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Background To evaluate gene–disease associations, genetic epidemiologists collect information

on the disease risk in subjects with different genotypes (for a bi-allelic

polymorphism: gg, Gg, GG). Meta-analyses of such studies usually reduce the

problem to a single comparison, either by performing two separate pairwise

comparisons or by assuming a specific underlying genetic model (recessive, co-

dominant, dominant). A biological justification for the choice of the genetic model

is seldom available.

Methods We present a genetic model-free approach, which does not assume that the

underlying genetic model is known in advance but still makes use of the

information available on all genotypes. The approach uses ORGG, the odds ratio

between the homozygous genotypes, to capture the magnitude of the genetic

effect, and l, the heterozygote log odds ratio as a proportion of the homozygote log

odds ratio, to capture the genetic mode of inheritance. The analysis assumes that

the same unknown genetic model, i.e. the same l, applies in all studies, and this is

investigated graphically. The approach is illustrated using five examples of

published meta-analyses.

Results Analyses based on specific genetic models can produce misleading estimates of the

odds ratios when an inappropriate model is assumed. The genetic model-free

approach gives appropriately wider confidence intervals than genetic model-based

analyses because it allows for uncertainty about the genetic model. In terms of

assessment ofmodel fit, it performs at least aswell as a bivariate pairwise analysis in

our examples.

Conclusions The genetic model-free approach offers a unified approach that efficiently

estimates the genetic effect and the underlying genetic model. A bivariate pairwise

analysis should be used if the assumption of a common genetic model across

studies is in doubt.

Keywords Meta-analysis, population genetics, polymorphism, genetic models, association

studies

Population-based genetic epidemiology, which evaluates the risk

of a disease associated with a specific genetic polymorphism,

often seeks to identify relatively small effects against a noisy

background of biological and social complexity. Because of this,

most genetic association studies tend to be statistically under-

powered.
1,2

While the need for large-scale population-based

association studies has recently been recognized,
3,4

data from

such studies will not be available in the near future. In the

meantime, evidence synthesis from multiple small studies has

the potential to play an important role in advancing biomedical

knowledge by increasing the statistical power.
5
However, the

appropriate use of meta-analysis within genetic epidemiology

has been researched less than might be anticipated, and the

general methodological quality of published meta-analyses of

genetic association studies is poor.
6

A recent review by Attia et al.
6
showed how meta-analyses of

genetic association studies often fail to address general

meta-analytical concerns and ignore important issues specific
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to gene–disease associations. General concerns include the lack

of explicit reporting of inclusion and exclusion criteria, a failure

to explore possible sources of heterogeneity, and the absence of

an investigation of publication bias. An important aspect of the

inclusion criteria for a meta-analysis is outcome definition, since

differences in the way outcome is defined and measured may

well explain heterogeneity of study results.
3,7

Another import-

ant source of heterogeneity is diversity in the populations

studied, in particular ethnic diversity.
3
Publication bias arises

because studies showing either statistically significant results or

large effect sizes are often more likely to be published than

negative studies,
8,9

and thus the result of a meta-analysis based

on published studies may be positively biased. Publication bias is

particularly important in genetic epidemiology because it is

possible to study many polymorphisms on the same subjects and

then to select those that are submitted for publication.
3,10–13

Although simple graphical methods such as funnel plots can be

used to detect publication bias,
8,9

in the review by Attia et al.
6

only 20% of the meta-analyses (7 out of 37) addressed this issue.

Methodological issues that are specific to genetic epidemiology

include the checking of Hardy–Weinberg equilibrium and the

choice of a genetic model.
6,7

In the meta-analysis of genetic

association studies there are always at least three possible

genotypes to compare. This contrasts with the two treatment

groups characteristic of most biomedical meta-analyses. In

practice, the number of possible comparisons between genotypes

is often reduced by assuming a specific genetic model, such as

dominant or recessive, but the conclusions might be sensitive to

this assumption.
6

In the simplest case of a polymorphism with two alleles (G and

g), one of which is thought to be associated with a disease (G),

association studies will usually collect information on the

numbers of diseased and disease-free subjects with each of the

three genotypes (gg, Gg, and GG). To date almost all meta-

analyses of genetic association studies have reduced the three

groups to two by (i) ignoring the heterozygotes and comparing

gg with GG, (ii) performing separate pairwise comparisons,

(iii) assuming a recessive model to justify combining the gg and

Gg genotypes and comparing gg 1 Gg with GG, (iv) assuming a

dominant model and comparing gg with Gg 1 GG, and

(v) assuming a per-allele effect that places Gg mid-way between

gg and GG, also called the co-dominant model. When unsure

about the genetic model, some investigators fit multiple models

and/or perform pairwise comparisons. However, adjustment

for multiple testing is seldom made, and the pairwise estimates

of the odds ratio of GG vs gg (subsequently referred to as ORGG)

