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Abstract 

Fisheries-independent surveys are a critical tool for monitoring marine populations and communities. However, considerations must 
be made to account for variable-size-based catchability. The size-specific catchability function is therefore key for estimating size dis- 
tributions, but often requires extensive data sets or specialized field experiments to determine. We develop a Bayesian model capable 
of simultaneously estimating both a size-based catchability curve and species-specific size spectrum parameters from trawl data by 
assuming that individual species size spectra follow a theoretically derived parametric size spectrum model. The resulting model pro- 
vides a means of estimating catchability and size spectra within an adaptive framework capable of accommodating confounding factors 
such as vessel power and fish density, potentially allowing for improved biomass and productivity estimates. We demonstrate the ap- 
plication of this model using 15 years of Greenland Halibut ( Reinhardtius hippoglossoides ) survey data from Nunavut to determine 
size-specific catchabilities and assess whether the size spectrum of Greenland Halibut has changed across the time series. While size 
spectrum parameters for this stock were not found to vary, we did find evidence of time-varying catchability parameters across the 
study period. 

Keywords: single species size spectrum; Bayesian modeling; size spectra; Greenland Halibut; Nunavut; size selectivity 
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Introduction 

Effective ecosystem-based management of marine populations 
and communities requires monitoring tools capable of detect- 
ing effects of multiple interacting drivers, both ecological and 

anthropogenic (Tam et al. 2017 ). The size spectrum of an as- 
semblage is the relationship between the abundance of organ- 
isms to their body size, such that smaller, lower-trophic-level 
organisms will be more abundant than larger ones (Sheldon 

and Parsons 1967 , Rice and Gislason 1996 ). Size spectra anal- 
yses have been used to inform scientists and managers about 
variation in top-down and bottom-up drivers of marine com- 
munities (Rice and Gislason 1996 , Shin et al. 2005 , Blanchard 

et al. 2009 ). Measuring size distributions in marine ecosystems 
can be challenging, however, as we cannot directly observe fish 

in their natural habitat without specialized equipment, remov- 
ing potential estimation techniques applicable to terrestrial or 
shallow-water resources, such as visual surveys (e.g. Turner 
and Mackay 1985 , Thompson and Harwood 1990 , Margal- 
ida et al. 2011 ). One of the most common tools to make in- 
ferences about the relative size distribution of marine species 
is to use empirical size distributions from trawl surveys (Pen- 
nington 1985 , Smith 1990 , Chen et al. 2004 ). 

In principle, a trawl sweeping a given area of sea floor 
should provide an accurate estimate of the density (biomass 
per unit area) of different species or size classes of fish in the 
area, which can be used in turn to estimate the size spectrum 

for the area (e.g. Daan et al. 2005 , Edwards et al. 2017 ). How- 
ever, trawls will never capture all the fish present in the swept 
area. Fish may slip through the net if they are below optimal 
size (Engås and Godø 1989 , Gabr et al. 2007 ), detect the trawl 
approaching and swim out of the path (Albert et al. 2003 ,
© The Author(s) 2023. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
006 , Robert et al. 2020 ), pass above the opening of the trawl
Jørgensen 1997 , Dremière et al. 1999 ), or pass underneath the
rawl (Engås and Godø 1989 , Ingólfsson and Jørgensen 2006 ,
yer 2008 ). The average fraction of the available individuals

n an area captured by a given trawl under local environmen-
al conditions is referred to as the catchability of the trawl,
nd it varies according to the fishing gear used, the morphol-
gy and behavior of a given fish species, and the abiotic and
iotic conditions at the fished site (Arreguín-Sánchez 1996 ). 
Catchability varies not only with environmental conditions 

nd among species, but also with body size within a given
pecies: smaller fish can slip through nets more easily (Millar
992 , Peng et al. 2013 , Stepputtis et al. 2016 ) and larger fish
ay be able to swim away from the net more effectively, or

pend more time away from the bottom (Benoít and Swain
003 , Winger et al. 2010 , Smith and Taylor 2014 ). The rel-
tive catchability of different size classes of fish by a given
urvey is referred to as the size selectivity curve method (Mil-
ar and Fryer 1999 ). Relative catchability can vary depend-
ng on a range of gear- and survey-specific (Sissenwine and
owman 1978 , Engås and Godø 1986 , Harley et al. 2001 ,
ones et al. 2008 ), species-specific (Godø et al. 1999 , Benoît
nd Swain 2003 , Brodziak et al. 2004 , Barange et al. 2005 ),
nd environment-specific conditions (Macpherson and Gor- 
oa 1992 , Gordoa et al. 2000 , Thorson et al. 2012 ). 
If the size-specific catchability curve is not accounted for 

hen estimating the shape of a size spectrum, it will bias es-
imates of relative abundances of different size classes, either 
nder - or over -estimating the relative abundance of larger in-
ividuals compared to smaller individuals, depending on the 
hape of the catchability curve. For instance, if small fish are
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 
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ble to pass through the mesh of the trawl whereas larger fish
annot, the relative abundance of small fish will be on average
ower in the trawl than what was present in the area swept by
he trawl. 

To account for reduced catchability of small fish, past size-
pectrum studies have typically only used size frequency data
or size classes larger than the peak size class in observed data
i.e. the descending slope of the observed size-abundance re-
ationship) when estimating the slope of size spectra (e.g. Rice
nd Gislason 1996 , Daan et al. 2005 , Krumsick and Fisher
020 ). However, this assumption does not account for the pos-
ibility of catchability decreasing with size for larger fish (e.g.
ue to gear avoidance or location in the water column). If this
cenario occurs, the number of large individuals caught by a
rawl will be less than what was in the path of the trawl. As
 result, the shape of the size spectrum to the right of the em-
irical peak will underestimate the relative fraction of larger
ize classes. If the true shape of the size-specific catchability
urve were known, both forms of bias could be accounted for
y scaling observed catches by the inverse of the catchability
urve prior to estimating the spectrum. 

Size-specific catchability curves have been estimated for a
ew gear types (e.g. Cadigan et al. 2006 ), generally based on
omparing catch-at-size for a given gear with catch-at-size
o a gear with a smaller mesh size or specialized cod ends
o prevent escape (Millar and Fryer 1999 ). However, size-
electivity of a given species can depend on a wide range of
ocal factors. Given the wide breadth of factors influencing the
atchability of a species, using published size-specific catcha-
ility curves estimated in different environmental conditions

ntroduces several assumptions regarding the applicability of
he published findings to novel situations. Furthermore, many
ear types do not have comparable published estimates apart
rom their target species (Rosing and Wieland 2015 , Larsen et
l. 2018 ). Species of limited economic value are often simply
gnored, which can complicate multispecies ecosystem analy-
es. 

The issue of confounding factors influencing the catchabil-
ty of a given species resulting in potentially inaccurate size
pectrum slope estimates could be avoided if both the shape
f the size-frequency distribution and the size-specific catch-
bility curve could be estimated for individual species from
rawl data alone. This is not possible for arbitrarily shaped
ize-frequency and catchability curves, as it would be impos-
ible to determine if low catches of a given size bin were due
o low frequency or low catchability for that size bin. How-
ver, we do not expect either the size-frequency or catchability
urves to take on arbitrary shapes. The functional form of the
pecies-specific size–frequency curve can be predicted based
n metabolic theory and species-specific parameters (Ander-
en and Beyer 2006 ), and the expected functional form of the
pecies-specific catchability curve can be predicted based on
he gear (type, mesh size, and mesh geometry) and behavior
f the target species. If it is possible to sufficiently constrain
he possible shapes of the two curves based on prior informa-
ion, it may be possible to estimate both curves from trawl
ata alone. 
The purpose of this study is 2-fold. First, we demonstrate

nd evaluate a novel statistical model that allows the simulta-
eous estimation of both a single-species size spectrum func-
ion and a size-specific catchability function from a single set
f trawl data. This model structure is flexible enough to allow
or temporally and spatially varying parameters, to allow for
hanging environmental and survey conditions. Second, we
emonstrate how to estimate the parameters for this model
n a Bayesian framework using the Hamiltonian Monte Carlo
lgorithm implemented in the Stan software package (Stan
evelopment Team 2022 ) using fisheries-independent survey
ata for Greenland Halibut ( Reinhardtius hippoglossoides )
rom the Nunavut region. We use a series of nested models
o determine if there is evidence of changing size-spectrum or
ize-specific catchability parameters in this stock across the
tudy period. 

