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Abstract

This review focuses on how environmental factors through 
epigenetics modify disease risk and health outcomes. 
Major epigenetic events, such as histone modifi cations, 
DNA methylation, and microRNA expression, are described. 
The function of dose, duration, composition, and window 
of exposure in remodeling the individual’s epigenetic 
terrain and disease susceptibility are addressed. The ideas 
of lifelong editing of early-life epigenetic memories, 
transgenerational effects through germline transmission, 
and the po tential role of hydroxylmethylation of cytosine 
in developmental reprogramming are discussed. Finally, 
the epige netic effects of several major classes of environ-
mental factors are reviewed in the context of pathogenesis 
of disease. These include endocrine disruptors, tobacco 
smoke, polycyclic aromatic hydrocarbons, infectious patho-
gens, particulate matter, diesel exhaust particles, dust mites, 
fungi, heavy metals, and other indoor and outdoor pollut-
ants. We conclude that the summation of epigenetic modi-
fi cations induced by multiple environmental exposures, 
accumulated over time, represented as broad or narrow, 
acute or chronic, developmental or lifelong, may provide 
a more precise assessment of risk and consequences. Future 
investigations may focus on their use as readouts or bio-
markers of the totality of past exposure for the prediction 
of future disease risk and the prescription of effective 
countermeasures. 

Key Words: developmental basis of disease; environmental 
epigenetics; epigenetic memories; exposome; histone modi-
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Environmental Epigenetics and Disease 
Risk 

In this review, we have examined the current literature and 
expert opinions on environmental epigenetics, a term that is 
narrowly defi ned as how epigenetics explains the variability 

in the risk and severity of environmental disease. There is no 
good defi nition of environmental diseases; in this review, we 
have focused on those diseases that are caused by factors 
that exist in our external environment, omitting those caused 
by lifestyle factors linked to stress, abuse, addiction, alco-
holism, and metabolic changes because the scope of these 
topics is too large to be included. We strive to fi nd examples 
that illustrate the concept of a complex, multidimensional 
interaction involving genetics, epigenetics, exposures, and 
developmental stages of life at work over time and space to 
infl uence disease risk and health outcomes. 

Epigenetics—A Mechanism Underpinning 
Susceptibility to and Development of 
Environmental Disease 

Inheritable information carried in the primary sequence of DNA 
plays a major role in determining variations in the susceptibility 
and severity of disease. Genome-wide association studies have 
greatly expanded our understanding of how germline genetic 
variations infl uence disease predisposition and outcome 
(Gibson 2011; Hartman et al. 2010; Sivakumaran et al. 2011). 
In addition, somatic changes in DNA sequence drastically 
disrupt gene expression programs, leading to the genesis and 
progression of disease (Hartman et al. 2010). In recent years, 
however, research has fi rmly established that genome-wide 
association study fi ndings (common genetic variants) alone 
tend not to identify causal loci of complex diseases and predict 
individual disease risk (Gibson 2012). This opens up opportuni-
ties to assess the importance of epigenetics as a functional 
modifi er of the genome and a key determinant of disease risk 
and etiology (Feil and Fraga 2011; Petronis 2010).

During early development (e.g., embryonic and fetal), 
epigenetics serves as a key mechanism controlling cell 
and tissue differentiation by partitioning the genome into 
transcriptionally active and quiescent domains. Furthermore, 
during subsequent life stages or critical windows of dif-
ferentiation, epigenetics serves to bring about the orderly 
expression or inactivation of sets of transcribable genes that 
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ultimately defi ne the mature phenotype of a cell or tissue at 
the specifi c developmental stages (e.g., puberty, pregnancy, 
aging). Disruptions of either the sequence or composition of the 
epigenetically regulated genes that result in their aberrant 
expression are the basis of aberrant differentiation and disease 
development. Epigenetics allows a cell or tissue or an individual 
to sample and respond to environment cues and to modify how 
the genome is read (Crews et al. 2011; Feil and Fraga 2011; Ho 
2010; Zhang et al. 2011a). A great variety of external environ-
mental factors can alter epigenetic programs in multiple cells 
and tissues and thereby heighten or lessen the risk of disease 
development (Crews and Gore 2011; Feil et al. 2011; Ho 2010; 
Zhang and Ho 2011). In some cases, the impacts of an epigen-
etic disruption only surface upon a defi ned stage later in life 
(Tang et al. 2008; Tang, Morey, et al. 2012), which explains the 
Barker hypothesis of the early origin of adult disease 
(Godfrey and Barker 2001; Hales and Barker 2001).