and the odds ratio of Gg vs gg (subsequently referred to as ORGg)

are usually obtained by carrying out two separate meta-analyses,

thus ignoring the correlation between the two odds ratios

induced by the common baseline group.

The review by Attia et al.
6
showed that 24 of 37 meta-analyses

based their analysis on the assumption of an underlying genetic

model, with half of these testingmultiplemodes of inheritance or

multiple pairwise comparisons. A biological justification for the

choice of the genetic model was provided in only eight meta-

analyses. In nine of the meta-analyses the genetic effect was

tested by comparing the allele frequency in cases and controls.

All of the methods of analysis in common use, with the

exception of the pairwise comparisons, make the implicit

assumptions that a particular genetic model applies in all studies,

and, more importantly, that the model is known in advance; for

instance, the gene might be assumed to be recessive in all

populations. Here we suggest a genetic model-free approach to

the meta-analysis of genetic association studies that also assumes

a common genetic model across studies but which does not

specify the mode of inheritance in advance. The underlying

genetic model is instead estimated from the data. Although no

specific genetic model is assumed, the analyses are, of course, still

based on an assumed statistical model. The model is based on a

simple reparameterization and uses the odds ratio between the

homozygous genotypes (ORGG) to captures the magnitude of the

genetic effect, and l, the ratio of log ORGg and log ORGG, to

capture the genetic mode of inheritance. l is assumed to be

common across studies, but if this assumption is in doubt then

pairwise comparisons obtained using bivariate random-effect

meta-analysis methods, which take into account the correlation

between ORGG and ORGg, should be used.
14,15

We describe

graphical and statistical ways of investigating whether the

assumption of a common l is reasonable.

Allowing l to take any value (unbounded analysis), is

equivalent to allowing the possibility of heterosis, i.e. the risk

of the Gg group can be higher or lower than either of the

homozygous groups. Although rare, heterosis has been

described.
16,17

If this possibility can be excluded on biological

grounds then it is better to constrain l between 0 and 1 (bounded

analysis); this restricts the mode of effect to the spectrum

between dominant, through co-dominant, to recessive.

Methods

Genetic model-free approach: a common but

unrestricted genetic model

Consider the meta-analysis of a bi-allelic polymorphism, in

which G is the risk allele, and a dichotomous disease outcome is

ascertained for each genotype. We define two parameters: the

odds ratio between the twohomozygous genotypes, ORGG; and l,

the ratio of log ORGg and log ORGG. The value of l is not

restricted, but values equal to 0, 0.5, and 1 correspond to the

recessive, co-dominant, and dominant genetic model, respect-

ively, and values .1 or ,0 would suggest positive or negative

heterosis.

Log ORGG could be modelled as a fixed-effect or as a random

effect that allows for heterogeneity across studies.
8

In the

analyses presented, the log ORGG has beenmodelled as a random

effect except in those situations where the heterogeneity of log

ORGG was very close to 0. l is modelled as a fixed-effect, that is,

the genetic model is assumed to be the same in all studies. It is

usually not possible to model both log ORGG and l as random

effects because, without extra information, it is very difficult to

disentangle the heterogeneity of l from that of log ORGG.

The two log odds ratios from each study are modelled as being

bivariate normally distributed. The within study variances and

covariances are obtained from the reports of the individual

studies and are treated as known. Any heterogeneity is assumed

to be normally distributed. Full details of the model are reported

in the Appendix. In the examples presented the parameters

were estimated by maximum likelihood using the ml command

in Stata.
18

Interval estimates can be obtained either from

the approximate standard errors obtained as part of the
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maximization, or from the appropriate profile likelihood. The

profile likelihoods were used for the bounded analysis and were

obtained by considering selected values of one of the parameters

and maximizing the likelihood over the others. The correspond-

ing intervals are the range of estimates that had a profile

likelihood within 1:92 ¼ 1=2 x2
1 95%ð Þ

� �
of the maximum. In the

bounded analysis l was restricted to the range 0–1, that is

heterosis was excluded. To obtain intervals under these

conditions the maximization required for the profile likelihoods

was performed over the restricted range. Values of Akaike’s

Information Criterion (AIC) are reported for model compar-

ison,
19

with the best models showing the smallest AIC.