Changing single-species size spectrum parameters indicate
arious phenomenon, depending on the nature of the param-
ter changes, such as variation in the amount energy available
o the individuals (thus influencing their potential for growth),
hanging energy requirements for the species (Law et al. 2009 ,

ary and Poggiale 2013 , Chongliang et al. 2016 ), variation in
ackground mortality (Chongliang et al. 2016 ), spatial shifts
n species distributions (Lefort et al. 2015 , Xu et al. 2021 ),
hanging ocean conditions and other sources of environ-
ental variability (Yvon-Durocher et al. 2011 , Woodworth-

efcoats et al. 2013 , Zhang et al. 2015 ), and potentially of
reatest concern to modern fisheries, whether fishing mortal-
ty has significantly influenced the size structure of a given
pecies as a whole (e.g. Andersen and Pedersen 2009 , Rochet
nd Benoît 2011 , Jacobsen et al. 2013 , Marin et al. 2023 ). 

Greenland Halibut is one of the most commercially im-
ortant fisheries in Nunavut (Government of Nunavut 2016 ),
ith the fishery steadily expanding since the late 1990s, such

hat 15 935 t were caught in 2019, a 336% increase from
atches in 1999, with a value of ∼$101 million landed value
Treble and Nogueira 2020 ). This value represents 60–90%
f the total landed harvest of the Nunavut offshore fisheries.
ith the expansion of any fishery, questions regarding sus-

ainability often arise. Although no significant changes have
een reported in the overall biomass, abundance, or recruit-
ent indices, potential changes to the single species size spec-

rum could still result from fishing activities (Law and Grey
989 , Heino et al. 2015 ). 

ethods 

urvey data 

nnual fall surveys of the Nunavut shelf, encompassed by
AFO subdivision 0 (NAFO 2020 ), have been conducted be-

ween 1999 and 2019 ( Fig. 1 ). Despite the 20-year range, only
5 years were modeled as several years did not have rele-
ant survey data or covered more inshore areas with ques-
ionable comparability to the other years. Individual fishing
rawls, or sets, were conducted at randomly selected locations
ith depths ranging from 401 to 1500 m, using an Alfredo

II bottom trawl with 20 mm codend mesh. The target tow
uration was 30 min at a towing speed of three knots, with
ets being conducted throughout the 24-h period. A primary
pecies of focus on this survey is the Greenland Halibut, or
urbot, due to its recent increase in economic importance. As
uch, total lengths, the length of a fish measured from the tip
f the snout to the tip of the tail, and, frequently, the whole
eight of caught Greenland Halibut were obtained during the

urvey. In cases where large quantities were caught, a random
ubset of the total sample was taken. No correction was done
or subsampling nor was the subsample size distribution ex-
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Figure 1. Map of study area along the Nunavut shelf. Triangles represent the trawl locations to which our model was fit to Greenland Halibut trawl data 
between 1999 and 2019. 

 

u  

h
a

 

i
(
s
t  

c
l  

s
d

1  

c

w  

p  

a  

u  

k

w  

m  

r  

t

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/81/1/145/7459507 by guest on 24 April 2024
panded to the total catch, and the selection was assumed to 

be a representative random sample. 
The data from the annual fall survey conducted by Fisheries 

and Ocean Canada does have the limitation that it does have 
the same spatial coverage between years. To ensure that the 
years remained comparable, a couple of years of data were re- 
moved from the analysis. In one situation, the year 2009, the 
number of sets was too low to conduct an analysis with a to- 
tal of 184 individual fish measured. Years were also removed 

if they sampled a vastly different location, such as in 2007,
when the survey was conducted inshore and observed an ele- 
vated number of juvenile fish relative to the other years. The 
remaining sets were kept as they were situated along the shelf 
and consisted of similar depth ranges. 

The model 

Our prediction for the shape of the observed size distribu- 
tion of individuals across trawls was theoretically determined 

by two key processes: a species-specific size spectrum and a 
peak-logistic size-specific catchability curve ( Fig. 2 ). The first 
of these processes is the relationship that relates the size of 
the species to the expected abundance (count per unit area) 
within the ecosystem. We would expect to see more smaller in- 
dividuals than large ones considering natural mortality as well 
as from a bioenergetic perspective. The second process, the 
peak-logistic size-specific catchability curve, reflects the prob- 
ability that a fish of a given size in the path of the trawl will 
be caught. Small fish are anticipated to pass through the net 
ntil they reach an optimal size, while large fish will have a
igher swimming endurance and are more capable of evading 
 trawl. 

The first process influencing the size distribution of a species
s the species-specific size spectrum. Andersen and Beyer 
2006) derived an equation for the expected equilibrium size- 
pectrum for a single consumer species under the assump- 
ions of conservation of mass, a power-law distribution of the
ommunity size spectrum, linear functional responses, power- 
aw scaling of metabolic rates with size, a log-normal size-
election feeding function, and constant mass-specific repro- 
uction rates. 
The equilibrium size spectrum for a given species [Equation 

1 in Andersen and Beye (2006), modified to aid in model
onvergence] is: 

N(m ) = 

⎧ ⎨ 

⎩ 

km 

�r −r −s 
[
1 −

(
m 

m ∞ 

)�r 
][ S/ �r ] −1 

i f m ≥ m min 

0 i f m < m min 

⎫ ⎬ 

⎭ 

, (1) 

here N (m) is the concentration of individuals present in the
opulation at a given location of body size m (here measured
s the mass of the individual). Concentration is measured in
nits of individuals/kg/km 

2 , so the density of individuals per
m 

2 between body sizes m 1 and m 2 at the given location 

ould be 
m 2 ∫ 

m 1 

N(m ) dm . The parameter m ∞ 

is the maximum

ass for the given species (assumed to be the size where the
ate of energy assimilation equals the rate of energy loss due
o maintenance), r is a parameter relating maintenance energy 
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Figure 2. Conceptual diagram outlining the flow of logic for the construction of the model for predicting the observed distribution of sizes. A catchable 
curve, representing the ability of small fish to pass through a trawl, and an uncatchable curve, representing the ability of large fish to outswim or 
otherwise e v ade a tra wl, are combined together to create a dome-shaped catchability curv e. When combined together with the single-species siz e 
spectrum, an indication of fish abundance theoretically in the path of the tra wl, w e obtain our predicted distribution of abundance at size within the trawl. 
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osts to body size, s is the ratio of the natural mortality rate
o food assimilation rate, and �r is the difference between the
xponent for how maintenance scales with body size and the
xponent for how food intake scales with body size (parame-
er n in Andersen and Beyer 2006 ). The parameter k is a scal-
ng coefficient, defined so that the definite integral of N (m)
rom m min (the minimum size of the fish) to m ∞ 

equals the
otal biomass or biomass density of the species in the sam-
led area. Equation ( 1 ) will demonstrate an approximately
og-linear descending slope until it approaches the maximum
ize of the fish. As m approaches m ∞ 

, N (m) will decline asymp-
otically to 0, implying that the slope of the single-species size
pectrum will become increasingly negative as m approaches
 ∞ 