It is worth mentioning a few unique features of epigenetic 
changes that are different from genetic changes because they 
may explain the differences between diseases that have a strong 
epigenetic infl uence and those driven primarily by genetics. 
First, epigenetic events do not involve alterations of the primary 
DNA sequence and thus, in principle, are reversible (Goldberg 
et al. 2007). Second, they are mitotically inheritable and 
therefore can be long lasting (Hitchins and Ward 2007; Rakyan 
et al. 2002), and the prospect that they can be passed on to the 
next generation is becoming increasingly well established 
(Skinner 2011). Third, epigenetic events are uniquely suscepti-
ble to being “reset” by endogenous or exogenous factors during 
critical developmental life stages and hence are also sensitive 
barometers of the environment by lifespan interaction (Tang, 
Morey, et al. 2012). These features allow epigenetics to explain 
certain phenomena related to disease variability that could not 
be fully accounted for by genetic variations and changes.

Susceptible Windows of Epigenetic 
Programming 

Sperms and eggs are highly differentiated cells. After fertiliza-
tion, epigenetic marks (DNA methylation marks) on sperm 
DNA are erased within hours; those on the egg remain intact 
and only begin to be removed during early development 
(Migicovsky and Kovalchuk 2011). Each cell type and organ 
in the body starts placing epigenetic marks as differentiation 
begins. The purpose of this process is to establish a mature 
and unique phenotype for each mammalian cell or tissue for 
optimal function. Duration of differentiation may last for 
weeks, months, and even years, depending on the cell or 
tissue type. During this period, the cell or tissue has the 
fl exibility to undergo transdifferentiation, as defi ned by 
Waddington (1957), or epige netic reprogramming, as used in 
the modern literature (Ho and Tang 2007). Because of devel-
opmental plasticity (Bateson et al. 2004), each cell or tissue, 
based on clues in early life, is able to establish an adaptive 
long-term phenotype that meets the probable demands in later 
life. Under the infl uence of morphogens, different sets of 

genes are packaged into heterochromatin or euchromatin 
(Emerson 2002), having the status of “poised” (transcribable) 
or quiescent, respectively. However, exposure to adverse envi-
ronment factors, such as xeno-chemicals, environmental pol-
lutants, specifi c drugs, or pathogens that have morphogenic 
activities, during differentiation, may lead to the aberrant 
distribution of genes between heterochromatin and euchroma-
tin. Cells or tissues with such aberrations might develop ab-
normally or not in synchrony with future needs. If early 
differentiation meets the needs of future demands, health is 
expected; if there is a high degree of mismatch, increased dis-
ease risk in later life is expected. These scenarios may explain 
the observations made by Barker and Martyn (1992), who 
reported higher prevalence of chronic diseases, such as type 2 
diabetes, stroke, hypertension, and cardiovascular disease, in 
individuals exposed to severe maternal hyponutrition. In this 
regard, the topic of development origins of later-life disease 
has been covered extensively in many reviews (Crews and 
Gore 2011; Gluckman et al. 2008; Lucas et al. 1999; Szyf 
2009, 2011; Tang and Ho 2007; Waterland and Michels 2007) 
and will only be mentioned where appropriate in this review. 

Developmental stages other than early life are also sus-
ceptible to epigenetic programming. These other periods are 
likely dependent on cell or tissue type because each has a 
unique time line of differentiation. For example, in addition 
to pre- and perinatal development, the breast is likely sus-
ceptible during peripuberty development and pregnancy, 
when drastic tissue remodeling and changes in hormonal mi-
lieu occur (De Assis and Hilakivi-Clarke 2006). Similarly, 
for the brain, the peripuberty–juvenile transition period was 
found to be equally as susceptible to environmental repro-
gramming as the pre- and perinatal periods (Crews 2010; 
Isgor et al. 2004). A reciprocal question that remains unan-
swered is whether each class of environmental factors has a 
specifi c window of opportunity to exert its epigenetic effects. 