Prior to model fitting, it may be useful to plot, for each study,

the log ORGg vs log ORGG, as shown in Figure 1, in which the

slope of the association between logORGg and log ORGG

represents l. Such a plot may help check the consistency of l

(a) (b)

Dominant

–2

–1

0

1

2

lo
g
O
R
_
G
g

–2

–1

0

1

2

–2 –1 0 1 2

logOR_GG

Dominant

Recessive

Co-dominant

–0.5

0

0.5

1

lo
gO

R
_G

g
lo

gO
R

_G
g

0.5 0.6 0.7 0.8 0.9 1

logOR_GG

(c) (d)
Dominant

Recessive

Co-dominant

–0.5

0

0.5

1

1.5

lo
gO

R
_G

g

–0.5 0 0.5 1 1.5

logOR_GG

Dominant

Recessive

Co-
dom

inan
t

–2 –1 0 1 2

logOR_GG

(e)

Dominant

Recessive

Co-dominant

–2

–1

0

1

2

lo
gO

R
_G

g

–2 –1 0 1 2

logOR_GG

Co-dominant

Recessive

Figure 1 Plot of the log ORGg against the log ORGG for: (a) ACE gene and diabetic nephropathy, (b) KIR6.2 gene and Type II diabetes,

(c) AGT gene and essential hypertension, (d) MTHFR gene and coronary heart disease, and (e) PON1 Q192R polymorphism and myocardial

infarction. The solid line represents the slope l estimated by the genetic model-free approach; the three dotted lines correspond to the dominant,

co-dominant, and recessive genetic models, respectively
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across studies and identify outlying studies. Study-specific

estimates of l and bootstrapped 95% confidence intervals

(CIs), as shown in Figure 2, help assess whether the variation in l

across studies might be explained by sampling error. Figure 2 is

based on 1000 bootstrap samples from each study. If the genetic

model does not seem to be consistent across studies then it may

be better to perform joint pairwise comparisons using a general

bivariate meta-analysis model,
14

which does not assume that l is

common but still takes into account the correlation between

ORGG and ORGg. Details of this model are also given in the

Appendix.

Examples

The genetic model-free approach is illustrated using five

published examples of the meta-analysis of genetic association

studies. For each meta-analysis, the number of studies included,

frequency of the risk allele, methods used by their authors, and

main reported results, are given in Table 1.

ACE gene and diabetic nephropathy

This meta-analysis was carried out to evaluate the controversial

association of the I/D polymorphism of the ACE gene with
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Figure 2 Plot of the study-specific estimates of l (with 95% CI) for: (a) ACE gene and diabetic nephropathy, (b) KIR6.2 gene and Type II

diabetes, (c) AGT gene and essential hypertension, (d)MTHFR gene and coronary heart disease, and (e) PON1 Q192R polymorphism and myocardial

infarction. To better investigate the region in the middle, where the two lines correspond to the recessive and dominant models, the

95% CIs have been truncated at 65
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diabetic microangiopathy (nephropathy and retinopathy).
20

Here we consider only the meta-analysis assessing the effect

on nephropathy. A dominant model was assumed and 21 studies

were pooled to give an odds ratio of 1.32 (95%CI 1.15–1.51). The

average allele frequency for the genetic variant was 0.46.

KIR6.2 gene and Type II diabetes

The K1 inwardly rectifier (KIR) channel is a protein that plays a

major role in glucose-stimulated insulin secretion. Its encoding

gene, KIR6.2, has been suggested as a candidate for inherited

defects in Type II diabetes. This meta-analysis was carried out

assuming dominant, recessive, and co-dominant models with P-

values corrected for multiple testing.
21

The result of the meta-

analysis, based on four studies, was a significant association

between KIR6.2 and Type II diabetes. The average frequency for

the risk allele was 0.34.

