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Abstract

Background: The existing evidence suggests that pre-existing diabetes may modify the

association between heat and hospitalizations for acute myocardial infarction (AMI).

Methods: This study included patients who were hospitalized for AMI from 1 January

2005 to 31 December 2013 in Brisbane, Australia, and also included those who died

within 2 months after discharge. A time-stratified case-crossover design with conditional

logistic regression was used to quantify the associations of heat and cold with hospital-

izations and post-discharge deaths due to AMI in patients with and without pre-existing

diabetes. Stratified analyses were conducted to explore whether age, sex and suburb-

level green space and suburb-level socio-economic status modified the temperature–

AMI relationship. Heat and cold were defined as the temperature above/below which the

odds of hospitalizations/deaths due to AMI started to increase significantly.

Results: There were 14 991 hospitalizations for AMI and 1811 died from AMI within 2

months after discharge during the study period. Significant association between heat

and hospitalizations for AMI was observed only in those with pre-existing diabetes (odds

ratio: 1.19, 95% confidence interval: 1.00–1.41) [heat (26.3�C) vs minimum morbidity tem-

perature (22.2�C)]. Cold was associated with increased odds of hospitalizations for AMI in
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both diabetes and non-diabetes groups. Significant association between cold and post-

discharge deaths from AMI was observed in both diabetes and non-diabetes groups.

Conclusions: Individuals with diabetes are more susceptible to hospitalizations due to

AMI caused by heat and cold.

Key words: Heat, cold, diabetes, acute myocardial infarction

Introduction

Diabetes is one of the leading causes of both years of life

lost and years lived with disability (YLDs) globally and it

resulted in 1.37 [95% uncertainty interval (UI): 1.34–1.40]

million deaths in 2017.1,2 From 2007 to 2017, the number

of YLDs for diabetes increased by 30.1% globally and dia-

betes became increasingly prevalent in both developed and

developing regions, particularly in low-income countries.3

Apart from the widely recognized lifestyle-related risk fac-

tors (e.g. obesity), the association between environmental

risk factors (e.g. heat and cold) and diabetes has been in-

creasingly reported.4,5 Our prior work has observed that

heatwaves increased the risks of hospitalizations and post-

discharge deaths due to diabetes in Brisbane, Australia.6

Exposures to heat and cold are not just associated with

hospitalizations for diabetes, but also linked to the compli-

cations of diabetes [e.g. stroke7 and acute myocardial in-

farction (AMI)].8 AMI is one of the most common

complications of diabetes as well as one of the leading

causes of death among diabetics.9,10 Lam et al. have found

that in Hong Kong, China, the association between heat

and hospitalizations for AMI only existed in those patients

with pre-existing diabetes,11 indicating that diabetes may

play a role in the association between heat and AMI.

However, so far, no studies have explored whether pre-

existing diabetes plays a role in the association between

heat and AMI in other regions.

Although heat and cold pose a threat to all individuals,

existing evidence has suggested that people with good

socio-economic status (e.g. high income)12 and individuals

living in suburbs with abundant green space13 tend to adapt

to heat well, motivating us to explore whether individual- or

suburb-level characteristics modified the temperature–AMI

association. In addition, prior studies quantifying the associ-

ations of heat and cold with AMI tended to use province- or

city-wide temperature data to represent the exposure of all

participants in one province/city,14,15 which might cause po-

tential exposure-measurement bias as the metropolitan area

of a city is generally warmer than its surrounding areas.16,17

This exposure-measurement bias could have been largely re-

duced if suburb-level temperature data were used.

To date, no studies have examined the associations of

heat and cold with hospitalizations and post-discharge

deaths due to AMI. Our study used suburb-level tempera-

ture data to assess the associations of heat and cold with

hospitalizations and post-discharge deaths due to AMI

among those with pre-existing diabetes (hereafter called

the diabetes group) and those without pre-existing diabetes

(hereafter called the non-diabetes group), and to further

examine whether age, sex, suburb-level vegetation cover-

age and suburb-level socio-economic status modified the

temperature–AMI association in both the diabetes and the

non-diabetes groups in Brisbane, Australia.