. 
Equation ( 1 ) gives the concentration of fish by mass;

owever, trawl surveys typically measure fish abundance by
ength. Equation ( 1 ) can be converted into a function of
ength if fish mass scales allometrically with body length
s m ∼ g(l ) = a l b , by using the method of transformation
 i  
f distributions via monotone functions (i.e. N(l ) = | dg(l ) 
dl | ·

( g( l ) ) ; Wood 2005) . This gives: 

N(l ) = 

{ 

abl b−1 
.N 

(
al 

)b 
i f l ≥ l min 

0 i f l < l min 

} 

. (2)

e used log-linear regression to estimate the parameter val-
es of the length–weight relationship for Greenland Halibut
n Nunavut as a = 0.004 ( 538 g) and b = 3.158 using the
ubset of the trawl data where both lengths and weights were
easured for individual fish. 
The function N (l) predicts the concentration of fish at any

iven length, with units of individuals · c m 

−1 · k m 

−2 . This
unction can be translated into predictions about counts of
sh in specific size bins by taking the integral of the func-
ion between the lower and upper ends of the size bin [i.e.
 

l 1 
l 0 

N(l ) dl ]. As our data was collected in equal-width length
ins, we approximated this integral using the midpoint rule;

.e. ∫ 

l c + 

w 
2 

l c + 

w 
2 

N (l ) dl ≈ N ( l c ) · w , where l c is the length at the mid-
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point of each bin, and w the width of each in cm. For constant- 
width bins, this is just Equation ( 2 ) multiplied by w , which can 

be absorbed into the scaling coefficient k in Equation ( 1 ). The 
resulting integral has units of individuals. This approximation 

should be reasonable as long as the bin width is small relative 
to the difference between maximum and minimum size of the 
fish. To test this assumption, we compared the ratio of the ap- 
proximate integral to the numerical evaluation of the definite 
integral of Equation ( 1 ) (calculated by adaptive quadrature 
using the “integrate” function in R), across the range of 1 cm 

length bins observed in the data (15–101 cm) using poste- 
rior mean parameter estimates from the time-variant Bayesian 

model fit below. We found that the midpoint approximation 

to the integral was within 0.1% of the true definite integral 
for all size classes. 

The second process assumed to be affecting the shape of the 
observed size distribution was the size-specific catchability or 
selectivity curve (i.e. the average proportion of fish at a given 

length present in the trawled location that would be caught by 
the trawl). Since larger fish are more likely to stay trapped in 

a net, but that ability to swim away from an approaching net 
also likely increases with size (Smith and Taylor 2014 ), we as- 
sumed that catchability was the product of a logistic function 

and a shifted logistic function: 

c 
(
l 
) = 

γ1 

1 + e ( α1 −β1 l ) 
·
[

( 1 − γ2 ) 

1 + e ( −α2 + β2 l ) 
+ γ2 

]
, (3) 

where the parameters β1 and β2 are both greater than or equal 
to 0. Equation ( 3 ) describes a unitless length-specific catcha- 
bility curve. The value of c (l) indicates the probability of a fish 

of length l being caught by a given survey when it is present in 

the region swept by the survey gear. The parameter, γ1 , is the 
maximum catchability of the survey, ranging between 0 and 1.
For gear that was designed to perfectly catch all the target sizes 
in the trawl, the absolute catchability would be 1. However,
more often than not, there is a certain amount of escapement 
from the size classes of highest catchability and therefore this 
value is often < 1. From trawl data alone, we cannot deter- 
mine what proportion of the population present in the trawl 
path was actually caught for the optimal size classes. How- 
ever, we can determine the relative catchability of the various 
size classes to the size class of highest catchability, which could 

be multiplied by a γ1 if the proportion of the size class with 

highest catchability was later determined through alternative 
methods to produce the absolute catchabilities for each size 
class. Therefore, as we can only truly measure relative catch- 
ability from trawl data alone, we set γ1 = 1 to represent max- 
imum catchability (this parameter would be discussed in fur- 
ther detail later). The parameters α1 and β1 affect, respectively,
the minimum catchability and rate of increase with length of 
the ascending logistic curve. The minimum catchability (i.e.
at length 1 = 0 cm) would be γ1 

e α1 , the midpoint of the as- 
cending logistic curve will occur at α1 / β1 , and the derivative 
of the curve at the midpoint will be γ1 β1 / 4 . The second half 
of the equation describes a descending logistic curve, repre- 
senting the fish’s ability to avoid fishing gear with larger sizes 
due to greater swimming efficiency. This curve is the left-hand 

descending size-specific catchability curve and represents pro- 
cesses that make a population uncatchable. Therefore, for sim- 
plicity, this curve will be referred to as the uncatchable curve 
as per Smith and Taylor (2014) . The minimum fraction of γ1 

that remains catchable even at the largest fish sizes is described 

by the parameter γ2 . The parameters α2 and β2 affect maxi- 
um catchability at 0 length and the slope of the portion of
he catchability curve with size. 

The curve described by Equation ( 3 ) can take on a variety of
hapes, depending on the value of the parameters. If β1 > 0 but
2 = 0o, the curve will follow a traditional S-shaped logistic
atchability curve, demonstrating an increase in catchability 
s a species increases in size. If β1 = 0 but β2 > 0, catchabil-
ty will decline with length, with a minimum catchability of
2 as length goes to infinity. If both β1 and β2 are positive,
he curve will be an asymmetric dome-shaped curve, with the
idth of the plateau of the dome and the magnitude of the

symmetry determined by the α and β parameters of the two 

urves. 
Assuming that the species-specific size spectrum [Equation 

 2 )] accurately reflects the concentration of individuals of a
iven length in the target population, and the catchability 
urve [Equation ( 3 )] accurately models the proportion of that
opulation at each length that are caught by the net, the aver-
ge number of individuals in a given size bin with a midpoint
 captured in the survey trawl is given by: 

T 

(
l 
)

obs = N 

(
l 
) · c 

(
l 
)
. (4) 

quation ( 4 ) assumes that the average number of individuals
n a given size bin l l−w/ 2 : l l+ w/ 2 is proportional to the concen-
ration of individuals at the midpoint of the bin given by Equa-
ion ( 2 ) times the size-selectivity at the midpoint of the bin
iven by Equation ( 3 ). As with Equation ( 2 ), we are assum-
ng that catchability does not vary rapidly in any given length
in, so it is reasonable to use the catchability at the midpoint
f each bin to represent the average catchability across the bin.

stimating model parameters with trawl data 

he model was coded into Stan language using the rstan pack-
ge in R (R Core Team 2022 , Stan Development Team 2022 ).
ee Appendix 1 available in Supplementary material for Stan 

odel code. The single-species size spectrum equation as- 
umes a minimum possible size of individual > 0 cm, as oth-
rwise the size spectrum would not have a finite integral, as
ength concentration would approach infinity as length ap- 
roached 0 cm. Therefore, for the purposes of fitting our
odel, we set the minimum possible size of fish to be 15 cm,

eflecting a size category smaller than the smallest observed 

reenland Halibut. We modeled the number of individuals 
aught per bin as a negative binomially distributed random 

ariable using the mean/overdispersion parameterization of 
he negative binomial (White and Bennetts 1996 , NegBino- 
ial2 in Stan): 

n 1 ∼ Negbin 

[
μ

(
l 
)
, φ

]
. (5) 

here the mean count in a given size bin μ(l) is given by Equa-
ion ( 4 ), and the parameter φ is an inverse overdispersion pa-
ameter, where higher values of φ correspond to lower levels

f overdispersion: Var [ n l ] = μ(l ) + 

μ(l ) 2 

φ
(Stan Development

eam 2022 ). 
Using a negative binomial distribution for counts allowed 

or over-dispersion in counts compared with either a multi- 
omial distribution or a Poisson model for counts. Over- 
ispersed counts are an expected feature of this kind of data,
s many marine species show patterns of size-specific aggrega-
ion and temporally size-specific patterns such as recruitment 
ulses. 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad186#supplementary-data
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Table 1. Parameter definitions, constraints, and priors for the presented hierarchical model. 

