Abstract

Background

Major Depressive Disorder (MDD) is a common and debilitating disorder whose molecular neurobiology remains unclear. Extracellular vesicles (EVs) are small vesicles that are released by cells and are involved in intercellular communication. They carry bioactive molecules, such as proteins, that reflect the state of their cell of origin. In this study, we sought to investigate the proteomic cargo of brain EVs from depressed individuals as compared to EVs from matched neurotypical individuals. In addition, we investigated how the EV proteomic cargo compares to the proteomic profile of bulk tissue.

Methods

Using mass spectrometry and label-free quantification (LFQ), we investigated the EV and bulk tissue protein profile from anterior cingulate cortex (ACC) samples from 86 individuals. We performed differential expression analysis to compare cases and controls, followed by in silico analysis to determine potential implicated functions of dysregulated proteins.

Results

EVs display distinct proteomic profiles compared to bulk tissue. Differential expression analysis showed that 70 proteins were differentially packaged in EVs in MDD, while there was no significant difference in protein levels between groups in bulk tissue. In silico analysis points to a strong role of these differential EV proteins in synaptic functions.

Conclusion

To our knowledge, this is the first study to profile EV proteins in depression, providing novel information to better understand the pathophysiology of MDD. This work paves the way for discovering new therapeutic targets for MDD and prompts more investigations into EVs in MDD and other psychiatric disorders.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.

Author notes

Corina Nagy and Gustavo Turecki share senior authorship

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].