Implications of Lifelong Editing of 
Early-Life Epigenetic Memories 

The concept of continued editing of early-life epigenetic 
markings or memories during adult life has been proposed on 
the basis of evidence from limited experimental studies (Tang 
et al. 2008; Tang, Morey, et al. 2012). Exposure of mice to 
diethylstilbestrol (DES1, a xenoestrogen) or genistein (a phy-
toestrogen) during the perinatal period induced specifi c 
epigenetic markings in their uteri. However, some of these epi-
genetic markings (hypomethylation of Nsbp1) remained “hid-
den” during prepuberty life and appeared in adulthood only in 
the exposed intact females but not in their ovariectomized 

1Abbreviations that appear ≥3x throughout this article: BPA, bisphenol A; 
CpGs, cytosine-guanine dinucleotides; DES, diethylstilbestrol; DNMT, 
DNA methyltransferases; EDC, endocrine-disrupting chemicals; HAT, 
histone acetyltransferase; HDAC, deacetylase; hmC, 5-hydroxymethyl 
cytosine; mC, 5-methyl cytosine; miRNA, microRNA; mRNA, messenger 
RNA; PAH, polycyclic aromatic hydrocarbon; PM, particulate matter; TET, 
ten-eleven translocation; TLR, Toll-like receptor.
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counterparts (Tang et al. 2008), suggesting that adult expo-
sure to ovarian steroids may cause these markings to “sur-
face.” Coincidentally, the prevalence of uterine cancer was 
higher in neonatally exposed intact mice, but not in mice 
ovariectormized before puberty.

A similar scenario was observed in promoter hypo-
methylation of Pde4d in rat prostates induced by neonatal 
exposure to estradiol-17� or bisphenol A (BPA1). This 
epigenetic mark was not apparent until the males reached 
sexual maturation (Tang, Morey, et al. 2012). In the male 
model, there were other marks (e.g., hypermethylation of 
the Hpcal1 promoter) that appeared only after neonatally 
exposed animals were given a cancer-inducing regimen of 
hormones (Tang, Morey, et al. 2012).

Collectively, these fi ndings support the hypothesis that 
early epigenetic markings are subject to incessant editing by 
life stage–specifi c experiences, which may modify disease 
susceptibility and health outcome continuously in a progressive 
but potentially interruptible manner. The concept of continuous 
editing (addition or erasure) of epigenetic marks over the life 
course is in agreement with fi ndings from monozygotic twin 
studies showing the phenotypes and epigenomes of twin pairs 
become more different over time (Bell and Spector 2011; 
Foley et al. 2009; Fraga et al. 2005). It also fi ts in well with 
many observations on the epigenetic reprogramming of the 
brain, where life-stage experiences such as childhood abuse 
can reprogram the epigenetic regulation of glucocorticoid 
receptor expression (McGowan et al. 2009) and other 
neurobehavioral disorders (Szyf and Bick 2012).

Mechanisms That Shape the Epigenome(s)

The best studied of the epigenetic events that shape the 
epigenome of a cell are DNA methylation, histone modifi ca-
tions, and the feedback and feed-forward circuitry of micro RNAs 
(miRNA1). Together, these processes affect patterns of gene 
expression and transcript stability, infl uence DNA accessi-
bility and chromatin compaction, regulate the integrity and 
function of the genome, and maintain higher-order nuclear 
organization in a manner that determines the normalcy and 
disease risk of the cell or tissue (Alabert and Groth 2012; 
Calvanese et al. 2012). 

Methylation of cytosines or the 5th base refers to the 
process of adding a methyl group to the 5′ position of the 
cytosine pyrimidine ring and primarily targets the cytosine-
guanine dinucleotides (CpGs1) (Ooi et al. 2009). Hyper-
methylation of CpG island(s) in a gene promoter is commonly 
associated with the suppression of gene expression (Dean 
et al. 2005). The methylated promoter region has diminished 
affi nity for transcription factors and increased affi nity for 
methylated DNA-binding proteins (Bogdanovic and Veenstra 
2009), histone deacetyltransferases and methyltransferases, 
and/or corepressors (Tiwari et al. 2008). The methylation 
state is actively maintained by the activities of DNA methyl-
transferases (DNMTs1), including DNMT1, which facili-
tates replication of the DNA methylation pattern between 

cell generations, and DNMT3a and DNMT3b, which medi-
ate de novo methylation (Hermann et al. 2004; Siedlecki and 
Zielenkiewicz 2006). The mechanism underlying cytosine 
demethylation remains unclear and may, in part, be a result 
of reduced binding of methylated DNA-binding proteins to 
the susceptible CpGs or CpG islands (a dense cluster of 
CpGs). It has been proposed that cytosine demethylation 
involves the association of MBD2 or MBD4 with 5-methyl 
cytosine (mC1) (Lal and Bromberg 2009; Patra and Bettuzzi 
2009). More recently, attention has turned to a family of 
enzymes known as ten-eleven translocations (TETs1), which 
may participate in the removal of methylation from cytosine 
by the process of hydroxylmethylation.