AGT gene and essential hypertension

The genetic variant Thr235 of the angiotensinogen (AGT) gene

has been found to be associated with hypertension in some

linkage and association studies. This meta-analysis of seven

Japanese case–control studies reported an odds ratio for the

Thr235 allele of 1.22 (95% CI 1.05–1.42), with an average allele

frequency of 0.75.
22

MTHFR gene and coronary heart disease

The 677C!T is a polymorphism of theMethyleneTetraHydroFolate

Reductase (MTHFR) gene involved in folate metabolism, which

causes elevated homocysteine levels and has been associated

with an increased risk of coronary heart disease. This meta-

analysis of 49 studies reported an odds ratio of 1.21 (95% CI

1.06–1.39) for the TT vs CC comparison,
23

in close agreement

with another meta-analysis published around the same time.
24

The average frequency for the T allele was 0.32.

PON1 Q192R polymorphism and myocardial

infarction

PON1 is one of the genes encoding for paraoxonase, a serum

enzyme that has been implicated in the prevention of

atherogenesis and coronary heart disease through its association

with high-density-lipoprotein particles. This recent meta-

analysis of 19 studies investigated the effect of the Q192R

polymorphism in the PON1 gene on the risk of myocardial

infarction.
25

The reported per-allele relative risk was 1.08 (95%

CI 1.02–1.14), and the average allele frequency was 0.33.

Results

Figure 1 shows, for each meta-analysis, a plot of log ORGg against

logORGG.Allmeta-analyses showvariation in the genetic effect as

represented by the two log odds ratios. Thismight be explained by

a number of factors, including sampling error, differences in the

studymethods and differences in the true genetic risk across study

populations. In the absence of heterogeneity in the genetic model

and sampling error, all studies would be expected to lie along a

straight line with slope l. The solid line in Figure 1 represents the

slope, l, estimated by the genetic model-free approach, while the

three dotted lines corresponding to the dominant, co-dominant,

and recessive genetic models are plotted for comparison. The

figure allows visual identification of any outliers or influential

studies. Figure 2 plots the study-specific estimates of l and their

95% bootstrap CIs, and is used to investigate whether any

departures from linearity in Figure 1 are consistent with sampling

error. Within individual studies l is often poorly estimated, but

there is little indication in any of the meta-analyses that the

genetic models are not common across studies.

Table 2 summarizes the results for the differentmeta-analytical

methods in commonuse; namely, separate pairwise comparisons,

where log ORGg is pooled independently of log ORGG, and

methods based on assumed genetic models. In these analyses the

log ORGG has been modelled as a random effect except in two

cases,marked inTable2,where theheterogeneityof logORGGwas

very close to zero. The result for the ACE example when

assuming a dominant model (Table 2) differs from the published

result, which also assumed a dominant model (Table 1), because

the main result in the original paper was based on a fixed-effect

meta-analysis rather than our random effect meta-analysis.
8
The

choice of the genetic model in model-based methods can have a

marked impact on the estimates of ORGG and ORGg. For instance,

in the KIR6.2 example, the estimates of ORGG vary between 1.38

(95% CI 1.04–1.82) and 1.94 (95% CI 1.30–2.90). Separate

pairwise comparisons give a consistent estimate of ORGG of 2.21,

but with an unnecessarily wide CI (95% CI 1.43–3.40) because

they do not incorporate any of the information on ORGg when

estimatingORGG. Values of theAIC can beused to identify genetic

models that are not consistent with the data. For instance, in the

ACE example the possibility of a recessive model can be

eliminated.

Table 3 presents the results of the geneticmodel-free approach,

with l unbounded and bounded between 0 and 1, and of the

joint pairwise comparisons. The pooled estimates of l obtained

from the geneticmodel-free approach tend not to be very precise,

Table 1 Five published meta-analyses used for illustration, with methods and results reported in the original articles

Number

of studies

Risk allele

frequency

Reported analysis

Author, year Association evaluated Method Results

Fujisawa, 1998
20

ACE gene and diabetic nephropathy 21 0.46 Assumed dominant genetic model 1.32 (1.15–1.51)

Hani, 1998
21

KIR6.2 gene and Type II diabetes 4 0.34 Only P-value, under dominant and

recessive genetic models

Dominant: P , 0.05

Recessive: P , 0.01

Kato, 1999
22

AGT gene and essential hypertension 7 0.75 Allele frequencies cases vs controls 1.22 (1.05–1.42)

Wald, 2002
23

MTHFR gene and coronary

heart disease

49 0.32 Heterozygotes ignored, pairwise

comparison for ORGG

1.21 (1.06–1.39)

