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Abstract

Background and Aims: The substantial reduction in adiponectin concentration among

obese individuals seems to depend on fat distribution and is a marker of metabolic and

adipose tissue dysfunction. We aimed to: (i) address whether abdominal fat from differ-

ent compartments (visceral, deep subcutaneous abdominal and superficial subcutane-

ous abdominal) and gluteofemoral fat are independently associated with blood adipo-

nectin concentration; and (ii) investigate whether abdominal (proxied by waist

circumference) and gluteofemoral fat (proxied by hip circumference) accumulation cau-

sally determine blood adiponectin concentration.

Methods: To investigate the independent association of abdominal and gluteofemoral

fat with adiponectin concentration, we used multivariable regression and data from 30-

year-old adults from the 1982 Pelotas Birth Cohort (n¼2,743). To assess the causal role

of abdominal and gluteofemoral fat accumulation on adiponectin concentration, we used

Mendelian randomization and data from two consortia of genome-wide association

studies—the GIANT (n>210 000) and ADIPOGen consortia (n¼29 347).

Results: In the multivariable regression analysis, all abdominal fat depots were nega-

tively associated with adiponectin concentration, specially visceral abdominal fat [men:

b¼�0.24 standard unit of log adiponectin per standard unit increase in abdominal fat;

95% confidence interval (CI)¼�0.31, �0.18; P¼8*10�13; women: b¼�0.31; 95%

CI¼�0.36, �0.25; P¼ 7*10�27), whereas gluteofemoral fat was positively associated with

adiponectin concentration (men: b¼ 0.13 standard unit of log adiponectin per standard

unit increase in gluteofemoral fat; 95% CI¼0.03, 0.22; P¼0.008; women: b¼0.24; 95%

CI¼0.17, 0.31; P¼ 7*10�11). In the Mendelian randomization analysis, genetically-

predicted waist circumference was inversely related to blood adiponectin concentration

(b¼�0.27 standard unit of log adiponectin per standard unit increase in waist circumfer-

ence; 95% CI¼�0.36, -0.19; P¼ 2*10�11), whereas genetically-predicted hip
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circumference was positively associated with blood adiponectin concentration (b¼ 0.17

standard unit of log adiponectin per standard unit increase in hip circumference; 95%

CI¼0.11, 0.24; P¼1*10�7).

Conclusions: These results support the hypotheses that there is a complex interplay be-

tween body fat distribution and circulating adiponectin concentration, and that whereas

obesity-induced hypoadiponectinaemia seems to be primarily attributed to abdominal

fat accumulation, gluteofemoral fat accumulation is likely to exert a protective effect.

Key words: Adiponectin, abdominal fat, subcutaneous fat, Mendelian randomization, body fat distribution, adipos-

ity, adipokines

Introduction

Adiponectin, the most abundant product of adipocytes, cir-

culates in large amounts in the blood (3 to 30 mg/l) and is

believed to promote beneficial systemic metabolic effects by

interfering with adipogenesis, insulin sensitivity, atheroscler-

osis and inflammation, as demonstrated in animal mod-

els.1,2 Decreased adiponectin concentration is a marker of

metabolic/adipose tissue dysfunction and a potential medi-

ator of obesity-related complications.2 In humans, higher

circulating adiponectin is strongly associated with lower

risk of type 2 diabetes,3 hepatic dysfunction4 and metabolic

syndrome,5 although recent studies have cast doubt on

whether adiponectin concentration is causally related to

type 2 diabetes6 or coronary heart disease.7

Higher adiposity is paradoxically related to a decrease

in adiponectin concentration, which seems to be mainly

attributed to abdominal visceral fat.8–13 However, few pre-

vious studies have properly addressed the independent con-

tribution of specific fat depots and none has investigated

whether different fat distribution is causally related to

blood adiponectin concentration.