A second modifi ed cytosine base, 5-hydroxymethyl cyto-
sine (hmC1), was recently identifi ed and found to be highly 
expressed in embryonic cells, the brain, and bone marrow 
(Branco et al. 2012; Ficz et al. 2011; Ito et al. 2010; Koh et al. 
2011; Kriaucionisand Heintz 2009; Li and Liu 2011) and 
has since been referred to as the 6th base (Willer et al. 1990). 
The TETs have been identifi ed as the family of enzymes 
responsible for the conversion of mC to hmC, providing a 
potential mechanism for DNA demethylation and transcrip-
tional activation (Williams et al. 2012). The TETs are believed 
to play an essential role in embryonic stem cell maintenance 
and inner cell mass specifi cation because of their high 
expression in these cells (Ito et al. 2010). In addition, hmC 
may exert its action through interfering with the binding 
of methyl-binding proteins (e.g., DNMT1, MBD proteins) 
to DNA (Hashimoto et al. 2012; Valinluck and Sowers 
2007). The infl uence of environmental factors in the regula-
tion of hmC and TET expression is poorly understood. 
Oxidative stress caused by environmental factors has been 
proposed to regulate the degree of DNA hydroxylmethylation 
at the promoters of specifi c genes because the TETs, like many 
other chromatin-modeling enzymes, are highly sensitive to the 
intracellular redox environment (Chia et al. 2011; Willer et al. 
1990). Future studies on how environmental factors infl uence 
the distribution of hmC versus mC in gene promoters or regu-
latory elements or the localization of TETs and their activi-
ties in various cell types are clearly warranted because these 
parameters may have signifi cant effects on epigenetic 
reprogramming.

Histones are the major proteins that facilitate the assem-
bly of DNA into nucleosomes, the basic units of chromatin. 
Specifi c amino acids in the N-terminal ends of the histones 
undergo unique posttranslational modifi cations, such as 
acetylation, methylation, phosphorylation, sumoy lation, 
and ubiquitination (Cosgrove et al. 2004), by the activities of 
specifi c enzymes, including histone acetyltransferases 
(HATs1), deacetylases (HDAC), methyltransferases, and 
demethylases (Miremadi et al. 2007). These modifi cations 
determine whether the DNA wrapped around histones 
is available for transcription and how fast transcription 
occurs. In addition to regulating gene transcription, histone 
modifi cation infl uences other chromatin remodeling events 
that control replication, recombination, and higher-order 
organization of the chromosomes (Clapier and Cairns 2009). 
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At the cellular level, histone modifi cations serve to trans-
duce extracellular signals to genomic events through altera-
tions of chromatin structure (Barth and Imhof 2010; Cheung 
et al. 2000). Overall, histone modifi cation works in concert 
with DNA methylation to regulate acute and persistent 
changes in transcriptional programs through reorganization 
of the chromatin architecture (Kondo 2009). 

MicroRNAs are a class of small, noncoding RNAs 
transcribed from their cognate genes or derived from introns or 
exons of other genes (Pritchard et al. 2012; Rodriguez et 
al. 2004). Through either complete or incomplete comple-
mentarities, they bind to the 3’ end of gene transcripts and 
initiate messenger RNA (mRNA1) degradation or suppression 
of protein translation (Cannell et al. 2008). One miRNA can 
target hundreds of gene transcripts, and the transcription of a 
specifi c gene can be regulated by multiple miRNAs. These 
complex recriprocal infl uences between miRNAs and mRNAs 
establish intricate feedback and feed-forward gene regulatory 
circuitaries in a cell (Sato et al. 2011). The overall functional 
outcomes of miRNA activities are to fi ne-tune the level of tran-
scription and translation, create checks and balances within 
and across gene networks, and serve as regulatory “hubs” for 
phenotype expression (Tsang et al. 2010). In addition to 
regulating transcriptional circuitries, miRNAs have profound 
infl uences on the expression of other epigenetic regulators, 
including various DNMTs and histone-modifi cation enzymes 
(Sato et al. 2011). 