Wheeler, 2004
25

PON1 Q192R polymorphism and

myocardial infarction

19 0.33 Per-allele relative risk 1.12 (1.15–1.51)
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Table 2 Results of currently used meta-analytical methods for the five meta-analyses

Meta-analysis Method ORGG (95% CI) ORGg (95% CI) Implicit l AIC

ACE gene and diabetic nephropathy Separate pairwise comparisons 1.44 (1.07–1.93) 1.23 (0.94–1.60) – 94.4

Recessive model 1.16 (1.01–1.32) – 0 89.8

Co-dominant model 1.42 (1.09–1.87) 1.19 (1.04–1.37) 0.5 76.2

Dominant model 1.29 (1.00–1.66) – 1 68.2

KIR6.2 gene and Type II diabetes
a

Separate pairwise comparisons 2.21 (1.43–3.40) 1.22 (0.91–1.64) – 8.4

Recessive model 1.93 (1.29–2.88) – 0 8.0

Co-dominant model 1.94 (1.30–2.90) 1.39 (1.14–1.70) 0.5 7.9

Dominant model 1.38 (1.04–1.82) – 1 13.3

AGT gene and essential hypertension Separate pairwise comparisons 1.58 (1.06–2.35) 1.16 (0.77–1.76) – 26.0

Recessive model 1.64 (1.17–2.29) – 0 20.7

Co-dominant model 2.15 (1.26–3.65) 1.47 (1.12–1.91) 0.5 24.2

Dominant model 1.41 (0.95–2.09) – 1 40.6

MTHFR gene and coronary heart disease Separate pairwise comparisons 1.19 (1.04–1.36) 1.05 (0.99–1.12) – 88.6

Recessive model 1.16 (1.02–1.31) – 0 76.2

Co-dominant model 1.18 (1.05–1.32) 1.08 (1.02–1.15) 0.5 75.8

Dominant model 1.08 (1.01–1.16) – 1 88.3

PON1 Q192R polymorphism and

myocardial infarction
a

Separate pairwise comparisons 1.16 (1.02–1.32) 1.08 (1.00–1.17) – 22.4

Recessive model 1.13 (1.00–1.27) – 0 20.0

Co-dominant model 1.17 (1.05–1.31) 1.08 (1.03–1.14) 0.5 15.8

Dominant model 1.10 (1.02–1.18) – 1 17.4

a
Fixed-effect model.

Table 3 Results of the proposed genetic model-free approach, for both unbounded and bounded l, and the joint pairwise comparisons obtained

using bivariate meta-analysis

Meta-analysis Method ORGG (95% CI) ORGg (95% CI) l (95% CI) AIC

ACE gene and diabetic nephropathy Genetic model-free approach

Unbounded l 1.30 (0.98–1.72) 1.29 (1.01–1.66) 0.98 (0.61–1.34) 70.2

Bounded l 1.30 (1.00–1.77) 1.29 (1.00–1.69) 0.98 (0.61–1.00) 70.2

Joint pairwise comparisons 1.39 (1.07–1.81) 1.23 (0.96–1.58) – 71.4

KIR6.2 gene and Type II diabetes
a

Genetic model-free approach

Unbounded l 2.14 (1.39–3.29) 1.21 (0.90–1.63) 0.25 (�0.11 to 0.61) 8.4

Bounded l 2.14 (1.43–3.29) 1.21 (1.08–1.63) 0.25 (0.00–0.69) 8.4

Joint pairwise comparisons 2.14 (1.39–3.29) 1.21 (0.90–1.63) – 8.4

AGT gene and essential hypertension Genetic model-free approach

Unbounded l 1.64 (0.99–2.72) 1.00 (0.66–1.53) 0.01 (�0.83 to 0.85) 22.7

Bounded l 1.64 (1.15–3.05) 1.00 (1.00–1.62) 0.01 (0.00–0.52) 22.7

Joint pairwise comparisons 1.86 (1.14–3.05) 1.16 (0.77–1.76) – 24.2

MTHFR gene and coronary heart disease Genetic model-free approach

Unbounded l 1.20 (1.05–1.37) 1.05 (0.99–1.11) 0.26 (0.04–0.47) 73.6

Bounded l 1.20 (1.05–1.38) 1.05 (1.01–1.12) 0.26 (0.04–0.49) 73.6

Joint pairwise comparisons 1.20 (1.05–1.37) 1.06 (0.99–1.13) – 75.3

PON1 Q192R polymorphism and

myocardial infarction
a

Genetic model-free approach

Unbounded l 1.17 (1.04–1.33) 1.08 (1.00–1.17) 0.53 (�0.03 to 1.13) 17.8

Bounded l 1.17 (1.04–1.33) 1.08 (1.01–1.17) 0.53 (0.09–1.00) 17.8

Joint pairwise comparisons 1.17 (1.04–1.33) 1.08 (1.00–1.17) – 17.8

a
Fixed-effect model.
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but like the AIC, they can usually rule out some of the commonly

