS by Staaterman et al. (2012). Sim-
ilar orientation mechanisms have been developed and
used by Painter and Hillen (2015). Larval orientation
according to this model depends on the direction and
distance of the nearest reef and the previous larval head-
ing. When a larva detects a nearby reef, it orients it-
self imperfectly towards the reef. Therefore, the orien-
tation accuracy is simulated by randomly picking the
larva heading from a statistical distribution.

(b) Rheotaxis orientation, where the larvae swim against
the local current at a speed slower or equal to that of the
currents. This behaviour has been observed in multiple
fish larvae species (Kingsford et al., 2002; Leis, 2006;
Olszewski et al., 2012). With this behaviour, the larvae
are made to swim against a known current. The accu-
racy of the orientation of the larvae is computed simi-
larly as the previous behaviour.

(c) Cardinal orientation, where the larvae use a magnetic,
internal compass to swim towards a pre-determined

heading (Bottesch et al., 2016; Cresci, 2020). With this
behaviour, the larvae go in a pre-determined direction
during orientation. The accuracy of orientation is com-
puted similarly as in direct orientation.

(d) A first continuous orientation scenario, where the lar-
vae swim first against the currents and switch to Di-
rect Orientation when they approach the reefs (Bottesch
et al., 2016). The user controls the threshold distance at
which this change in behaviours occurs. This orienta-
tion scenario combines the two orientation mechanisms
detailed in a and b.

(e) A second continuous orientation scenario, where the
larvae orient with Cardinal Orientation first and switch
to Direct orientation when they approach the reefs
(Cresci, 2020). This orientation scenario combines the
two orientation mechanisms detailed in a and c.

Orientation module added to the open source CMS

‘mod_orientation.f90’: this module was developed to simulate
orientation behaviours in the CMS. It is organized as follow:

� Subroutine ‘load_center_data’: loads the center of the
reefs (used in the behaviour a. Direct orientation).

� Subroutine ‘nearest_reef’: finds the nearest reef and com-
pute the distance between the larva and the reef (used in
the behaviour a. Direct orientation).

� Subroutine ‘calc_orient’: computes the heading of the
larva relative to the nearest reef and its swimming speed
(used in the behaviour a. Direct orientation).

� Subroutine ‘calc_rheotaxis’: computes the heading and
swimming speed of the larva relative to the currents
(used in the behaviour b. Rheotaxis).

� Subroutine ‘calc_cardinal’: computes the heading using
a pre-determined direction and the swimming speed of
the larva (used in the behaviour c. Cardinal orientation).

� Function ‘Harversine’: formula to compute angles from
latitude and longitude data.

Modifications of the open source CMS
� ‘def_globalvariables.f90’: defines the type of the vari-

ables used in the CMS. This file was modified from its
original version to include the variables used in the dif-
ferent orientation behaviours.

� ‘input.f90’: defines the parameters that the user can input
to the model. This file was modified to include the input
parameters used for the different orientation behaviours.

� ‘loop.f90’: computes the new position of the particles. It
was modified to include the orientation module.

� ‘Makefile’ : executable file to compile the CMS. It was
modified to include the orientation module.

� ‘mod_random.f90’: contains different statistical distri-
butions used by the CMS. A code to compute the Von
Mises distribution was added to the original file.

� ‘move.f90’: computes the displacement of the larvae. It
was modified to include the different orientation be-
haviours:

– Line 240: if the option Mix_orient (d and e. continu-
ous orientation) is chosen by the user, the program
calls the subroutines ‘nearest_reef’, ‘calc_cardinal’,
or ‘calc_rheotaxis’, and ‘calc_orient’.
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– Line 255: if the option Orient (a. Direct orienta-
tion) is chosen by the user, the program calls the
subroutines ‘nearest_reef’, and ‘calc_orient’.

– Line 265: if the option Rheotaxis (b. Rheotaxis ori-
entation) is chosen by the user, the program calls
the subroutine ‘calc_rheotaxis’.

– Line 274: if the option Cardinal (c. Cardinal orien-
tation) is chosen by the user, the program calls the
subroutine ‘calc_cardinal’.

� The type of orientation mechanism used by the larvae
during dispersal can be chosen and parametrized by the
user in the ‘ibm.list’ file.

Handling Editor: David M Kaplan
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