Environmental Epigenetic Changes 
Are Dependent on Dose and Duration 
of Exposures

Epigenetic changes are sensitive readouts of the effects of 
acute and chronic exposures to environmental factors. How-
ever, the responses are often nonlinear and dependent on life 
stages. An acute, low-dose exposure to an environmental 
factor, if it occurs during the susceptibility window of devel-
opment of the fetus, could have far greater effects than high-
dose exposure in the adult. For example, global DNA 
hypermethylation was observed in cord blood DNA as levels 
of polycyclic aromatic hydrocarbon (PAH1) DNA adducts 
increased in cord blood (Perera et al. 2011), indicating that 
the fetal epigenome can be altered by PAH exposure. More 
important, the estimated dose of PAH exposure to the fetus 
was at least 10 times lower than that to the mother, suggest-
ing a higher sensitivity in the fetus than in adults. At the 
same time, low-dose, chronic exposures may in some cases 
give results equivalent or even opposite that observed for 
acute high-dose exposures. Recent studies exploring the ef-
fects of cadmium (Cd) exposure on DNA methylation pat-
terns indicate that Cd induces DNA hypermethylation or 
hypomethylation depending on the duration of exposure. 
Acute low- or high-dose Cd treatment noncompetitively 
inhibits DNMT activity, resulting in a decrease in DNA 
methylation in rat liver cells. However, chronic, prolonged, 
low-dose exposure to Cd has the opposite effect, leading to 

enhanced DNMT activity, DNA hypermethylation, increased 
cell proliferation, and cellular transformation (Benbrahim-
Tallaa et al. 2007; Jiang et al. 2008; Takiguchi et al. 2003). 
Another factor to consider in the whole animal is the difference 
in sensitivity among various organs. Whereas some tissues, 
such as the rat uterus, may respond to endocrine-disrupting 
chemicals (EDCs1) in a monotonic manner and at higher dose 
(20 mg per kg of body weight) with regard to epigenetic 
changes (Varayoud et al. 2008), other tissues, such as the fetal 
prostate, have been shown to exhibit low-dose effects (Ho 
et al. 2006; Prins et al 2011; Taylor et al. 2011). In this case, 
exposure of newborn rats to 10 µg per kg body weight of BPA 
produced an internal exposure similar to levels commonly 
observed in humans and led to aberrant methylation of gene 
promoters and the evolution of prostatic preneoplastic lesions 
in adulthood (Ho et al. 2006; Tang, Morey, et al. 2012). These 
fi ndings are consistent with the widely observed phenomenon 
of low-dose effects and nonmonotonic responses of EDCs 
(Kamrin 2007; Sekizawa 2008; Vandenberg et al. 2012; vom 
Saal and Hughes 2005; Witorsch 2002). 

Epigenetic Factors Shown to Trigger 
Epigenetic Events and Affect 
Disease States

Environmental factors such as endocrine disruptors, PAHs, in-
fectious pathogens, outdoor pollutants, indoor allergens, and 
heavy metals have been shown to trigger epigenetic changes 
in an exposure- and/or a disease-related manner. These rela-
tionships are observed in many complex diseases, including 
cancer, cardiovascular disease, pulmonary diseases, asthma, 
obesity, stroke, and neurodegenerative disorders (Irigaray 
et al. 2007; Lorenzen et al. 2012; Mathers et al. 2010; Nise 
et al. 2010). In addition, there is strong evidence that the sever-
ity and course of progression of these diseases are dependent 
on early-life epigenetic reprogramming as well as additional 
epigenetic changes during adult life before or after the onset 
of the disease or disorder. In this regard, some of the epige-
netic marks may serve as biomarkers of exposure or prognos-
tic markers of disease risk and progression, whereas others 
may provide new insight into the mode of action of the envi-
ronmental factor. A better understanding of the mechanisms 
underlying these epigenetic changes may shed light on the 
etiology of environmental disease and facilitate future devel-
opment of primary or secondary disease prevention strategies. 
Below we address several major classes of environmental 
factors with epigenetic effects. Our discussions are organized 
around the diseases in relationship to the types of epigenetic 
modifi cations induced by the environmental factors.

Endocrine Disruptors 

Endocrine disruptors can be defi ned as exogenous chemicals 
that mimic the functions of the endocrine system by acting 
as agonists or antagonists of hormones and disrupting hor-
mone signaling or production (Schug et al. 2011). Endocrine 
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disruptors may have an animal, human, or plant source. 
However, the focus of this review is on xeno- or phyto-
chemicals with endocrine-disrupting functions, referred to 
as EDCs. Several recent reviews have covered EDCs and 
their actions in great details (Anway and Skinner 2008; 
Diamanti-Kandarakis et al. 2010; Vandenberg et al. 2012; 
Zhang and Ho 2011). Our emphasis is on the less-reviewed 
relationship between the epigenetic actions of EDCs and the 
risk and etiology of environmental disease.