Mendelian randomization is a technique that uses genetic

variants associated with an exposure, aimed at avoiding po-

tential confounding and reverse causality, to detect whether

this exposure is likely to have a causal effect on the outcome

of interest, provided that the genetic variant satisfies the as-

sumptions of an instrumental variable (see details in

Supplementary Table 1, available as Supplementary data at

IJE online). Mendelian randomization has several advan-

tages over classical observational studies, as most genetic

variants tend to be uncorrelated with conventional epi-

demiological risk factors. Unlike the exposure itself, genetic

variants are fixed at conception and therefore not subject to

reverse causation, and genetic variants assessment is subject

to relatively little measurement error.14 A previous

Mendelian randomization study has indicated that high fast-

ing insulin decreases adiponectin concentration.6

We aimed to: (i) address whether abdominal fat (vis-

ceral, deep subcutaneous and superficial subcutaneous)

and gluteofemoral fat are independently associated with

blood adiponectin concentration; and (ii) investigate

whether abdominal and gluteofemoral fat causally deter-

mine blood adiponectin concentration, by using the

Mendelian randomization approach.

Methods

For the conventional association analysis, we used

individual-level data from the 1982 Pelotas Birth Cohort

(2012 follow-up, when participants were around 30 years

old, n¼ 3701 participants) to establish whether abdominal

(visceral, deep subcutaneous abdominal and superficial

subcutaneous abdominal) and gluteofemoral fat are inde-

pendently associated with blood adiponectin concentration

among young adults.15,16

For the Mendelian randomization analysis, we used sum-

mary data from two consortia including multiple studies with

Key Messages

• Circulating adiponectin is substantially reduced among obese individuals, although adiponectin is mainly produced

by mature adipocytes.

• Our findings indicate that body fat distribution seems to be a causal determinant of circulating adiponectin and that

abdominal and gluteofemoral body fat may have opposite influences regarding modulation of circulating adiponectin.

• Modulation of circulating adiponectin might be a common mediator or biomarker of the detrimental and protective

effects of abdominal and gluteofemoral body fat, respectively, in the context of metabolic diseases.
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genome-wide association scan (GWAS) data to evaluate

whether abdominal fat (proxied by waist circumference) and

gluteofemoral fat (proxied by hip circumference) are causally

related to blood adiponectin concentration: the Genetic

Investigation of ANthropometric Traits (GIANT) consortium

(n¼ 210 088 participants)17 and the ADIPOGen consortium

(n¼ 29 347 participants).18

Data sources

1982 Pelotas Birth Cohort: conventional association

analysis

Participants were from Pelotas which is a medium-sized

southern Brazilian city with nearly 330 000 inhabitants. In

1982, all maternity hospitals in the city were visited daily

and 99.2% of the births were identified. Those liveborns

whose families lived in the urban area of the city were eval-

uated and their mothers interviewed (n¼ 5914).

Participants have been followed up on several occasions

and further details of the study methodology have been

described elsewhere.15,16 In 2012, 3701 participants were

evaluated who, added to the 325 known to have died, rep-

resented a follow-up rate of 68.1%. All phases of the 1982

Pelotas Birth Cohort Study were approved by the Research

Ethics Committee of the Federal University of Pelotas,

which is affiliated with the Brazilian Federal Medical

Council. Written informed consent was obtained from all

participating subjects in the 2012 visit.

For body composition and anthropometric measures,

abdominal fat depots were measured using the ultrasound

machine Toshiba Xario (Toshiba Medical Systems Corp.,

Tokyo, Japan). Details can be found in previous publica-

tion.19 Gluteofemoral fat was assessed by dual-energy

x-ray absorptiometry (DXA) (Lunar Prodigy Advance—

GE, Germany). Details on body composition and an-

thropometric measures can be found in the Supplementary

material (available as Supplementary data at IJE online).

For blood adiponectin concentration, serum samples

were collected and stored at -70�C. Adiponectin was

assayed with the ELISA Quantikine Human Total

Adiponectin Immunoassay kit (R&D Systems, Inc.,

Minneapolis, USA) and SpectraMax 190 microplate spec-

trophotometer (Molecular Devices Corp, CA, USA). Intra-

assay coefficients of variation were estimated based on

results from 20 replicates assayed at the same time and

under the same conditions. Inter-assay coefficients of vari-

ation were estimated based on results from a control sam-

ple assayed in every batch. Intra-assay and inter-assay were

6% and 16%, respectively.

Covariates were: sex (male or female), age, African gen-

omic ancestry (%), leisure-time physical activity [inactive

(0 min/week), insufficiently active (1 to 149 min/week)

or active (� 150 min/week)], alcohol drinking (< 1 or � 1

dose/day), smoking (never, ex-smoker, 1 to 10, or � 10

cigarettes/day) and body mass index (BMI; in kg/m2).