Methods

Data collection

Our study included individuals who were admitted to the

five biggest hospitals in Brisbane from 1 January 2005 to

Key Messages

• Significant association between heat and hospitalizations for acute myocardial infarction (AMI) was only observed in

individuals with pre-existing diabetes.

• In both diabetes and non-diabetes groups, the magnitude of the association between cold and hospitalizations for

AMI increased with decreasing levels of economic resources at the suburb level.

• A significant relationship between cold and post-discharge deaths from AMI was observed in both diabetes and non-

diabetes groups.
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31 December 2013. More information about the study has

been provided elsewhere.6 The detailed information col-

lected on participants included a reference number, age,

sex, primary diagnosis and other diagnoses at each admis-

sion recorded as ICD-code 10 (International Classification

of Diseases, 10th revision) and the postcode of each

patient’s residential suburb. Participants were considered

to have pre-existing diabetes if diabetes was recorded as a

diagnosis at prior hospitalizations. Those individuals who

died within 2 months after they were discharged were in-

cluded in this cohort. We collected information obtained

from Registrar General Death Database on mortality

within 2 months of discharge.

Data on the suburb-level normalized difference vegeta-

tion index (NDVI) covering the study period were obtained

from the Australian Bureau of Meteorology. Data on a

commonly used indicator of suburb-level socio-economic

status, the Socio-economic Indexes for Areas (SEIFA),

were collected from the Australian Bureau of Statistics.

SEIFA has four different sub-indexes and this study used

three sub-indexes, namely the Index of Relative Socio-

economic Advantage and Disadvantage (indicator of the

suburb-level socio-economic advantage level), the Index of

Economic Resources (indicator of the level of economic

resources at the suburb level) and the Index of Education

and Occupation (indicator of suburb-level education and

the occupation level). Daily raster data on maximum and

minimum temperatures for every postcode of Brisbane

from 1 January 2005 to 28 February 2014 were sourced

from the website of the Australian Bureau of Meteorology

online archive (http://www.bom.gov.au/jsp/awap/temp/ar

chive.jsp?colour¼colour&map¼maxave&year¼2004&

month¼3&period¼daily&area¼nat). The daily mean tem-

perature in each postcode was calculated by averaging the

daily maximum temperature and daily minimum tempera-

ture,18 and was used in this study as the temperature indi-

cator. We selected the mean temperature in the data

analysis as our prior work suggested that the mean temper-

ature seemed to be an optimal temperature indicator in

assessing health impacts of temperature in Brisbane.18,19

Daily data on relative humidity that were originally col-

lected from two monitoring stations (Brisbane station and

Brisbane Aero station) were provided by the Australian

Bureau of Meteorology. Daily data on nitrogen dioxide

(NO2) (mg/m3) and particulate matter �10mg/m3 (PM10)

that were originally collected from two monitoring stations

(Brisbane Central Business District station and Brisbane

Rocklea station) were obtained from the Queensland

Department of Environment and Heritage Protection. As

influenza may also be a potential confounder, we also col-

lected daily data on influenza counts covering the study pe-

riod from Queensland Health.