Exposure to EDCs during early developmental periods is a 
major health concern because it can cause persistent changes 
in gene expression through epigenetic reprogramming in so-
matic cells, as well as germ-line cells, and subsequently pro-
mote transgenerational inheritance (McLachlan 2001). The 
xenoestrogen DES was widely used in cattle and other live-
stock industries and is still an EDC in many populations 
(McLachlan 2001). Early-life exposure of mice to DES 
increases risk of uterine cancer that is accompanied by 
demethylation of an estrogen-responsive gene, lactoferrin, in 
the mouse uterus (Li et al. 1997). In utero exposure of mice 
to DES triggered hypermethylation of the homeobox A10 
with attended uterine hyperplasia and neoplasia in later life 
(Bromer et al. 2010). A more recent report documented hy-
permethylation of nucleosome binding protein 1 (Nsbp1 or 
Hmgn5) as a hidden uterine epigenetic mark after neonatal 
DES exposure that only appeared upon sexual maturation of 
the exposed mice but failed to manifest if the animals were 
ovarietomized before puberty (Tang et al. 2008). Of signifi -
cant interest is the transgenerational effect of developmental 
exposure of mice to DES that promoted c-fos expression, 
hypomethylation of specifi c exon CpGs, and increased sus-
ceptibility to tumorigenesis in the F2 generation (Li et al. 2003). 
These experimental data support the hypothesis that epige-
netic reprogramming is responsible for the devastating conse-
quences observed in the offspring of women who took DES 
during pregnancy. The DES effects include female genital 
abnormalities, vaginal cancer, and male urogenital disorders 
(Ruden et al. 2005). The adverse effects may be reverberating 
in the grandchildren of these women (Newbold 2004). 

BPA is another epigenetically active xenoestrogen. In 
utero exposure of Agouti mice to BPA was found to induce 
hypomethylation in an intracisternal A particle retrotranspo-
son upstream of the Agouti gene in offspring (Anderson 
et al. 2012; Dolinoy et al. 2007). Cotreatment with a methyl 
donor of a phytoestrogen was able to reverse its epigenetic 
effects (Dolinoy et al. 2007). Moreover, neonatal exposure 
to BPA has the ability to alter patterns of DNA methylation 
of key genes (Pde4d4, Nsbp1, and Hpcal1) that produce re-
lated transcriptional changes associated with carcinogenic 
processes in the rat prostate (Ho et al. 2006; Tang, Morey, et al. 
2012). The EDC also induced persistent aberrant expres-
sion of DNMT3b and MBD2 throughout life in this model 
(Tang, Morey, et al. 2012). In addition to tumorigenesis, in utero 
exposure of mice to BPA has been found to alter gene transcrip-
tion by methylation of specifi c gene promoters in the forebrain 
and induce abnormal behavior in the offspring (Palanza et al. 
2008; Yaoi et al. 2008). These fi ndings support the hypothesis 

that exposure to EDCs affects neuroendocrine systems and 
behavior (Crews 2008; Crews et al. 2007; Gore 2008; Skinner 
et al. 2008). Last, evidence is growing in support of EDCs, 
such as BPA, p,p’-dichlorodiphenyldichloroethylene, and 
phthalates, as obesogens or developmental obesogens (Lee 
et al. 2011; Lind, Roos, et al 2012; Shankar et al. 2012; 
Tang-Péronard et al. 2011; vom Saal et al. 2012). They have 
also been shown to associate with prevalent diabetes in 
humans (James-Todd et al. 2012; Lind, Zethelius, et al. 2012) 
and metabolic disruptors in model systems (Batista et al. 
2012; Soriano et al. 2012). Future investigation is needed to 
determine whether these EDCs contribute to the epidemics 
of obesity and diabetes through epigenetic mechanisms. 

Phytoestrogens exert endocrine disruption through their 
actions as epigenome modifi ers (Siow and Mann 2010; 
Zhang and Chen 2011). Their epigenetic functions are best 
studied in endocrine-related cancers (Hardy and Tollesfsbol 
2011). Population studies have consistently demonstrated 
genistein, a major component of soy, to have protective ef-
fects against prostate cancer, with epigenetics playing a sig-
nifi cant role (Molinie and Georgel 2009). In breast cancer 
cells, both genistein and daidzein were shown to reverse 
DNA hypermethylation and restore the expression of the tu-
mor suppressors BRCA1 and BRCA2 (Bosviel et al. 2012). 
In prostate cancer cells, the two phytoestrogens exerted 
similar action on BRCA1, GSTP1, and EPHB2 promoters 
(Adjakly et al. 2011). In addition, because genistein has both 
DNMT inhibitory and histone modifi cation action, it was 
found to reactivate tumor suppressor genes such as p21WAF1/
CIP1 (Majid et al. 2008) and p16INK4a (Kikuno et al. 2008) 
and BTG3 in prostate cancer cells (Majid et al. 2010). In ani-
mal models, neonatal exposure to genistein induced un-
scheduled expression of Nsbp1 by hypomethylation of its 
promoter in the mouse uterus (Tang et al. 2008), whereas 
coumestrol and equol silenced H-ras expression by promoter 
hypermethylation in the rat pancreas (Lyn-Cook et al. 1995). 
Similarly, pre- and postnatal dietary exposure to soy phytoes-
trogens advanced sexual maturation and induced aberrant 
promoter methylation of skeletal �-actin (Acta1), estrogen 
receptor-�, and c-fos (Guerrero-Bosagna et al. 2008). 