Leisure-time physical activity practice was estimated using

the long version of the International Physical Activity

Questionnaire (IPAQ).20 Genomic ancestry was estimated

using 370 539 ancestry informative markers. Details have

been published previously21 and can be found in

Supplementary material.

GIANT and ADIPOGen GWAS consortia: Mendelian

randomization analysis

The Genetic Investigation of ANthropometric Traits

(GIANT) consortium included up to 210 088 individuals

of European ancestry from cohorts genotyped with

genome-wide single nucleotide polymorphism (SNP) arrays

(n¼ 57) or Metabochip (n¼ 44).17 Estimates of SNP-waist

circumference or SNP-hip circumference association (addi-

tive model) were adjusted for age, age2, BMI, study-

specific covariates and genomic control inflation factor (k).

Summary data for the present study were downloaded

from the GIANT consortium website [https://www.broad

institute.org/collaboration/giant/index.php/GIANT_consor

tium_data_files].

The ADIPOGen consortium included 29 347 individ-

uals of European ancestry from 16 cohort studies with

GWAS data and adiponectin measures.18 Estimates of

SNP-natural log adiponectin concentration association

(additive model) were adjusted for age, sex, BMI, principal

components of population stratification, study site (where

appropriate), family structure (one family-based study)

and genomic control inflation factor (k). Summary data for

the present study were downloaded from ADIPOGen con-

sortium website [https://www.mcgill.ca/genepi/adipogen-

consortium]. Details on population characteristics, geno-

type imputation and quality control criteria for GIANT

and ADIPOGen consortia can be found in Supplementary

Table 2 (available as Supplementary data at IJE online).

Data analysis

1982 Pelotas Birth Cohort: conventional association

analysis

Adiponectin was log-transformed prior to analyses owing

to positive skewness. Log-adiponectin and visceral, deep

and superficial subcutaneous abdominal fat thickness (cm)

and gluteofemoral fat mass (kg) were standardized for

each sex. We used unadjusted and adjusted linear regres-

sion models to estimate the association of the fat depots

with adiponectin concentration. Adjusted models were
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controlled for genomic ancestry, smoking status, alcohol in-

take, leisure-time physical activity and other fat depots. The

correlation across fat depots and BMI was estimated by

Pearson’s correlation coefficient. To explore nonlinear rela-

tions between fat depots and adiponectin concentration, we

used two-degree fractional polynomial (FP) models. FP mod-

els were fitted separately for each fat depot and for each sex,

adjusting for study covariates (eight models in total). The

best-fitting adjusted FP model was compared with the cor-

responding adjusted linear model using likelihood ratio (LR)

test. Departures from linearity were assessed by P-values

from LR testing after Bonferroni correction (Bonferroni cor-

rected P-values¼ 0.05/8¼ 0.00625). All analyses were con-

ducted separately according to sex, excluding pregnant

women (n¼ 73) and were based on complete cases (no miss-

ing information in study covariates).

Sensitivity analysis: we investigated whether observa-

tions were missing completely at random (MCAR) by test-

ing the association of our complete case analysis indicator

with all study covariates. Missing values were imputed

with multivariate imputation using chained equations

(MICE) for 20 complete datasets with 10 iterations each.

Multiple imputation was performed separately for each

sex. All study variables were included in the model for

imputing missing variables (African genomic ancestry,

leisure-time physical activity, alcohol drinking, smoking,

BMI, adiponectin concentration and fat depots). The same

unadjusted and adjusted linear regression models previ-

ously described were fitted using the imputed dataset.

Coefficients and standard errors for the variability between

imputations were combined according to Rubin’s rules. 22

GIANT and ADIPOGen GWAS consortia: Mendelian

randomization analysis

All SNPs associated with waist or hip circumference in the

GIANT consortium at GWAS threshold P-value<5*10�8

were selected, and variants in linkage disequilibrium

(R2< 0.05) were removed using 1000 Genomes reference

population and SNP Annotation and Proxy Search (SNAP)

tool.23 This resulted in 64 SNPs for waist circumference

and 83 SNPs for hip circumference. After the exclusion of

eight overlapping variants, 56 SNPs and 75 SNPs were se-

lected as instrumental variables for waist and hip circum-

ference, respectively, in the Mendelian randomization

analysis (Supplementary Tables 3 and 4, available as

Supplementary data at IJE online). We estimated that the

56 SNPs used as instruments for waist circumference ex-

plain around 1.2% of waist circumference phenotypic vari-

ance, and the 75 SNPs used as instruments for hip

circumference explain around 2.0% of hip circumference

phenotypic variance (details on proportion of phenotypic

variance explained estimation and power calculations can

be found in Supplementary methods). Data on the associ-

ation of SNPs with (i) waist or hip circumference and (ii)