Parameter Definition Units 
Priors for global 
parameter means 

Priors for random effect 
standard deviation Constraints Reference for prior 

�r Difference between 
maintenance and food 
intake 

None Normal Half-normal Lower = 0 West et al. ( 2001 ), 
Andersen and Beyer ( 2006 ) 

μ = 0.25 σ = 0.125 Upper = 1.25 
σ = 0.15 

r Maintenance None Normal Half-normal Lower = 0 West et al. ( 2001 ), 
Andersen and Beyer ( 2006 ) 

μ = 1 σ = 0.5 Upper = 1.5 
σ = 0.25 

s Ratio of mortality rate to 
food assimilation rate 

None Normal Half-normal Lower = 0 Andersen and Beyer ( 2006 ) 

μ = 0.84 σ = 0.25 Upper = 1 
σ = 0.25 

m ∞ 

Maximum size g Exponential Normal Lower = 

maximum 

measured size 

Coad and Reist ( 2018 ) 

β = 0.00 025 σ = 22 500 Upper = 45 000 
γ2 Proportion of the maximum 

catchability that becomes 
uncatchable at large sizes 

None Uniform Uniform Lower = 0 None 

Upper = 1 
α1 Ascending catchability curve 

midpoint parameter 
None Normal Half-normal Lower = 0 Harley et al. ( 2001 ) 

μ = 3.47 σ = 3 Upper = 100 
σ = 3 

β1 Ascending catchability curve 
steepness parameter 

1/cm Normal Half-normal Lower = 0 Harley et al. ( 2001 ) 

μ = 0.09 σ = 0.06 Upper = 1 
σ = 0.06 

α2 Midpoint parameter of 
logistic curve for size-specific 
decreases in catchability 

None Uniform Uniform Lower = 0 None 

Upper = 110 
β2 Steepness parameter of 

logistic curve for size-specific 
decreases in catchability 

1/cm Uniform Uniform Lower = 0 None 

Upper = 1 

Because we implemented a hierarchical model such that an overall mean and standard deviation were estimated for the combined data with individual years 
allowed to vary from this mean. Priors for this mean value, where possible, including the published mean and standard deviation were obtained from the 
literature. The prior standard deviation, used in the estimation of the variance of each year around the global mean, was kept at a minimum of the standard 
deviation surrounding the mean and a maximum of half the mean value. In some cases, such as the catchability curve parameters, the standard deviation 
was determined to be too restrictive and was weakened accordingly. In runs where either the size spectrum or the catchability curve were kept constant, the 
standard deviations were set to 0. Values for which no priors were found within the literature were kept as a uniform distribution. 
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Estimated model parameters were allowed to vary from
ear to year, with priors on annual parameter estimates as-
igned using hierarchical normally distributed priors. That is,
ny given parameter λi in a given year, I was assigned a hier-
rchical random effect prior: 

λi ∼ Normal ( μλ, σλ) . (6) 

he global mean for each parameter ( μλ) was in turn as-
igned either a normally distributed prior distribution with a
ean from prior literature (an informative prior; Gelman et

l. 2004 ), an exponential prior in the case of maximum size,
r a uniform (uninformative) prior distribution if no prior in-
ormation was available. All parameters were given bounds
etermined by biologically possible maxima and minima. The
aximum size was given an exponential prior as we do not be-

ieve that Greenland Halibut in this study region are unlikely
o reach the maximum size observed over the entirety of their
istribution. Therefore, the likelihood was set highest at the
aximum observed size across all survey years and decreasing

o the maximum observed size ever recorded for Greenland
alibut. This prior was kept fairly tight as while it is likely
here are bigger fish than has been observed in two decades of
urvey data, we don’t anticipate that they would reach a size
uch larger. The standard deviations for the priors for global
eans were obtained provided from the literature whenever
ossible. If no variance value were available, a standard de-
iation representing the range of values found in other fish
pecies was used (e.g. reported values for r in fish will range
rom 0.75 to 1 (e.g. Xiaojun and Ruyung 1990 ), and therefore
 standard deviation of 0.25 was chosen for this parameter).
n the situation where no standard deviations were available
et a mean value was found, as was the case with the parame-
er s , a weak prior global standard deviation was chosen. The
tandard deviations of the parameter random effects were as-
igned half-normal distributions (i.e. a zero-centered normal
istribution, constrained to be > 0). The values of the yearly
arameter values were also constrained to satisfy theoretical
imits on the values they could take (e.g. maximum possible
ength has to be equal to or larger than the biggest fish ob-
erved in the data set). All prior parameters, constraints, and
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sources for means of priors for the global parameters are listed 

in Table 1 . Priors for single-species size spectrum parameters 
were calculated from Andersen and Beyer (2006) , catchabil- 
ity curve parameters from Harley et al. (2001) , and maximum 

size information from Møller et al. (2018) . 
We used a total of four chains consisting of 10 000 it- 

erations per chain, with a burn-in of 500 iterations to cali- 
brate HMC tuning parameters, for each Stan model estimated 

(Hoffman and Gelman 2011 ). We assessed whether the mod- 
els had converged to the posterior distribution by the end 

of the simulation following best practices recommended for 
Bayesian HMC models (Vehtari et al. 2021 ). We determined 

whether all parameters ̂  r values were < 1.05 ( ̂ r is a convergence 
diagnostic that compares between- and within-chain parame- 
ter estimates for each parameter, and should approach one in 

a convergent model), the effective sample size was over 1000,
and the number of divergent transitions was low. We initially 
compared models with simply an increasing logistic catchabil- 
ity curve (i.e. β2 = 0) but found that the inclusion of the un- 
catchable curve improved model fit: any model that did not in- 
clude an uncatchable curve component was not able to model 
the observed rapid decline in catch with length observed in the 
data. As such, all results are from models estimated including 
an uncatchable curve. 

As the catchability parameters are subject to a wide vari- 
ety of potentially confounding environmental factors, and the 
size-spectrum parameters may be influenced by environmental 
conditions as well as finishing intensity, we allowed all the pa- 
rameters to vary from year to year. Gaussian (random effect) 
priors were imposed on yearly variation for all catchability 
parameters except the size-spectrum scaling parameter and γ2 ,
both of which were kept uniform as no prior information was 
available to inform suitable priors ( Table 1 ). 

Model comparison 

The model we constructed above was constructed from two 

individual model components, both of which were allowed to 

vary by year. In order to assess whether allowing annual vari- 
ability in the parameters improved the overall fit of the model 
to the data, we compared four versions of the model: (a) the 
full model as was described above; (b) a version of the model 
where the size-spectrum parameters were fixed and the catch- 
ability curve parameters were allowed to vary across time; (c) 
a version of the model where the catchability curve parame- 
ters were fixed and the size-spectrum parameters were allowed 

to vary across time; and (d) a model where all parameters 
were constant across time. A leave-one-out cross-validation 

to determine the difference in their relative predictive accu- 
racy was then conducted using the loo package in R (Vehtari 
et al. 2017 ). ELPD values, the theoretical expected log point- 
wise predictive density for a new dataset, were obtained for 
each model and compared to determine the model with the 
greatest predictive accuracy. The standard error of the differ- 
ence in ELPD was also calculated to assess uncertainty in the 
difference in ELPD values. 