The best-documented EDC with a transgenerational 
epigenetic effect is the fungicide vinclozolin, which has 
been shown to induce epigenetic changes that can be trans-
mitted through the sperm (Anway et al. 2005, 2008; Crews 
et al. 2007, 2012; Skinner 2011). After a one-time transient 
exposure of pregnant rats to vinclozolin, three generations 
of male offspring exhibited a broad array of disorders, in-
cluding male infertility, accelerated aging, behavioral ab-
normality, and prostate diseases, which was accompanied 
by epigenetic, trancriptomic, and genetic changes that per-
sisted through all three generations. In addition to vincozo-
lin, the model has recently been used to compare the 
transgenerational effects of different EDCs (Manikkam et 
al. 2012). Different EDCs were found to induce different 
gonadal abnormalities and unique patterns of DNA meth-
ylation changes that persist in F1 through F3 offspring in 
this model. Future investigations are needed to further unravel 
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how these epimutations are transmitted through genera-
tions, and the implication of these transgenerational epi-
genetic inheritance are only beginning to be understood 
(McCarrey 2012). 

Tobacco Smoke

Exposure to tobacco smoke can cause numerous adverse 
health effects, including various cancers, cardiovascular dis-
ease, and pulmonary disease through DNA damage, oxida-
tive stress, and infl ammatory responses (Centers for Disease 
Control and Prevention 2010). The epigenetic effects of 
tobacco smoke in these various diseases are less well known 
and have yielded inconsistent results. Epigenetic patterns 
from tobacco smoke have been associated with specifi c pat-
terns of gene hypermethylation; these have been seen in ani-
mal models of lung cancer that could serve as biomarkers for 
the disease (Mathers et al. 2010). In non-small-cell lung can-
cer, tobacco smoke caused hypermethylation of the p16 
gene promoter region that was signifi cantly associated with 
packs per year smoked and duration of smoking (Kim et al. 
2001). Similar relationships were also observed for other tu-
mor suppressor genes, including APC, RASSF1A, and 
MTHFR (Toyooka et al. 2004; Vaissiere et al. 2009). Hyper-
methylation, however, is not the only effect of tobacco 
smoke on genes. Tobacco smoke was found to cause global 
DNA hypomethylation in specifi c cancers, such as colorec-
tal adenoma and cancer (Pufulete et al. 2005). In lung cancer 
cells, cigarette smoke extract induced aberrant expression of 
the prometastatic oncogene synuclein-gamma (SNCG) 
through demethylation of a promoter CpG island and inhibi-
tion of DNMT3B expression (Liu et al. 2007). These diver-
gent responses may refl ect that epigenetic modifi cations in 
response to an environmental exposure are gene- and dis-
ease-specifi c, a postulate that needs further research for 
substantiation. 

Tobacco smoking can also interfere with histone func-
tion. In A549 and Calu-6 lung cancer, cell lines exposed 
to tobacco-smoke condensate increased tumorigenesis in 
nude mice through the repression of the Dickkopf-1 gene 
by recruitment of the polycomb repression complex 
(SIRT1, EZH2, SUZ12, and BMI-1). This occurred without 
hypermethylation within the promoter region that coin-
cided with decreased H4K16Ac and increased H3K27me3 
levels (Hussain et al. 2009). 

Cigarette smoke can also induce chronic obstructive 
pulmonary disease, which is associated with the induction 
of a proinfl ammatory state that is, in part, caused by epi-
genetic reprogramming of infl ammatory cytokines. In rat 
lungs, exposure to smoke increased phospho-acetylation 
of histone 3 and acetylation of histone 4 but decreased the 
activity of histone deacetylase 2, leading to an increase in 
the transcription of proinfl ammatory genes in the lung 
(Marwick et al. 2004). In another study, cigarette smoke 
induced the activation of I�B kinase � (IKK�) and conse-
quent phosphorylation of ser10 and H3K9 acetylation on 

IL-6 and MIP-2 gene promoters and lys310 RelA/p65 
acetylation in lungs of C57BL/6J mice (Yang et al. 2008). 