Data analysis

A time-stratified case-crossover design with conditional logis-

tic regression was used to quantify the associations of heat

and cold with hospitalizations and post-discharge deaths due

to AMI in the diabetes group and the non-diabetes group.20

For each AMI patient, the exposure on the day of the AMI

was compared with exposures on the same day of other

weeks in the same month. AMI cases from all postcodes were

included in the same data and each stratum was coded con-

tinuously.21 There were no duplicates in strata between postc-

odes. A natural cubic spline with three degrees of freedom

(dfs) for temperature was used to capture the possible non-

linear relationship between temperature and AMI. The tem-

perature corresponding to the minimum odds of hospitaliza-

tions for AMI [also called the minimum morbidity

temperature (MMT)] was used as the reference temperature

to calculate the associations of heat and cold with hospitaliza-

tions for AMI. The MMT for the entire study area was calcu-

lated according to the methods described in prior literature.22

We identified the temperature above/below which the odds of

hospitalizations/deaths due to AMI started to increase signifi-

cantly23 and used these temperature values to define heat and

cold. The moving average temperature of 1–21 days was used

to assess the possible lag effect in the initial data mining.22

The proper lag period for assessing the health impacts of heat

and cold may vary across different disease types24 and hence

we checked the lag plots and chose the moving average of 0–

1 days’ temperature as the lag period for heat and the moving

average of 0–10 days’ temperature as the lag period for cold.

Relative humidity, PM10, NO2 and influenza were adjusted

in the model as potential confounders. The 1st and 3rd quar-

tiles of SEIFA domains and NDVI were used to convert these

variables into categorical variables and the case-crossover

analysis was conducted in each category of SEIFA and NDVI.

The 1st, 2nd and 3rd quartiles of SEIFA domains and NDVI

are reported as ‘low’, ‘middle’ and ‘high’ levels, respectively,

in the ‘Results’ section. Statistical testing of the difference in

estimates between subgroups (e.g. age, sex, NDVI and

SEIFA) was conducted to understand whether the difference

was statistically significant.25

To make sure that the results were robust to the lag pe-

riod used, we performed sensitivity analyses by changing

the lag period for the association between cold and hospi-

talizations for AMI from 8 to 14 days. All data analyses

were conducted in R package (version 3.5.3) using ‘dlnm’,

‘dplyr’, ‘tsModel’ and ‘survival’ packages.

Results

The descriptive statistics of hospitalizations and post-

discharge deaths due to AMI in the diabetes group and the
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non-diabetes group are shown in Table 1. During 1

January 2005 to 31 December 2013 in Brisbane, there

were 14 991 hospitalizations for AMI and 1811 died

within 2 months after discharge. In the patients who were

hospitalized for AMI, the proportion having pre-existing

diabetes was higher in individuals aged �65 years than in

those aged <65 years. Conversely, among deaths from

AMI, the proportion having diabetes was higher in individ-

uals aged <65 years than in those aged �65 years. In both

hospitalizations and post-discharge deaths due to AMI, the

proportion having pre-existing diabetes was higher in those

with a low socio-economic level than in the other two

groups (i.e. the middle- and high-level groups). Among the

deaths from AMI, males had a higher proportion of pre-

existing diabetes than females. The descriptive statistics of

the mean temperature and relative humidity are presented

in Supplementary Table S1 (available as Supplementary

data at IJE online).

Figure 1 illustrates the exposure–response relationship be-

tween ambient temperature and hospitalizations for AMI, re-

vealing that a significant relationship between heat and

hospitalizations for AMI was only observed in the diabetes

group. Figure 2 presents the exposure–response relationship

between ambient temperature and post-discharge deaths

from AMI in the diabetes group and the non-diabetes group.

Table 2 shows the relationship between heat and hospi-

talizations for AMI in the diabetes group stratified by age,

sex, NDVI and SEIFA, suggesting that females, elderly peo-

ple and those who lived in suburbs with a low socio-eco-

nomic level or low economic-resources level appeared to

have higher odds of heat-related AMI hospitalizations, al-

though the differences were not statistically significant.

The association between cold and hospitalizations for AMI

in the diabetes group and the non-diabetes group is presented

in Table 3. The range from the MMT to the temperature

value below which the odds of AMI hospitalizations started

to increase significantly in the diabetes group (15.3�C to

24.8�C) was narrower than for the non-diabetes group

(13.8�C to 28.3�C). Interestingly, in both the diabetes and

non-diabetes groups, the magnitude of the association be-

tween cold and hospitalizations for AMI increased with the

decrease in the level of economic resources at the suburb level.