blood adiponectin concentration were combined using the

inverse-variance weighted (IVW) method, described by

Burgess et al.24 Two main models were used in Mendelian

randomization analysis: (I) unadjusted model24; (II) adjusted

model, in which a multivariate IVW method was used to ad-

just the effect of waist circumference on adiponectin concen-

tration for hip circumference and vice versa25 (see

Supplementary material for details on IVW method). To

evaluate whether genetically increased adiponectin concen-

tration could influence fat distribution, we selected, as instru-

mental variables for adiponectin concentration, four SNPs

(rs6810075, rs16861209, rs17366568, rs3774261) within

ADIPOQ gene (6 25 kb) (Supplementary Table 5, available

as Supplementary data at IJE online). These SNPs have previ-

ously been selected by Dastani et al (2013)26 by linkage dis-

equilibrium (LD) pruning of 145 genome-wide significant

SNPs in the ADIPOGen consortium,27 retaining SNPs that

explained most variance in adiponectin concentration in each

LD block [LD threshold: R2< 0.05 in HapMap CEU popula-

tion (Utah residents with Northern and Western European

ancestry)]. We estimate that these four SNPs explain around

4.0% of the variance in adiponectin concentration (details

on proportion of phenotypic variance explained estimation

and power calculations can be found in Supplementary meth

ods). Mendelian randomization results for the effect of adi-

ponectin concentration on waist and hip circumference were

also estimated by the IVW method.

Sensitivity analyses: to assess the validity of causal infer-

ence from our main Mendelian randomization findings, we

conducted a series of sensitivity analyses based on two

stages.28 In stage one, we investigated the presence of het-

erogeneity and asymmetry in causal estimates from each

genetic variant using standard methods from meta-analysis

literature. Heterogeneity was assessed by visually inspect-

ing the forest plot of per SNP Wald ratio estimate and by

estimating I2 (and respective 95% CI), a measure of the

relative size of between-study variation and within-study

error, and P-value for heterogeneity for Cochran’s Q

test.29,30 Asymmetry was evaluated using funnel plot and

Egger’s test.28,31 Assuming that all valid instrumental vari-

ables identify the same causal parameter, substantial het-

erogeneity would be suggestive of pleiotropic SNPs and

asymmetry could indicate directional (unbalanced) plei-

otropy, meaning that the overall causal estimate is biased.

In stage two, we used other Mendelian randomization

estimators based on a less stringent set of assumptions than

a conventional Mendelian randomization analysis (IVW

method). Two methods were used: the penalized weighted

median estimator32 and the Mendelian randomization

(MR)-Egger method.33 The weighted median estimator
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gives consistent estimates even if up to 50% of weight in the

analysis is from invalid instrumental variables and down-

weights (penalizes) the contribution of heterogeneous vari-

ants. The MR-Egger method gives consistent estimates even

if all the genetic variants are invalid instruments, provided

that the InSIDE (Instrument Strength Independent of Direct

Effect) assumption holds, which requires that there is no

correlation between SNP-exposure association and direct ef-

fects of SNP on outcome.33 Bootstrapping was used to de-

rive corrected 95% confidence intervals for both penalized

weighted median and the MR-Egger estimates.32,33 See

Supplementary methods (available as Supplementary data at

IJE online) for a detailed description of the penalized

weighted median estimator and MR-Egger method.

Results

1982 Pelotas Birth Cohort: conventional association

analysis

Main results: participants’ characteristics are described in

Table 1; 2743 individuals (1315 males and 1428 females)

had complete information on all study variables [mean age

30�2 years; standard deviation (SD): 0�3]. Median blood

adiponectin concentration was 6237 ng/ml (interquartile

interval: 4163, 8979) in men and 10 067 ng/ml (interquar-

tile interval: 7002, 14 282) in women. The association of

adiponectin concentration and fat depots with study cova-

riates (African ancestry and lifestyle characteristics) are

displayed in Supplementary Table 6.