assumed genetic models. For example, the KIR6.2 gene and the

ACE gene examples rule out the dominant and recessive models,

respectively, while the MTHFR gene example suggests that l is

different from any of the values corresponding to the standard

genetic models. In the example of the ACE gene, the estimate of l

is very close to 1, that is, close to dominant. Compared with an

assumed dominant model, the model-free approach gives very

similar estimates of ORGG, but the CI is wider reflecting

uncertainty about the true mode of inheritance.

In all of the examples, the AIC shows that the genetic model-

free approach fits at least as well as the joint pairwise

comparisons. Since the two approaches only differ for the

assumption of common l, these findings support those in

Figure 2, and suggest that there is no evidence against the

assumption of common l in any of the five examples.

Under a fixed-effect assumption there is no between-study

heterogeneity and so the model-free approach is exactly

equivalent to the joint pairwise comparison as both models

adjust for within-study correlation. For a random-effects model

they give different answers because the model-free approach

implies a structured covariance pattern as well as assuming a

common mode of inheritance (see Appendix). The bounded

analysis, in which l must lie between 0 and 1, did not alter the

point estimates of any of the parameters in our examples,

because the maximum likelihood estimates of l were all within

the required range. The intervals for l in the bounded analysis

are truncated at 0 and 1 and are based on profile likelihoods

rather than approximate standard errors, which accounts for

some small differences from the unbounded analysis. The

bounded analysis can have an effect on the interval estimates.

For instance, in the AGT example, where the fitted model is very

close to recessive, the restriction on l implies that ORGg cannot

fall,1.00 as this would either require a negative l or a protective

effect of the GG genotype; the bound rules out the former and the

data contradict the latter.

The AGT example appears to be close to recessive, l5 0.01, but

with the largest study pointing to a co-dominant effect, as shown

in Figure 2c. If the constancy of l is doubted then joint pairwise

comparisons could be used; such an analysis does not down

weight theORGG andORGg estimates from the largest study to the

same extent and so produces larger pooled estimates. The AIC

prefers the genetic model-free approach because it requires three

parameters instead of four.

Discussion

When synthesizing the evidence on the association between a

genetic polymorphism and a disease the main issue is the size of

any association, but an important additional question is themode

of action of the gene. In practice, the estimate of the size of the

association is influenced by our assumptions about theunderlying

genetic model. A review of the literature on meta-analysis of

genetic association studies reveals how currently used approaches

fail to address this issue.
6
Investigators often base their meta-

analyses on the assumption of a specific genetic model and ignore

their uncertainty about themode of inheritance. Moreover, since

it may be that no a priori biological evidence is available to justify

the choice, different commongeneticmodels are sometimes tested

and the different results reported. Apart from the problem of

multiple testing, this leaves the reader with a set of estimates and

significance tests to interpret, all based ondifferent assumptions. A

number of investigators compare allele frequencies between cases

and controls; however, thismethod yields a per-allele effect that is

equivalent to assuming a co-dominant model with Hardy–

Weinberg equilibrium. Additionally, the issue of whether the

genetic model is actually common across populations does not

seem to have been addressed.

The results for the five meta-analysis examples show that

adopting the wrong genetic model can lead to erroneous pooled

estimates with deceptively high precision. The only meta-

analytical approach currently in use that does not assume a

common known underlying geneticmodel is analysis by separate

pairwise comparisons, i.e. independent meta-analyses compar-

ing genotype groups two at a time. This method ignores the

correlation between the two estimated odds ratios induced by the

common baseline group and thus is inefficient, as the estimates

cannot ‘borrow strength’ from one another as they would

in a multivariate meta-analysis.
14,15

The genetic model-free

approach is likely to be particularly beneficial compared with

pairwise comparisons when either of the alleles is rare.

Moreover, separate pairwise comparisons run into the problem

of multiple testing, which becomes especially important when a

polymorphism with more than two alleles is considered.