As Figure 2 suggests that the odds of post-discharge

deaths from AMI decreased with the increase of ambient

temperature, we present only the association between cold

and post-discharge deaths from AMI here. Table 4 shows

the association between cold and post-discharge deaths

from AMI in the diabetes group and the non-diabetes

group, suggesting that the odds of post-discharge deaths in

the diabetes group started to increase significantly as soon

as the temperature started to drop from the minimum mor-

tality temperature (from 28.2�C to 28.1�C).

The sensitivity analysis results are presented in

Supplementary Figures S1 and S2 (available as

Table 1 Descriptive statistics of hospitalizations and post-discharge deaths due to acute myocardial infarction in Brisbane from

2005 to 2013

Hospitalizations (%) Post-discharge deaths (%)

Diabetes Non-diabetes P-value Diabetes Non-diabetes P-value

Sex Male 2013 (61.9) 7463 (63.6) 0.080 236 (54.6) 646 (46.8) 0.005

Female 1239 (38.1) 4276 (36.4) 196 (45.4) 733 (53.2)

Age <65 1079 (33.2) 4808 (41.0) <0.001 49 (11.3) 92 (6.7) 0.002

�65 2173 (66.8) 6931 (59.0) 383 (88.7) 1287 (93.3)

NDVI Low 404 (12.9) 1608 (14.3) 0.023 61 (14.7) 212 (16.4) 0.302

Middle 2149 (68.8) 7459 (66.2) 266 (64.1) 850 (65.6)

High 571 (18.3) 2200 (19.5) 88 (21.2) 233 (18.0)

Suburb socio-economic

advantage levela
Low 1157 (37.0) 3527 (31.3) <0.001 146 (35.2) 367 (28.3) 0.022

Middle 1649 (52.8) 6116 (54.2) 216 (52.0) 723 (55.8)

High 318 (10.2) 1643 (14.6) 53 (12.8) 205 (15.8)

Suburb economic

resourcesb

Low 770 (24.6) 2225 (19.7) <0.001 106 (25.5) 259 (20.0) 0.034

Middle 2070 (66.3) 7729 (68.5) 270 (65.1) 881 (68.0)

High 284 (9.1) 1332 (11.8) 39 (9.4) 155 (12.0)

Suburb education and

occupationc

Low 1100 (35.2) 3185 (28.2) <0.001 127 (30.6) 297 (22.9) 0.005

Middle 1627 (52.1) 6220 (55.1) 221 (53.3) 739 (57.1)

High 397 (12.7) 1881 (16.7) 67 (16.1) 259 (20.0)

aIndex of Relative Socio-economic Advantage and Disadvantage.
bIndex of Economic Resources.
cIndex of Education and Occupation.
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Supplementary data at IJE online), suggesting that the

main results were robust to the lag period used.

Discussion

Our study has yielded several intriguing findings. First, the sig-

nificant association between heat and hospitalizations for

AMI was observed only in the diabetes group. The association

between heat and hospitalizations did not attenuate when sub-

urb green space increased from the low level to the middle

level. Second, during cold days, in the diabetes group, the

range from the MMT to the temperature value below which

the odds of AMI hospitalizations started to increase signifi-

cantly was narrower than that in the non-diabetes group.

Third, the magnitude of the association between cold and hos-

pitalizations for AMI appeared to increase with the decrease

in the level of economic resources at the suburb level.