Subcutaneous fat depots (deep abdominal, superficial

abdominal and gluteofemoral) were moderately to highly

correlated among each other (r¼ 0.46, 0.71) and moder-

ately correlated with visceral fat (r¼ 0.30, 0.53)

(Supplementary Table 7, available as Supplementary data

at IJE online). In unadjusted linear models, all fat depots

were strongly and negatively associated with blood adipo-

nectin concentration (Figure 1). After adjusting linear

models for other fat depots and study covariates, the asso-

ciation between gluteofemoral fat and adiponectin concen-

tration became positive (men: b¼ 0.13 standard unit of log

adiponectin per standard unit increase in gluteofemoral

fat; 95% CI¼ 0.03, 0.22; P¼ 0.008; women: b¼ 0.24;

Table 1. Participants’ characteristics at 30 years of age. 1982 Pelotas Birth Cohort, 2012

Male Female Total

Ancestry & lifestyle variables, n and %

African ancestry (%)

0.00–4.59 449 34.1 472 33.1 921 33.6

4.60–10.99 430 32.7 482 33.8 912 33.2

11.00–87.91 436 33.2 474 33.2 910 33.2

Leisure-time physical activity

Inactive 440 33.5 890 62.3 1330 48.5

Insufficiently active 367 27.9 237 16.6 604 22.0

Active 508 38.6 301 21.1 809 29.5

Smoking

Never smoker 737 56.0 853 59.7 1590 58.0

Ex-smoker 232 17.6 262 18.3 494 18.0

1–9 cigarettes/day 104 7.9 127 8.9 231 8.4

� 10 cigarettes/day 242 18.4 186 13.0 428 15.6

Alcohol drinking

< 1 dose/day 481 36.6 917 64.2 1398 51.0

� 1 dose/day 834 63.4 511 35.8 1345 49.0

Anthropometry, body composition & adiponectin levels, mean and SD

Body mass index (kg/m2) 26.6 4.4 26.7 5.8 26.6 5.1

Total fat (kg) 20.6 9.9 27.9 11.4 24.4 11.3

Fat depots:

Visceral (cm) 6.8 1.9 4.9 1.6 5.8 2.0

Deep subcutaneous abdominal (cm) 1.2 0.7 1.5 0.8 1.4 0.8

Superficial subcutaneous abdominal (cm) 0.7 0.3 1.0 0.5 0.9 0.5

Gluteofemoral (kg) 3.7 1.6 5.4 1.9 4.6 2.0

Adiponectin (ng/ml)a 7208 4411 11290 6033 9333 5694

n total 1315 1428 2743

Data from the 2012 follow-up of the 1982 Pelotas Birth Cohort. SD, standard deviation.
aMedian blood adiponectin concentration was 6237 ng/ml (interquartile range: 4163, 8979) in men and 10 067 ng/ml (interquartile range: 7002, 14 282) in women.
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95% CI¼ 0.17, 0.31; P¼ 7*10�11). The association of adi-

ponectin concentration with deep subcutaneous abdominal

fat was attenuated in the adjusted models especially among

men (men: b¼�0.07 standard unit of log adiponectin per

standard unit increase in deep subcutaneous abdominal

fat; 95% CI¼�0.15, 0.01; P¼0.10; women: b¼�0.21;

95% CI¼�0.27, -0.14; P¼ 8*10�11), and remained simi-

lar for visceral (men: b¼�0.24 standard unit of log adipo-

nectin per standard unit increase in visceral fat; 95%

CI¼�0.31, -0.18; P¼ 8*10�13; women: b¼�0.31; 95%

CI¼�0.36, -0.25; P¼ 7*10�27) and superficial subcutane-

ous abdominal fat (men: b¼�0.20 standard unit of log

adiponectin per standard unit increase in superficial subcu-

taneous abdominal fat; 95% CI¼�0.28, �0.12;

p¼ 8*10�7; women: b¼�0.25; 95% CI¼�0.31, �0.19;

P¼ 6*10�16) (Figure 1). Among men, there was a mono-

tonic but nonlinear trend in the relation of adiponectin

concentration with visceral and superficial subcutaneous

abdominal fat (P-value for nonlinear trend¼0.003 and

5*10�6, respectively) and a ‘U’-shaped curve in the associ-

ation of adiponectin concentration and gluteofemoral fat

(P-value for nonlinear trend¼ 3*10�4) (Figure 2). Among

women, fat depots were associated with adiponectin in a

linear fashion, except in the case of visceral fat (P-value for

nonlinear trend¼ 0.006) (Figure 3).