Simulation trials 

To assess the ability of the proposed model to accurately pre- 
dict the true parameters defining a system as well as to assess 
the potential influence of sample size on the outcome, we con- 
structed a simulated data set based on the mean parameter 
values for the model fit to all years of observed data. From 
his simulated data, we randomly sampled subsamples of 100,
50, 500, 1000, and 10 000 individuals. For each of these
ubsamples, the model was fit using 10 000 iterations and 4
hains to ensure convergence as indicated by ˆ r < 1.05 for all
arameters and effective sample sizes over 1000. 

esults 

rawl data 

he data underlying this article were provided by Fisheries 
nd Oceans Canada by permission. Data will be shared on re-
uest to the corresponding author with permission of the rel-
vant contacts at Fisheries and Oceans Canada. Over the 15
ears of sampling, 1 397 trawls were conducted, with a mean
nd standard deviation of 93 and 43.2 sets per year, respec-
ively. A total of 145 895 Greenland Halibut were sampled,
ith an average of 9 735 individuals caught per year and a

tandard deviation of 5 102 individuals per year. The sizes of
reenland Halibut ranged from 15 to 101 cm with the aver-
ge size being 42 cm across all years. 

odel results 

he proposed model was found to converge for the 15 years
f analyzed data ( Appendix 2 available in Supplementary 
aterial ). In order to remove divergent transitions, which 

ere initially present ( Appendix 3 available in Supplementary 
aterial ), the adapt delta was increased from the default 0.9

o a value of 0.95, thereby reducing the step size, and the max
ree depth from 10 to 12, increasing the number of nodes in
he binary tree size within stan from 1024 to 4096 (Stan De-
elopment Team 2022 ). An effective sample size of at least
000 was achieved for each parameter estimate and all ˆ r val-
es were < 1.005 if not exactly 1 ( Table 2 ). If we analyze the
odel fit for 2019, e.g. we observe that the model not only

onverged but appears to suitably describe the variability i.e.
bserved in the data ( Fig. 3 , Table 2 ). The posterior mean of-
en overestimates the number of small Greenland Halibut that 
ould be caught by the net, likely a function of the size spec-

rum increasing faster than the catchability curve can account 
or. Furthermore, there were several observed groups of out- 
iers associated with individual year classes from the estimated 

urve at ∼20, 32, 37, and 51 cm ( Fig. 3 ). 

ariation in parameters over time 

he model was run for the years 1999–2019, resulting in 15
ears of data, considering there were several years where sur-
eys were not conducted or where the survey was restricted to
egions that made it incomparable to other years. None of the
ize spectrum parameters showed any substantive linear trend 

cross the study period ( Fig. 4 ), although estimates of the s pa-
ameter, representing the ratio of mortality rate to food assim-
lation rate, did vary substantially from year to year, relative
o within-year posterior parameter variance ( Fig. 4 ). We also
bserved a decreasing trend in the α1 and an increasing trend
n the α2 ( Fig. 4 e and g). These changes correspond to po-
ential shifts in the mid-points of the catchability curves over
ime. As a result, the size associated with peak of the observed
istribution, a result of the model, was found to increase over
he time period ( Fig. 4 i). It should be noted, however, that the
odel allowing for interannual variability among parameters 
as not supported as an improvement over the model where

he parameters were not allowed to vary over time, suggest-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad186#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad186#supplementary-data
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Table 2. Example posterior means, posterior standard deviations, and ˆ r values for estimated parameters for the model fitted to 2019 data. 

Parameter Posterior mean 95% credible interval 
Bulk effective 
sample size R-hat 

r 0.853 0.580–1.077 2337 1 .003 
�r 0.255 0.048–0.451 1525 1 .003 
s 0.566 0.242–0.897 2861 1 .001 
m ∞ 

30 061 g 15 855–42 875 g 3678 1 .001 
γ2 0.003 0.001–0.008 2679 1 .000 
α1 8.818 7.538–10.191 3878 1 .001 
β1 0.187 0.135–0.241 4698 1 .001 
α2 11.493 8.204–16.224 1645 1 .000 
β2 0.222 0.174–0.283 1763 1 .000 

The year 2019 was chosen as a representative year, being the closest year to the year this study was conducted. For fits for other years, see Appendix 2 available 
in Supplementary material . 
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Figure 3. Sample fit of our model to length data collected for Greenland Halibut on the Nunavut shelf in 2019. (a)–(d) represent fitted curv es f or the three 
components of the model: (a) the ascending catchability curve; (b) the left-hand descending catchability curve; (c) the combined selectivity curves; and 
(d) the single species size spectrum. These components combine to form (e): the product of the three component curves, rescaled to sum to one to 
show the predicted fraction of total catch occurring in each size bin. The points represent the observed fraction of total counts for each 1 cm size 
category. Solid black lines represent the posterior mean. The grey bands represent 95% credible intervals. 
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Figure 4. Trends in the model parameters o v er time. Panels a–d represent the parameters from the single-species size spectrum. Panels e–h represent 
the size-specific catchability and uncatchable parameters. In these panels, the points represent mean posterior draws and the black lines represent the 
standard deviation around these points. A blue trendline is also present with its slope and the P -value with the associated regression analysis shown. 
Panel i demonstrates, using points, the length associated with the location of the peak of the distribution with the blue line demonstrating the trend o v er 
time. 
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ing that this observed trend, though visible from the observed 

size distributions over time, were not well supported by the 
model. 

Model comparison 

ELPD, or the theoretical expected log pointwise predictive 
density, and standard error of the ELPD were estimated for 
each of the models ( Table 3 ). As expected, the non-time- 
varying model performed the least well of the four analyzed 

models, followed by the fixed catchability, the full model, and 

the fixed size spectrum model performing the best of the four 
models. However, the standard errors associated with each of 
these models were equal to the difference in the ELPD from 

the base model, suggesting that there is only weak support 
for these time-varying models being an improvement over the 
non-time-varying alternative. 
imulation trials 

onvergence was obtained for each of the sub-sample runs 
hat were conducted ( Table 4 ). While many of the param-
ters were reasonably approximated, the model struggles to 

stimate certain parameters. For example, the maximum size 
f the fish is often not well estimated, representing a size of
sh far beyond the maximum observed size. The model there-
ore recognizes that the maximum size is a larger number, but
truggles to identify where exactly the size spectrum is antici-
ated to quickly drop to 0. Similarly, the exact location where
he curve drops off as part of the uncatchable curve was found
o be difficult to approximate at lower sample sizes. While we
id find that the exclusion of such a curve resulted in poor fits
o the distribution ( Appendix 4 available in Supplementary 
aterial ), without sufficient data the model had diffi- 

ulty determining where the drop in catchability should 

ccur. 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad186#supplementary-data
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Table 3. L ea v e-one-out analy sis f or the f our proposed models to assess the predictive capabilities of the varying components of the models to annual 
variability. 

Model Difference in ELPD from base model SE of ELPD 

All parameter fixed (base model) 0 0 
Fixed catchability parameters 32 859.4 32 859.3 
All parameters allowed to vary 540 781.5 540 781.5 
Fixed size spectrum parameters 1 682 270.6 1 682 270.7 

The ELPD for each model was compared to a base model consisting of non-time-varying components. 

Table 4. Simulation trial estimates for various sub-sample sizes. 