Although the exact biological mechanisms underlying

the association between heat and AMI remain to be ex-

plored, it has been documented that exposure to heat may

affect surface blood circulation and lead to sweating,

thereby increasing cardiac strain, blood viscosity, platelet

and read cell counts and plasma cholesterol.26,27 These bi-

ological changes contribute to the occurrence of AMI. Our

finding that the significant association between heat and

hospitalizations for AMI occurred in the diabetes group is

consistent with a previous Hong Kong study.11 Diabetics

have reduced endothelial function, which can impair ther-

moregulation and impact hemostasis, and consequently in-

crease cardiac stress and the risk of myocardial

infarction.28 It has been reported that individuals with type

2 diabetes have impairments in heart-rate variability,

which may also be associated with their higher risk of

myocardial infarction during hot days.29–31 Brisbane and

Hong Kong both have a subtropical climate (although they

are located in different hemispheres) and the similar find-

ing in these two cities calls for future studies exploring

whether individuals with diabetes are more susceptible to

heat-related hospitalizations for AMI in cities with other

climates. If this finding was confirmed in future studies, it

would likely suggest that diabetes may play a role in the re-

lationship between heat and AMI.

Figure 1 The association between ambient mean temperature and hospitalizations for acute myocardial infarction (AMI) in patients with or without

pre-existing diabetes. The numbers in parentheses are the numbers of lag days (0–1: moving average of 0–1 days’ mean temperature; 0–10: moving

average of 0–10 days’ mean temperature)
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Our study suggests that during cold days, in the diabetes

group, the range from the MMT to the temperature value

below which the odds of AMI hospitalizations started to

increase significantly was narrower than that in the non-

diabetes group. It has been documented that AMI events

can be triggered by the direct and indirect effects of cold

exposure.32 The direct effect of cold exposure involves an

increase in heart rate and blood pressure, diuresis and

blood viscosity but a decrease in plasma volume and hae-

moconcentration.32–34 The indirect effect of cold exposure

may arise from the exacerbation of pre-existing pulmonary

conditions.32 People with type 2 diabetes are less able to

prevent decreases in core temperature associated with cold

exposure and this may amplify the adverse effect of cold

exposure on AMI in this group.29 Hence, diabetics and

their caregivers need to take pre-emptive action before the

cold season arrives.

The elderly are generally more vulnerable to the health

impacts of heat and cold than are young people.35,36

However, in prior studies assessing whether the associa-

tions of heat and cold with AMI differed across different

age groups, results have been inconsistent.15,37,38 In our

study, we observed that in both the diabetes and non-

diabetes groups, the associations of heat and cold with hos-

pitalizations due to AMI in the patients aged �65 years

appeared to be stronger than in those aged <65 years (al-

though the differences were not statistically significant), in-

dicating that elderly people need extra protection on hot or

cold days. In Australia, the health impact of heat on the el-

derly results in substantial economic loss,39 calling for

proper adaptation strategies to be developed.

In a prior study, we did not find any modification effect

of urban green space on the effects of heatwaves on hospi-

talizations or post-discharge deaths due to diabetes,6 but

we previously noticed that people living in suburbs with

high-level green space were less vulnerable to the effect of

heatwaves on Alzheimer’s disease compared with those liv-

ing in suburbs with low-level green space.13 In the current

study, we found that the lowest association between heat

and hospitalizations for AMI was seen in suburbs with

high-level green space (Table 2), suggesting that green

space may protect people from heat-related AMI.

However, we did not observe higher odds of having heat-

related hospitalizations for AMI in low-level green space

Figure 2 The association between ambient mean temperature and post-discharge deaths from acute myocardial infarction (AMI) in individuals with

or without pre-existing diabetes. The numbers in parentheses are the numbers of lag days (0–1: moving average of 0–1 days’ mean temperature; 0–

10: moving average of 0–10 days’ mean temperature)
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than in middle-level green space. The findings from the

current study and our prior studies imply that the modifi-

cation effect of urban green space on the health impacts of

heat may vary across different diseases.