Sensitivity analysis: overall, missingness was not associ-

ated with study variables in females and was associated

with BMI, visceral fat, deep and superficial subcutaneous

abdominal fat in males (Supplementary Table 8, available

as Supplementary data at IJE online). Overall, results from

complete case (Figure 1) and imputed models (Table 2)

were similar.

GIANT and ADIPOGen GWAS consortia: Mendelian

randomization analysis

We used summary data from GIANT and ADIPOGen con-

sortia to perform a two-sample Mendelian randomization

analysis aimed at investigating the causal influence of accu-

mulating abdominal (proxied by waist circumference) or

gluteofemoral (proxied by hip circumference) fat on adipo-

nectin concentration (Figure 4). In unadjusted IVW mod-

els, genetically predicted waist circumference was inversely

related to blood adiponectin concentration (b¼�0.27

standard unit of log adiponectin per standard unit increase

in waist circumference; 95% CI¼�0.36, -0.19;

P¼ 2*10�11), whereas genetically predicted hip circumfer-

ence was positively associated with blood adiponectin con-

centration (b¼ 0.17 standard unit of log adiponectin per

standard unit increase in hip circumference; 95%

CI¼ 0.11, 0.24; P¼ 1*10�7). In the adjusted IVW models,

adjusting waist circumference models for hip circumfer-

ence and vice versa produced larger effect size estimates

(waist circumference: b¼�0.45; 95% CI¼�0.53, -0.37;

P¼ 1*10�27; hip circumference: b¼ 0.42; 95% CI¼0.35,

0.48; P¼ 1*10�38) (Figure 5). We also performed a reverse

Mendelian randomization analysis to test whether geneti-

cally predicted adiponectin concentration could influence

fat distribution; our findings did not support a role of adi-

ponectin concentration in either waist (b¼�0.01 standard

unit per standard unit increase in log adiponectin; 95%

CI¼�0.03, 0.01; P¼ 0.23) or hip circumference (b¼ 0.00

standard unit per standard unit increase in log adiponectin;

95% CI¼�0.03, 0.02; P¼ 0.39).

Substantial heterogeneity was identified among

Mendelian randomization estimates from genetic variants

Visceral fat
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Figure 1. Mean difference (95% CI) in standardized log adiponectin concentration per unit increase in standardized fat depots for males (A) and

females (B). Unadjusted models estimates are represented by grey dots and adjusted models by black squares. Adjusted models included genomic

ancestry, smoking status, alcohol intake and other fat depots. SD, standard deviation. Data from the 2012 follow-up of the 1982 Pelotas Birth Cohort.
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Figure 3. Dose-response relation between fat depots and adiponectin concentration in females. (A) Visceral fat (P for nonlinear trend¼0.006);

(B) deep subcutaneous abdominal fat (P for nonlinear trend¼0.105); (C) superficial subcutaneous abdominal fat (P for nonlinear trend¼ 0.058);

(D) gluteofemoral fat (P for nonlinear trend¼ 0.037). SD, standard deviation. Data from the 2012 follow-up of the 1982 Pelotas Birth Cohort.
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Figure 2. Dose-response relation between fat depots and adiponectin concentration in males. (A) Visceral fat (P for nonlinear trend¼ 0.003); (B) deep

subcutaneous abdominal fat (P for nonlinear trend¼ 0.121); (C) superficial subcutaneous abdominal fat (P for nonlinear trend¼ 5*10�6); (D) gluteofe-
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used as instrumental variables for waist (I2¼72%; 95%

CI: 66, 77%; P-value for heterogeneity¼ 1*10�17) and hip

(I2¼ 46%; 95% CI: 37, 54%; P-value for hetero-

geneity¼ 9*10�6) circumference (Supplementary Figures 1

and 2, available as Supplementary data at IJE online).

However, there was no strong evidence of directional plei-

otropy as evidenced by the absence of substantial asymme-

try in funnel plots and by the P-value for the Egger test

(P¼ 0.45 for waist and P¼ 0.51 for hip circumference)

(Supplementary Figure 3, available as Supplementary data

at IJE online).