As Table 1 illustrates, published meta-analysis of genetic

association studies have used a variety of methods for presenting

their results. The genetic model-free approach offers a single

method that could have been used in all of these examples giving

a consistent presentation and avoiding the pitfall of overly strong

assumptions about the genetic model or of inefficient estimates.

The geneticmodel-free approach provides an integratedway of

synthesizing the evidence on genetic associations, which yields

not only the magnitude of the genetic effect (OR), but also an

indication of the operating genetic model based on the available

data. The underlying genetic model is not constrained to

correspond to one of the classical modes of inheritance (recessive,

co-dominant, dominant), in recognition of the fact that the

gene’s mode of action in complex diseases might differ from that

found in Mendelian traits, where the association between

genotype and disease tend to be of a deterministic nature and,

hence, the mode of inheritance is relatively clearly apparent. For

example, a value of 0.26 for l, as in the MTHFR meta-analysis,

might be interpreted in two ways:

(i) The polymorphism is recessive in some studies and

co-dominant in others, so that the average result is between

the two.

(ii) In complex diseases, the genotype is only one ofmany factors

acting in a complex causal cascade leading to the disease.

Although, at themolecular level, the polymorphism of inter-

est might act in a clearly Mendelian manner on some inter-

mediate phenotype, that Mendelian ‘signal’ may be ‘diluted’

or ‘distorted’ when measured at the level of the final step in

the cascade. Hence, lmay be amore flexible and appropriate

way to discuss genetic models in complex disease.

In the meta-analysis of genetic association studies there are

two important types of heterogeneity that need to be addressed:

heterogeneity in the genetic effect andheterogeneity in the genetic

model. There are a number of reasons why we might see

heterogeneity in the genetic effect, including differences in study
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methods and differences in the underlying genetic risk associated

with gene–gene or gene–environment interactions. Heterogeneity

of the genetic effect might also arise if the polymorphism under

study does not act directly on the disease risk, i.e. it is not a

‘functional’or ‘causal’polymorphismbut is simplyamarker,which

tends to be inherited together with the causal polymorphism

(linkage disequilibrium). Populations may have different patterns

of linkage disequilibrium, which lead to differences in the marker

association with disease. It is important to note that causes of

heterogeneity in the genetic effect will not necessarily cause

heterogeneity in the genetic model. In fact, in order to act on the

genetic model, interactions need to influence the disease risk in

heterozygotes to a different extent to the risk in homozygotes.

The absence of heterogeneity in the genetic model is an

important assumption of the genetic model-free analysis and,

although this assumption is likely to hold in most cases, it still

needs to be assessed. For example, the effect of genotype on

allergy to pollens appears to followdifferentmodes of inheritance

for different ethnic groups and different forms of allergy.
26,27

Although these studies are based on segregation analyses, and

are relatively weak, they do raise the possibility that the mode of

action may vary from study to study, perhaps owing to complex

gene–environment interactions that have different impact on the

disease risk in heterozygotes comparedwith homozygotes for the

polymorphism. Thus, the assumption of a common genetic

model should be checked before applying the genetic model-free

approach, for instance by using the graphs presented in Figures 1

and 2. Should this assumption be in doubt, then the best

approach would be to carry out joint pairwise comparisons using

a multivariate meta-analysis, where the correlations between

the odds ratios for the different genotype groups are taken into

account. In addition to the graphical investigation, the difference

in fit, as measured by AIC, between the model with common l

and the corresponding pairwise analysis offers a guide to the

appropriateness of the assumption of a common genetic model.

In general the random-effects model-free approach is easier to fit

than the corresponding pairwise bivariate model because it

contains two fewer parameters. Only in very largemeta-analyses

will it be possible to estimate the correlation in the heterogen-

eities required for the pairwise model. So, even when the

assumptions of the model-free analysis are not met exactly,

the model-free analysis may still be the best way of summarizing

the data and obtaining CIs that are not falsely optimistic.

All of the models considered in this paper have been based on

the normal approximation to the distribution of the log odds

ratio. In examples where some of the studies have very few

subjects within one of the genotypes, as might happen with a

rarer allele, it would be better to use a multinomial likelihood. In

the case of a random-effects model this adds to the complexity

because of the need to numerically integrate over the random

effect before maximization. Within this multinomial framework

we can still use the l parameterization basic to the genetic

model-free approach and interpret the results in the same way as

with the normal approximation.