Variable Subsample size True value 

100 250 500 1 000 100 000 

�r Did not converge 0.20 ± 0.16 0.22 ± 0.13 0.25 ± 0.23 0.25 ± 0.14 0 .22 
r 0.95 ± 0.25 1.24 ± 0.19 1.04 ± 0.23 0.99 ± 0.21 0 .96 
s 0.49 ± 0.26 0.55 ± 0.27 0.49 ± 0.29 0.52 ± 0.29 0 .61 
m ∞ 

24 902 ± 9 847 28 250 ± 8 778 28 413 ± 9 102 40 650 ± 8 385 43 677 
γ2 0.03 ± 0.03 0.03 ± 0.03 0.02 ± 0.01 0.01 ± 0.00 0 .01 
α1 8.20 ± 1.29 9.47 ± 0.62 8.61 ± 0.50 8.08 ± 0.09 8 .14 
β1 0.29 ± 0.05 0.30 ± 0.02 0.29 ± 0.02 0.28 ± 0.00 0 .28 
α2 63.8 ± 27.45 54.64 ± 9.43 51.97 ± 9.19 38.39 ± 1.37 37 .77 
β2 0.62 ± 0.3 0.85 ± 0.14 0.60 ± 0.14 0.59 ± 0.02 0 .58 
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iscussion 

iven the wide range of factors contributing to the catcha-
ility of a given species, we sought to investigate whether we
ould estimate not only catchability parameters from trawl
ata, but also species-specific size spectra. The resulting model
ontained a total of 10 parameters that were estimated within
 Bayesian framework. Furthermore, we analyzed 15 years of
ata, with every parameter being allowed to vary by year. A
isual analysis of the resulting model revealed a reasonable
t to the distribution of sizes observed within a given year,
uggesting the model not only converged, but also provided a
easonable representation for the general visible trends within
he data ( Appendix 2 available in Supplementary material ). 

We additionally asked the question: can we use this de-
ived model to measure population changes in the Greenland
alibut in light of its expanding offshore fishery along the
unavut shelf? We were unable to detect a trend in size spec-

rum parameters and, therefore, were unable to detect any im-
acts of fishing activities on the single-species size spectrum.
owever, we did observe a shift in the peak of the distribu-

ions. Although trends were found in the catchability and un-
atchable curve parameters, which could explain this shift in
he peak, the fact that the time-varying model was not found
o perform better than a static one suggests that these trends
re not strongly supported. This increased average of size of
he catch is unlikely to be related to a large size class, e.g. as
he growth of the species undoubtedly surpasses the observed
lope of the relationship between the length at the peak and
he year. It therefore seems likely that other factors, such as
ecreasing fish density, could be contributing to this general
rend. 

ariation in peak length over time 

ne of the observed trends was the increase in the location of
he peak of the caught distribution of fish. With the removal
f larger individuals, we had initially anticipated that the lo-
ation of this peak would decrease over time. However, the re-
erse trend was observed. With regard to the parameters of the
odel, the only parameters that were found to vary substan-

ively over time were the two α parameters associated with the
atchability curves. Therefore, our model suggests that while
he species-specific size spectrum has remained the same over
he time period, it is the changes in catchability of the species
hat result in the observed shift in the peak. This could be due
o either changes in the behavior of the fish, or shifts in the
patial distribution of the trawl survey, as the survey did not
ollow a spatially fixed sampling design across the study pe-
iod. 

We acknowledge other factors, not accounted for in our
odel, may have caused the change in the estimated peak

ength besides a change in catchability. For instance, the An-
ersen and Beyer model assumes non-varying recruitment.
owever, in the situation where recruitment was found to

ecrease over time, this could result in the observed shift in
he peak of the observed distribution i.e. currently not ade-
uately accounted for in the parameters. Published recruit-
ent indices for the Greenland Halibut along the Nunavut

helf indicate little evidence for time-varying recruitment (Tre-
le and Nogueira 2020 ), so this explanation does not seem
ikely to us. We also assume that the true population size spec-
rum in any given year matches the equilibrium size spectrum
erived by Andersen and Beyer (2006) , which can include the
ffects of fishing mortality; however, as those authors note, the
quilibrium distribution assumes size-invariant fishing rates.
igher-than-expected mortality on larger fish (resulting in a

teeper-than-expected right tail of the size spectrum) could re-
ult in an increase in the uncatchable curve in our model, as
ould higher-than-expected mortality on smaller fish, if large
sh become more difficult to capture while fishing (resulting in
n increased estimate of catchability of smaller fish). Similarly,
f the rate of decrease for juveniles was higher than predicted,
he model would attempt to account for this change by ad-
usting the catchability curve. If the change in peak length that
e observed was caused by increased fishing pressure, rather

han altered catchability, we predict that smaller Greenland

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad186#supplementary-data
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Halibut should be more vulnerable to fishing than large ones 
(as would be expected if large Greenland Halibut were able 
to sense and avoid fishing gear). We suggest that this could be 
testable via mark–recapture studies. 

Effects of parameter correlation on estimates 

We observed that several of the parameters were highly cor- 
related with each other, namely the α and β components 
for the catchability curve as well as the uncatchable curve 
( Appendix 3 available in Supplementary material ). As the mid- 
point of the catchability curve decreases, the model compen- 
sates for that by decreasing the steepness of the curve. A sim- 
ilar trend occurs in the uncatchable curve. This kind of corre- 
lation between estimated parameters is a standard feature of 
complex statistical models (Xu and Gertner 2008 ), and indi- 
cates that, under a given model specification, it may be difficult 
or impossible to estimate the most predictive value of each pa- 
rameter individually; for instance, it is possible to get a very 
similar-shaped catchability curve with a high value of α1 and 

high value of β1 (corresponding to a low intercept and steep 

slope) or with a low value of α1 and of β1 (corresponding to 

a high intercept and shallow slope). However, our research 

question focused on estimating the overall shape of the three 
curves ( Fig. 2 ), rather than precise estimates of specific param- 
eters; as demonstrated by Fig. 3 , the resulting curves are esti- 
mated with high precision, even if the individual parameters 
are not. 

Evidence for the declining catchability with size of 
Greenland Halibut 

Most catchability studies simply consider the increasing lo- 
gistic function to describe the catchability curve for a given 

species. For many species that do not reach large sizes, such 

as many forage fish species, this statement is appropriate as 
the maximum size of the species falls on the increasing slope 
of the catchability curve. Other authors, however, have noted 

an apparent asymmetric dome-shaped catchability curve with 

several study species (Hoydal et al. 1982 , Fraser et al.
2007 ). 

We consider our results to provide strong evidence for de- 
clining catchability with size in Greenland Halibut. If we ex- 
cluded the uncatchable curve, our model frequently exhibited 

poor convergence (a sign of poor statistical fit to the data) 
and even when it did converge, the fitted model always over- 
estimated the number of large individuals present within the 
catch ( Appendix 4 available in Supplementary material ). The 
observed rapid decline in catch with size could only occur 
due to population dynamics alone if Greenland Halibut ei- 
ther stopped growing more quickly, or died at much higher 
rates at larger sizes than assumed by the Andersen and Beyer 
model. The first can be ruled out based on prior studies of 
growth in this species (Bowering and Nedreaas 2001 ), and we 
know of no evidence for increasing mortality with age or size 
in Greenland Halibut. 