In the present study, we also found that the association

between cold and hospitalizations due to AMI appeared to

be stronger in people living in suburbs with low-level eco-

nomic resources. Given the fact that the highest prevalence

of diabetes in Australia was generally in the lowest socio-

economic groups,40 adaptation strategies targeting those

lowest socio-economic groups (particularly those with dia-

betes) may ease the burden of AMI attributable to extreme

temperatures. Although ozone and traffic noise were not

analysed in this study, it can be expected that air pollution

and traffic noise may interact with heat and cold,41–44 and

hence diabetics living in suburbs with higher levels of air

Table 2 The relationship between heat (26.3�C vs 22.2�C) and hospitalizations for acute myocardial infarction in patients with

pre-existing diabetes stratified by age, sex and suburb characteristics

Individual and suburb characteristics Heat (26.3�C vs 22.2�C)

Odds ratio (OR) 95% confidence interval P-value

Total 1.19 1.00–1.41

Sex Males 1.08 0.87–1.35 0.17

Females 1.38 1.05–1.81 Reference

Age <65 1.11 0.83–1.49 0.52

�65 1.25 1.01–1.54 Reference

Suburb NDVI Low 1.16 0.71–1.90 0.33

Middle 1.25 1.02–1.54 0.09

High 0.84 0.55–1.27 Reference

Suburb socio-economic

advantage level

Low 1.33 0.74–2.40 0.62

Middle 1.14 0.89–1.46 0.96

High 1.13 0.86–1.47 Reference

Suburb economic resources Low 1.18 0.85–1.65 0.86

Middle 1.15 0.93–1.43 0.91

High 1.11 0.61–2.02 Reference

Suburb education and

occupation

Low 1.10 0.83–1.47 0.93

Middle 1.24 0.97–1.58 0.62

High 1.07 0.63–1.82 Reference

Table 3 The relationship between cold and hospitalizations for acute myocardial infarction in patients with or without pre-exist-

ing diabetes stratified by age, sex and suburb characteristics

Individual and suburb characteristics Diabetes (15.3�C vs 24.8�C) Non-diabetes (13.8�C vs 28.3�C)

Odds ratio (OR) 95% confi-

dence interval

P-value Odds ratio (OR) 95% confi-

dence interval

P-value

Total 1.51 1.01–2.27 1.40 1.00–1.95

Sex Males 1.24 0.91–1.68 0.44 1.09 0.63–1.89 0.27

Females 1.62 0.88–2.95 Reference 1.61 1.06–2.45 Reference

Age <65 1.17 0.56–2.44 0.44 1.30 0.77–2.19 0.72

�65 1.66 1.02–2.71 Reference 1.47 0.95–2.28 Reference

Suburb socio-economic advantage

level

Low 2.06 1.02–4.13 0.14 1.58 0.99–2.52 0.37

Middle 1.57 0.89–2.79 0.25 1.42 0.58–3.47 0.66

High 0.70 0.20–2.44 Reference 1.12 0.62–2.03 Reference

Suburb economic resources Low 5.17 2.14–12.50 0.02 1.66 1.09–2.52 0.11

Middle 1.18 0.71–1.96 0.56 1.33 0.50–3.51 0.45

High 0.77 0.20–2.95 Reference 0.83 0.40–1.73 Reference

Suburb education and occupation Low 1.59 0.77–3.26 0.68 0.67 0.36–1.25 0.60

Middle 1.41 0.79–2.50 0.53 2.45 1.53–3.91 0.03

High 2.11 0.68–6.56 Reference 0.88 0.39–2.00 Reference
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pollution and traffic noise may be at greater risk of

temperature-related AMI.

This study has several strengths. First, to the best of our

knowledge, this is one of the few efforts so far assessing

the association between temperature and hospitalizations

for AMI in individuals with and without diabetes.45

Second, the use of the suburb-level temperature data

allowed us to minimize possible exposure-measurement

bias. Finally, the higher vulnerability to heat-related hospi-

talizations for AMI among diabetics that we observed may

assist in understanding the mechanisms behind the associa-

tion between heat and AMI.