The results presented in this paper have been obtained using

maximum likelihood methods, but a Bayesian approach with

non-informative prior distributions gave very similar results to

those in Tables 2 and 3 (data not shown). The choice of a

Bayesian approach to implement the method might be

more desirable when there is external information regarding

the magnitude of the genetic effect and/or mode of inheritance,

which might come from studies not included in the meta-

analysis or from expert opinion.
28

When Markov chain Monte

Carlo methods are used, it also makes the generalization

to multinomial likelihoods with random effects more straight-

forward.
29

In conclusion, we propose a new meta-analytical method

based on a re-parameterization of the classical representation of

genetic association studies, where the new parameters are

biologically meaningful and informative. The approach makes

maximum use of the information available by quantifying the

magnitude of the genetic effect and estimating the genetic mode

of action at the same time. The genetic model is estimated on the

basis of the data rather than assumed, and this is important in all

cases where no a priori knowledge about the underlying genetic

model is available.
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KEY MESSAGESKEY MESSAGESKEY MESSAGESKEY MESSAGESKEY MESSAGESKEY MESSAGESKEY MESSAGESKEY MESSAGES

� Meta-analysis of molecular association studies is often based on the assumption of a specific genetic model

(recessive, co-dominant, or dominant).

� Biological justification for the choice of the genetic model is seldom available, and results can be misleading when

an inappropriate model is assumed.

� Specification of the genetic model is sometimes avoided by comparing genotype groups two at a time, but this is

inefficient.

� Wepropose a genetic model-free approachwhere the information available on all genotypes is used and the genetic

model is estimated rather than assumed.

� The approach assumes that all studies share the same unknown genetic model, and we suggest ways of

investigating whether this assumption might hold.
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Appendix

Bivariate meta-analysis
Consider the meta-analysis of a set of case–control association

studies of a bi-allelic polymorphism. Let z1i represent the value of

log ORGg estimated from the ith study and z2i the log ORGG.

Assuming approximate bivariate normality

z1i
z2i

� �
~N

m1i

m2i

� �
;

v1i v12i
v12i v2i

� �� �
;

where themisare the true logoddsratios for thatstudy.Thevaluesof
the variances and covariances are treated as known and can be

derived from the number of cases and controls in each genotype

in that study. Ifwe assume that the studies come fromapopulation

in which the log odds ratios are also normally distributed, then

mi1

mi2

� �
~N

m1

m2

� �
;

t1 t12
t12 t2

� �� �
;

where the t’s represent the heterogeneities between studies. The

distribution of the observed data in the meta-analysis is thus

zi1
zi2

� �
~N

m1

m2

� �
;

v1i þ t1 v12i þ t12
v12i þ t12 v2i þ t2

� �� �
:

From which a likelihood can be formed and the parameters

estimated. Unless the meta-analysis includes a large number of

studies, the covariance between the heterogeneities is difficult to

estimate, but the results for the other parameters are not very

sensitive tot12 sousinganassumedvaluewillnotbemisleading. In

our analyses we used t12 ¼ 0:9
ffiffiffiffiffiffiffiffiffi
t1t2

p
and checked the results in a

sensitivity analysis. A fixed-effects model assumes that t1 5 t2 5

t12 5 0.

Genetic model-free analysis
The genetic model-free analysis is similar to the general bivariate

meta-analysis. First we assume that

z1i
z2i

� �
~N

lm2i

m2i

� �
;

v1i v12i
v12i v2i

� �� �
;
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where the parameter, l, which describes the genetic model

is common across studies. The heterogeneity between studies

will be

lm2i

m2i

� �
~N

lm2

m2

� �
;

l2t lt
lt t

� �� �
:

The distribution of the observed data in the meta-analysis is thus

z1i
z2i

� �
~N

lm2

m2

� �
;

v1i þ l2t v12i þ lt
v12i þ lt v2i þ t

� �� �
;

and once again the likelihood can be formed and maximized to

estimate the parameters. In this model the covariance between

the heterogeneities is controlled by l and can thus be estimated.

It is advisable to inspect the profile likelihood of each parameter

as in small meta-analyses the log-likelihood can be far from

quadratic. A fixed-effects model assumes that t 5 0.

In some meta-analyses it may be appropriate to restrict l to lie

in the range (0,1), that is, to exclude heterosis. In this case, the

overall maximization and the profile likelihood maximizations

are over the restricted range.
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