In the sensitivity analysis, we used other Mendelian ran-

domization methods (MR-Egger regression method and

penalized weighted median estimator) to investigate the

potential impact of invalid instruments on our Mendelian

randomization estimates using the IVW method. The

penalized weighted median estimator indicated that each

increase in standardized waist or hip circumference was

related to a variation of -0.28 (95% CI: -0.41, -0.15;

P¼ 1*10�5) and 0.08 (95% CI: 0.02, 0.17; P¼ 0.11),

respectively, in standardized log adiponectin concentration

(Figures 5 and 6). The MR-Egger method predicted that

each unit increase in standardized waist or hip circumfer-

ence was related to a variation of -0.29 (95% CI: -0.74,

0.15; P¼ 0.10) and 0.20 (95% CI: -0.10; 0.50; P¼ 0.17),

respectively, in standardized log adiponectin concentration

with no evidence of directional pleiotropy (intercept for

waist circumference¼ 0.00; 95% CI: -0.01, 0.01; P¼ 0.40;

intercept for hip circumference¼ 0.00; 95% CI: -0.01,

0.01; P¼ 0.43) (Figure 6). We also repeated the unadjusted

IVW method after removing heterogeneous genetic var-

iants (12 SNPs from the waist and 13 SNPs from the hip

circumference instrument), defined as those with Q statis-

tics for IVW estimates above 3.84, considering a chi-

square distribution with one degree of freedom, and results

were similar (waist circumference: b¼�0.21; 95% CI:

�0.30, �0.12; P¼4*10�6; hip circumference: b¼ 0.13;

95% CI: 0.06, 0.20; P¼4*10�4).

Discussion

Our findings reinforce previous evidence for a complex

interplay between body fat distribution and circulating adi-

ponectin concentration.8–13 The present results advance

previous studies by showing that body fat distribution

seems to be a causal determinant of circulating adiponectin

and that abdominal and gluteofemoral fat may have oppo-

site influences regarding modulation of circulating adipo-

nectin. In contrast, our results suggest that circulating

adiponectin concentration is unlikely to influence body fat

distribution.

Low adiponectin concentration has been previously

reported to be associated with increased abdominal vis-

ceral fat mass.8–13 We observed that abdominal fat, regard-

less of visceral or subcutaneous location, was negatively

correlated with adiponectin. In addition, findings from the

Mendelian randomization analysis are supportive of the

hypothesis that abdominal fat accumulation lowers adipo-

nectin concentration, corroborating the hypothesis that

obesity-induced hypoadiponectinaemia can be primarily

attributed to the expansion of abdominal fat mass.

Interestingly, estimates from both conventional regression

and Mendelian randomization were of similar magnitude,

despite differences in characteristics of the study popula-

tions (e.g. ancestry and age distribution) and in length of

exposure time.

We also observed that gluteofemoral fat was positively

associated with adiponectin concentration, in agreement

with previous results.12,13,34,35 This association only

became apparent in conventional regression analysis after

accounting for abdominal fat, and became stronger in

Mendelian randomization analysis after accounting for

waist circumference. Our findings that individuals geneti-

cally predisposed to gluteofemoral fat accumulation have

higher adiponectin concentration are supportive of the

increasingly acknowledged protective effect of gluteofe-

moral fat in the context of metabolic diseases. It is

hypothesized that peripheral subcutaneous compartments

act as lipid-buffering tissues, protecting several organs/tis-

sues from ectopic fat deposition, and that expansion of glu-

teofemoral fat mass could prevent the development of

metabolic dysfunction when facing energy surplus.36,37

Intrinsic functional differences are likely to explain the

opposing modulation of abdominal visceral and gluteofe-

moral fat on adiponectin concentration. Adiponectin pro-

duction by cultured adipocytes from the visceral fat

compartment (omentum) is affected by both insulin and

insulin-sensitizing drugs (e.g. rosiglitazone), whereas subcu-

taneous fat seems to be nonresponsive.9 Glucocorticoids,

prolactin and growth hormone are also known to modulate

adiponectin production,38,39 but it is not clear how specific

Figure 4. Causal diagram representing assumed causal relationships in

the Mendelian randomization analysis. The solid lines represent the

relationships being tested (i.e. effect of WC or HipC on adiponectin con-

centration using genetic instruments). WC, waist circumference; HipC,

hip circumference; SNP, single nucleotide polymorphisms.