Several limitations of this study should also be acknowl-

edged. First, due to ethical issues, we were unable to access

data on the residential addresses of the participants and

thus were unable to collect data on individual temperature

exposure. Second, as this was a study conducted in a sub-

tropical city, caution should be exercised in generalizing

our findings to cities with other climates (e.g. temperate

climate). Third, as the suburb-level mean-temperature data

were not available, we were only able to calculate the

mean temperature by averaging the maximum temperature

and the minimum temperature in this study, although our

prior work suggested that the mean temperature calculated

in this way seemed appropriate in assessing the health

effects of extreme heat in Brisbane.18 Fourth, due to the

primary design of this cohort study, only those deaths oc-

curring within 2 months after hospital discharge were in-

cluded as data on deaths within a longer period after

discharge were unavailable. Fifth, only a limited number of

confounders (e.g. relative humidity, PM10, NO2 and influ-

enza) were included in the model. Other factors associated

with AMI (e.g. traffic noise) were not controlled for in the

analyses,46 although heat and cold have been increasingly

reported to be associated with increased risk of myocardial

infarction in many regions of the world with distinct traffic

backgrounds.8 Future studies examining the roles of other

environmental hazards (particularly traffic noise) in the

associations of heat and cold with AMI are warranted.

Specifically, accurate methods to estimate spatiotemporal

changes in traffic noise should be pre-investigated, as noise

itself is highly varied due to locations (e.g. near major

road, hillside) and time (e.g. daytime, midnight). Thus, us-

ing a simple measurement of traffic noise (e.g. city-wide

daily count) could only introduce bias but not increase the

accuracy of the case-crossover design. Sixth, the NDVI

data used in this study were available only at the monthly

level, which might not be adequate to capture the within-

month changes in NDVI and this may have prevented us

from detecting the modification effect of green space over

smaller time periods in this case-crossover study. Seventh,

ozone is one of the gaseous air pollutants associated with

AMI,47 but we were unable to control for ozone in the re-

gression analyses of heat and cold due to data unavailabil-

ity. Eighth, we calculated the MMT for the entire study

area rather than for each suburb because of the limited

number of AMI cases/deaths in many suburbs, although

we believed that the city-level MMT would be enough for

developing adaptation strategies to prevent heat- or cold-

related AMI. Ninth, we noticed that the number of post-

discharge deaths from AMI in some subgroups (e.g. indi-

viduals living in the suburbs with high-level economic

resources) was small, possibly restricting us from ade-

quately detecting statistically significant results in these

subgroups. However, one of the reasons that statistically

significant results were not found in some subgroups was

because we did not use extremely high or low percentiles

(e.g. 99th and 1st) to define heat and cold. Because of the

small sample size in some subgroups and the heat and cold

definitions that we used, the wide confidence intervals of

the effect estimates in subgroups overlapped with each

other, possibly hindering us from detecting differences in

heat/cold vulnerability across different subgroups. Tenth,

the present study relied on a hospital diagnosis of diabetes

and hence may not be immune to potential bias due to the

under-diagnosis of diabetes.48

Table 4 The relationship between cold and deaths from acute myocardial infarction in patients with or without pre-existing dia-

betes stratified by age and sex

Individual characteristics Diabetes (28.1�C vs 28.2�C) Non-diabetes (18.0�C vs 28.2�C)

Odds ratio (OR) 95% confi-

dence interval

P-value Odds ratio (OR) 95% confi-

dence interval

P-value

Total 1.02 1.00–1.03 2.36 1.01–5.55

Sex Males 1.03 1.01–1.05 0.17 5.74 1.56–21.10 0.07

Females 1.01 0.99–1.03 Reference 1.15 0.36–3.62 Reference

Age <65 1.01 0.98–1.04 0.56 2.16 0.89–5.20 0.60

�65 1.02 1.00–1.03 Reference 3.05 0.89–6.08 Reference
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In conclusion, our study provides evidence that individ-

uals with diabetes are more susceptible to hospitalizations

due to AMI caused by heat and cold. Cold exposure is as-

sociated with increased odds of hospitalizations and post-

discharge deaths of AMI patients. Diabetics, particularly

those living in suburbs with low-level economic resources,

may need extra protection to save them from cold-related

AMI hospitalizations and deaths.
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