Decreasing catchability with increased size may occur due 
to increased swimming endurance, and therefore their ability 
to outswim or otherwise evade a trawl will increase with in- 
creased size (Videler and Wardle 1991 , He 1993 , Winger et 
al. 1999 , Krag et al. 2014 ). Furthermore, as fishing practices 
continue, it has been proposed that, as we are repeatedly re- 
moving the slower fish, that we are unintentionally driving 
the evolution of wild fish populations to favor individuals 
ith a greater capacity for anaerobic metabolism (Killen et 
l. 2015 ). The potential for a species to become uncatchable
ill influence the observed distribution of sizes will increase 

s human exploitation of fish stocks continues. The assump- 
ion that once a species reaches maximum catchability, it will
etain that degree of catchability across all sizes is question-
ble, and therefore considerations should be made regarding 
he catchability as a species approaches maximum size. How- 
ver, in the case of the scenario where a given species has a
ufficiently high α2 / β2 ratio (representing the midpoint of the 
ncatchable curve), near or above the maximum size of a given
pecies, the parameter would have little impact on the out-
ome of the model. In this case, the model could be further
implified by removing the uncatchable curve from the equa- 
ion, reducing it to the product of a single-species size spec-
rum and an ascending catchability curve. The escapement of 
arger individuals has been suggested in a number of studies.
aired trawl experiments found that not only do we observe
 decreased catchability of large fish, but that the magnitude
f this decrease was influenced by the mesh size of the gear
Mous et al. 2002 , Krag et al. 2014 , Weinberg et al. 2016 ).
his finding suggests that the fish were not only able to es-
ape the trawl, but that their efficiency at doing so was influ-
nced by gear selection. Video recordings of Greenland Hal- 
but response to a trawl has shown that many individuals will
imply lay close to the bottom, thereby escaping beneath the
rawl, and that large individuals in particular often will es-
ape ahead of the trawl by swimming horizontally out of the
ath of the trawl (Albert et al. 2003 , 2006 ). The inclusion
f the uncatchable curve is not only necessary from a mod-
ling perspective but also supported by the behaviors of this
pecies. 

elative vs. absolute catchability 

his analysis has focused on estimating the relative catchabil- 
ty of the species. The parameter γ1 (representing the max- 
mum catchability) was therefore set to one for all years
nd trawls. The exact value of γ1 for the absolute catch-
bility of the species cannot be determined from the catch
ata alone. This value is most likely to be < 1 to account
or the percentage of fish to evade the net. However, values
 1 have been reported on account of potential herding of

ome species of fish into the net (Somerton 1996 , Fraser et al.
007 , Bryan et al. 2014 ). Frequently, the potentially trawled
iomass is determined through the use of acoustic data (e.g.
dwards 1968 , Sissenwine and Bowman 1978 , Harley and
yers 2001 ). As such, the parameter γ1 will therefore need

o be estimated using alternative approaches. However, varia- 
ion in relative catchability due to known environmental fac- 
ors, such as day–night variation, can be estimated by com-
aring trawls taken close in time and space, but varying
n key parameters. Based on comparisons of abundance of 
ighttime and daytime trawls, we determined that there was
imited evidence of diel variation in catchability of Green- 
and Halibut (see Appendix 5 available in Supplementary 
aterial ). 

ingle-species size spectrum 

lthough this study did not find any long-term changes in the
ingle-species size spectrum parameters over the analyzed 20- 
ear period, the potential of fluctuations in the various pa-
ameters could indicate a number of things relating to the

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad186#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad186#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad186#supplementary-data
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iology of the species. The parameter �r is the exponent of
he relationship of mass to the basic energy requirements for
rowth and maintenance (Rubner 1883 , Brody and Lardy
946 , West et al. 1997 ) relative to the parameter r , the ex-
onent of the relationship between mass and the standard
etabolic rate (SMR; Krogh 1914 , West et al. 2001 ). Vari-

tion in these parameters would indicate changes in the en-
rgy requirements of the species, such as those induced by
hanging ocean conditions (Johnston and Dunn 1987 , Clarke
nd Johnston 1999 ) or increased energy investiture in the pur-
uit of prey, or to avoid predation (Seibel and Drazen 2007 ).
he parameter complex s represents the ratio of predation to

he rate of food assimilation. Increased fishing activity is ex-
ected to increase this ratio, as we remove greater quantities
f fish from the community as fishing increases. Alternatively,
f food was becoming scarce, we might expect this ratio to
ecrease, possibly associated with a decrease in the param-
ter �r to indicate a decrease in foraging efficiency, or an
ncrease in natural predation for which we presently do not
ave evidence for. The final term of the size spectrum equa-
ion is the maximum size of the fish. One of the key indi-
ators of the negative impacts of fishing is the reduction of
he maximum size of the species resulting from the preferen-
ial removal of larger individuals (Hsieh et al. 2010 , Heino et
l. 2015 ). Much as the catchability of a given species is ex-
ected to vary with season, the size spectrum is anticipated
o vary over the course of the year. The size spectra presented
ere represent what we would observe in the region during
he late summer and early fall, when the surveys take place. It
s expected that varying surrounding temperatures will signif-
cantly influence the SMR of members of these communities
Fry 1971 ), food assimilation rates (Ricker 1946 , Andersen
999 ), and growth (Pauly 1980 , Fonds et al. 1992 , King et
l. 1999 ). Without even considering confounding factors such
s seasonal variability in prey availability, we would expect
he size spectrum parameters r, �r , and s to vary with water
emperature. 

For the construction of our model, the parameter estimates
re kept constant across the size range of fish. This approach
s reasonable for the parameters representing the relationship
etween the mass and energy requirements of the fish ( n and
 ), as well as the maximum size of the species, but the pa-
ameter that could be impacted by this decision is s , repre-
enting the ratio of mortality to food assimilation. It has been
hown that many marine fish species experience age-specific
ortality (Lorenzen 2000 , Gislason et al. 2010 , Thorson and
rager 2011 ). However, we do not presently have methods
o account for the potential of variation in mortality with size
ith our data set, and therefore the parameter s was kept con-

tant such that the descending slope of the size spectrum only
ignificantly deviated from a near log-linear relationship as
he species approached maximum size. Furthermore, the An-
ersen and Beyer model was generated with the caveat that
shing mortality was not included in their model. We had as-
umed that an increase in fishing mortality would be reflected
n the parameter s. If the Andersen and Beyer model, how-
ver, is too rigid of a model to detect the influence of size-
pecific fishing mortality on the population, it might instead
ttempt to ascribe the variation to the catchability curve. If
his scenario were the case, the changes in size-spectrum pa-
ameters over time would have erroneously been attributed
o changes in the catchability parameters. If the parameter s
as assumed to be constant when in fact there was increased
 a
ortality, either natural or due to fishing, we would antici-
ate observing a steepening of the descending slope, which the
odel would explain through the two β parameters associated
ith the steepness of the catchability curves. The changing
f these parameters would allow for the more rapid decline
f the right-hand descending slope and allow the left-hand
urve to accommodate the now increased predicted numbers
t lower sizes. Instead, both of these are found to be constant
ver time and that the α values are found to change, indi-
ating the midpoint of these catchability curves is changing
iven a constant β. Future studies could help shed light on the
mpacts of keeping this parameter s constant by determining
he impact of varying mortality with size on single-species size
pectra. 

ystematic patterns of residual variation around 

redicted size spectrum 

hile the model captures the peak of the distribution and
rovides an approximation of the ascending and descending
lope, observed catches differed systematically from the over-
ll trend in several years (e.g. higher-than-expected counts
f fish near 25 and 50 cm in 2019; Fig. 3 d). One possible
ause for these would be annual recruitment pulses moving
hrough the size spectrum. The species-specific size spectrum
n Equation ( 1 ) that we assumed was derived from a steady-
tate population model, where recruitment occurs continu-
usly throughout the year, and temporal variation in recruit-
ent, mortality, or growth is absent (Andersen and Beyer
006 ). Reproduction in Greenland Halibut, on the other hand,
s seasonal (Gundersen et al. 2010 ). 