International Journal of Epidemiology, 2017, Vol. 46, No. 6 2051

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/46/6/2044/3091204 by guest on 23 April 2024

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyx022#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyx022#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyx022#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyx022#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyx022#supplementary-data


fat compartments might respond differently to these hor-

mones. Depot-specific modulation of adiponectin concen-

tration may also be related to differences in tissue local

microenvironment, especially with reference to adipocyto-

kine secretion pattern; for example, tumour necrosis factor

(TNF)-a expression, an inhibitor of adiponectin production,

is increased in abdominal visceral fat expansion.40

Overproduction of adiponectin in animal models can

induce substantial expansion of subcutaneous fat depots,41

which is consistent with the capacity of adiponectin to

activate peroxisome proliferator activator receptor

(PPAR)-c, a key transcription factor of adipogenesis. In

humans, PPAR-y agonists, such as thiazolidinediones,

increase fat mass particularly the subcutaneous compart-

ment.42 This raises the question of whether adiponectin is

directly playing a protective role against ectopic fat deposi-

tion by promoting the expansion of gluteofemoral fat

mass. However, our findings are not supportive of the

hypothesis that genetically increased adiponectin concen-

tration influences either abdominal or gluteofemoral fat

accumulation.

This is one of the largest studies to address the inde-

pendent contribution of several fat depots to adiponecti-

naemia, using detailed data on body composition. We have

followed a rigorous analysis plan by accounting for multi-

ple important confounders, exploring nonlinear associa-

tions between exposure and outcome and conducting

multiple imputation to investigate the presence of bias

from the complete case analysis. This is also the first study

to use Mendelian randomization to assess the causal rela-

tions between body fat distribution and adiponectin con-

centration. In our Mendelian randomization analysis, we

established a systematic approach to selecting our instru-

mental variables and conducted a range of sensitivity anal-

yses to assess the robustness of our findings.

The main limitation in our Mendelian randomization

analysis is the use of multiple genetic variants as instru-

mental variables, for most of which there is no clear bio-

logical understanding on how they influence fat

distribution. Therefore, it is possible that at least some var-

iants violate the instrumental variables assumption due to

horizontal pleiotropy, which could be the case if some var-

iants affect adiponectin concentration independently of

their effect on the exposure of interest (i.e. waist or hip cir-

cumference). Although we cannot discard the possibility of

horizontal pleiotropy biasing our results, we did show that

this is unlikely since there was no evidence of directional

pleiotropy and Mendelian randomization estimates from

different methods (with different assumptions) were gener-

ally consistent with findings from the IVW method.

Another potential limitation is the adjustment of SNP-

waist or SNP-hip circumference models for BMI, a proxyT
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of whole body adiposity, which could introduce collider

bias in the Mendelian randomization analysis as illustrated

by Figure 4. However, it should be emphasized that:

(i) such bias should act in the same direction for both waist

and hip circumference and, therefore, could not explain

the opposing effects of waist and hip circumference with

regards to adiponectin concentration; and (ii) had we not

adjusted for whole body adiposity (proxied by BMI), we

would not be able to disentangle the effects of waist from

hip circumference and vice versa, as instruments for both

traits would be highly correlated to whole-body adiposity.

A third limitation in the Mendelian randomization analysis

is the use of summary data, which precluded us from inves-

tigating sex-specific and nonlinear effects.

In summary, our findings suggest that body fat distribu-

tion is a causal determinant of adiponectin concentration,

whereas adiponectin concentration does not seem to influ-

ence abdominal or gluteofemoral fat accumulation. Our

results add to the understanding of the complex metabolic

regulation by adipose tissue, and indicate that modulation

of adiponectin concentration might be a common marker

of the detrimental and protective effects of abdominal and

gluteofemoral fat, respectively, in the context of metabolic

diseases.
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Figure 5. Main (A) and sensitivity (B) Mendelian randomization analyses of the mean difference (95% CI) in standardized log adiponectin concentra-

tion per unit increase in standardized waist (grey dots) or hip circumference (black squares). Data from GIANT (n¼up to 210 088 individuals) and

ADIPOGen (n¼29 347 individuals) consortia. Adjusted IVW model: IVW method adjusted for hip circumference (in waist circumference model) or

waist circumference (in hip circumference model). Waist and hip circumference were adjusted by body mass index before analysis. IVW method,

inverse variance method; MR, Mendelian randomization.
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Supplementary Data

Supplementary data are available at IJE online.
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