The presence of detectable year classes could bias our pa-
ameter estimates for some years. For example, should a par-
icularly strong year class arise for a given species, the model
ill interpret this deviation as the peak of the distribution and,

s a result, will produce erroneous conclusions when attempt-
ng to fit catchability curves and single-species size spectra.
n the absence of a seasonally driven size-spectrum model to
ompare our results to, it is difficult to assess the impact of
ecruitment pulses on our estimated size spectra. We suggest
hat a useful area of future study in the theory of size spectra
ould be to extend the steady-state size spectrum solutions

rom Andersen and Beyer (2006) to determine size spectra
or fish species with seasonal reproduction. We hypothesize
hat the resulting size spectrum should be similar in shape to
he spectrum predicted by Andersen and Beyer, but with addi-
ional local peaks corresponding to the average size of age-0,
, 2, etc. fish at the time of sampling. 
We also observed that, while our model was able to con-

istently estimate the location of the peak of the observed
ize distribution across years, as well as the general pattern of
he ascending and descending slopes, our model systematically
nderestimated the height and sharpness of the observed peak
f the observed size distribution. The model appears incapable
f achieving the sharp peak that we observe in the data with-
ut compromising the fit to the remainder of the data (e.g.
ee Fig. 3 d). This discrepancy may also be due to the pulsed
ffect of seasonal reproduction. However, it may also indicate
 potential issue with the assumed functional shapes of the
atchable and/or uncatchable curves (i.e. one or both of these
urves may change more rapidly than is possible under our
ssumed logistic curves). 
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Effects of the assumed minimum fish size and the 

shape of the catchability curve 

The single-species size spectrum from Andersen and Beyer 
(2006) requires that the minimum size of fish possible is > 0; 
otherwise, the size spectrum would not integrate to any finite 
value. To use our method, this minimum size needs to be ei- 
ther estimated or specified by the user. We chose a minimum 

length equal to the smallest size fish observed in the survey for 
this study. This was in part because we did not have good eco- 
logical information on the smallest size of Greenland Halibut 
at this time of year. 

We suspect that the actual smallest size classes of Green- 
land Halibut are smaller than the observed 15 cm minimum.
We think this model sensitivity may highlight an issue with 

the assumed logistic catchability curve. The curve predicts 
that catchability at small sizes will be approximately e αl + βl l min ,
which will always be > 0. In reality, instead of the catcha- 
bility curve approaching 0 as the length approaches 0, there 
will likely be a length > 0 where the catchability will be 0, as 
fish much smaller than the net mesh are likely to pass easily 
through the net. This is evidenced by the fact that larval fish 

are rarely caught in otter trawls, despite their relative abun- 
dance within a given ecosystem. Eventually, the fish will be 
too small to be caught within a net of a given mesh size to 

any reasonable capacity. Much as two of the source models 
do not realistically describe the activity of the curves as they 
approach length/mass of 0, it comes as no surprise that our 
model also produces unrealistic expectations. As a result, a 
cut-off needs to be set at the discretion of the author to ensure 
reliable curve fitting. 

For the creation of this model, we had selected a catcha- 
bility curve that was comprised of the combination of two 

curves, allowing for a wide variety of potential shapes. If, e.g.
the investigator were to find that α2 were to be quite large, ap- 
proaching or even exceeding the maximum size observed, that 
would be justification for simplifying this component of the 
model to simply an ascending asymptotic catchability curve.
Similarly, as certain parameter combination exist that would 

justify a dome-shaped selectivity, the model may be similarly 
simplified to accommodate this additional prior information 

on the behavior of a target species. Equation ( 3 ) could also 

be substituted for a wide variety of catchability curves and 

thereby the investigator need not be limited to a catchability- 
uncatchable curve function to describe their population. 

Potential effects of spatial population structure, 
sample size, and changing environmental 
conditions on estimated parameters 

The single-species size spectrum assumes that the sample is 
representative of an entire well-mixed population, with lit- 
tle to no spatial separation of individuals from different life 
stages. The model still will describe the observed distribution 

as long as the trawl survey includes reasonable coverage of 
the whole range of a population. However, if a trawl survey 
only samples juveniles or spawning adults, this will result in 

a bias with regard to both the catchability and the size spec- 
tra parameters. It is therefore important to have a general un- 
derstanding of the population and to visualize the data prior 
to fitting the model to ensure proper interpretation of the re- 
sults. Furthermore, the sample size needs to be sufficiently 
large in order for the model to adequately describe the pop- 
ulation it was taken from. Simulating novel data from this 
odel with varying sample sizes indicated at least 500 indi-
iduals were required per year for the model to consistently
onverge ( Appendix 6 available in Supplementary material) ).
hese simulations also indicated that it is not possible to re-

iably estimate the true maximum size ( x max ); the posterior
ean value of x max for 2019 varied substantially among sub- 

amples, ranging from 30 to 44 kg. This is likely because the
aximum size of the fish represents a size larger than the
iggest size class in the observed size distribution, so there
s limited data in the sample on where this maxima occurs.
n addition to the parameters existing in the present model,
here are other potential factors that could influence the shape
f a single-species size spectrum. First, the single-species size 
pectrum equation was created to describe an entire popula- 
ion. However, trawl data only provides a glimpse at what
as available at a given location. If, e.g. individuals of dif-

erent ages/size classes do not occupy the same areas, mis-
eading model results could arise. Evidence exists that juvenile 
reenland Halibut of sizes that would comprise the underrep- 

esented lower portion ( < 35 cm) of the distribution may oc-
upy a different spatial location than larger individuals (Albert 
003 , Wheeland and Morgan 2020 , Gíslason et al. 2023 ). To
educe bias associated with this observation, we did not in-
lude sets that targeted these juvenile-occupied areas in our 
tudy, as these locations were not included in surveys every
ear. The implications of this action are that the left end of
he fit curve was potentially lower than that of the entirety of
he population along the shelf and the catchability parame- 
ers might have changed slightly with their inclusion despite 
he fact that the majority of the points defining the ascending
atchability curve would not be influenced by this decision. 

A final major factor that was not accounted for in this study
s changing environmental conditions. Of particular concern 

n the Arctic are the influences of climate change on natural
cosystems. Over the past 100 years, the Arctic has observed
 1.5 

◦ increase in air temperatures though water temperatures 
n the northern North Atlantic appear to have been relatively
table thus far (ACIA 2005 ). Anticipated future changes to
he Arctic marine environment include changes in commu- 
ity composition from distribution shifts (Perry et al. 2005 ,
heung et al. 2009 ), negative impacts of UV radiation (El-
ayed et al. 1996 , Zagarese and Williamson 2001 , Alves and
gustí 2020 ), changes in sea ice coverage (Johannessen et al.
004 , Comiso and Hall 2014 ), dispersal ability (Lett et al.
010 ), wind-driven patterns influencing larval fish production 

nd survival (Hollowed et al. 2009 , Lacroix et al. 2017 ), and
rowth rates (King et al. 1999 , Denechaud et al. 2020 ). Fur-
hermore, the impacts of fishing activities on fish populations 
ave been proposed to make these populations more sensitive 
o additional pressures imposed by climate change (Ottersen 

t al. 2006 , Brander 2007 ). Many of these factors are antici-
ated to potentially influence the single-species size spectrum 

or a given species. Although we did not observe any long-term
rends in the life history parameters in our analyzed size spec-
ra, these considerations should be taken into consideration 

efore assuming that any observed change is directly related 

o fisheries. 

ummary 

his study was initially inspired by the large degree of un-
ertainty in using published size-specific catchability curves,
iven the wide variety of factors that have been shown to

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad186#supplementary-data
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nfluence these curves. By combining the theory behind size-
ased catchability with size spectrum theory, we have cre-
ted a model that reasonably describes the variation observed
n the data, and is capable of estimating both size spectra
nd catchability curves from a single survey. The parame-
er estimation does not depend on specialized study designs,
uch as pairing catch data with acoustic data, nor does it
equire multiple years of size data, which, e.g. may be used
o implement virtual population analysis. This model there-
ore represents an adaptive framework that can be applied
o any observed distribution of sizes for a given species from
rawl data, assuming sufficient sample sizes, thereby removing
he assumptions that the catchabilities in a given study will
e comparable to previously published studies. Furthermore,
his analysis allows for the estimation of catchability param-
ters for species where more extensive studies have not been
onducted. 
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