Exposure to tobacco smoke is also a major risk factor for 
the development of asthma (McLeish and Zvolensky 2010). 
Some of the epigenetic actions of tobacco smoke on asthma 
pathogenesis include chromatin remodeling and HAT and 
HDAC homeostasis in alveolar macrophages (Ito et al. 
2001), DNA hypomethylation of the MAOB gene promoter 
region in peripheral blood mononuclear cells of smokers 
compared with nonsmokers that lasts for years after the 
cessation of smoking (Launay et al. 2009), and DNA meth-
ylation patterns at specifi c gene promoters including 
p16[INK4a] (Digel and Lubbert 2005; Kim et al. 2001), 
CYP1A1 (Anttila et al. 2003), RASSF1A (Kim et al. 2003), 
and FHIT (Kim et al. 2004). However, it is unclear whether 
some of these epige netic changes are caused by cigarette 
smoking or by pathological changes associated with dis-
ease development. 

Because epigenetic mechanisms control embryonic devel-
opment, stem-cell programming, and differentiation, maternal 
exposure to tobacco smoke can have signifi cant implications 
for a developing fetus (Logrieco 1990). Prenatal exposure to 
cigarettes can lead to increased risk of asthma, pulmonary 
diseases, and cardiovascular disease later in life (Breton et al. 
2009; Pattenden et al. 2006). Prenatal exposure to tobacco 
smoke is associated with gene-specifi c differences in DNA 
methylation patterns, including demethylation of AluYb8 and 
an increase in methylation of AXL and PTPRO genes, indicat-
ing that altered DNA methylation may result in lifelong 
effects (Breton et al. 2009). More recently, maternal tobacco 
smoke was associated with modest epi genome-wide repro-
gramming of placental DNA methylation in a CpG site-specifi c 
manner with concomitant alterations in gene expression profi le 
in the fetus (Suter et al. 2011). In addition to DNA methylation, 
placental downregulation of miR-16, miR-21, and miR-146a 
has been associated with maternal cigarette smoking during 
pregnancy (Maccani et al. 2010). Alterations of these regula-
tory epigenetic mechanisms in utero can increase the risk for 
various diseases later in life, and thus their study is of high 
importance for preventing disease in future generations.

Polycyclic Aromatic Hydrocarbons

It is well known that PAHs are the most widespread organic 
pollutants found in the environment. PAHs are present in coal, 
crude oil, and tar deposits and also come from the burning of 
fossil fuels, forest fi res, and volcanic eruptions. Other sources 
of human exposure to PAHs are automobile exhaust, cigarette 
smoke, dietary fats, cooking oils (Simon et al. 2008), indus-
trial exposure at coal-tar production plants, coking plants, 
aluminum production plants, and municipal trash incinera-
tors. There is surmounting evidence that chronic exposure to 
PAHs is linked to many diseases, including cancers such as 
those of the lung and bladder (Boffetta et al. 1997; Bosetti et al. 
2007), asthma (Perera et al. 2009), obstructive lung disease 
(Burstyn et al. 2003), fatal ischemic heart disease (Burstyn et al. 
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2005), and cognitive defects and fetal growth impairment with 
in utero exposure (Choi et al. 2006; Perera et al. 2005). 

One of the most sensitive periods for PAH exposure is 
early-embryonic development. In a longitudinal cohort 
study involving 700 children, the epigenetic effects of 
transplacental exposure to traffi c-related PAHs were stud-
ied (Perera et al. 2009). Maternal airborne PAH-exposure 
resulted in hypermethylation of the acyl-CoA synthetase 
long-chain family member 3 (ACSL3) promoter (Perera 
et al. 2009), which positively correlated with prevalence 
of parent-reported asthma symptoms in children aged 
5 years. In a separate study, global DNA methylation and 
adduct formation in cord blood was analyzed and com-
pared (Wu et al. 2011). Prenatal exposure to PAHs was 
reported to be associated with global hypomethylation of 
cord blood DNA and PAH adduct accumulation. A recent 
study on the same cohort reported hypermethylation of 
the interferon-� (INF-�) promoter to be associated with 
PAH levels in cord blood of offspring of the exposed 
mother (Tang, Levine, et al. 2012). Long interspersed 
nuclear element-1 (LINE-1) is greatly regulated during 
development, as it is highly expressed in early embryo-
genesis and silenced during cellular initiation. Exposure 
of HeLa cells to benzo(a)pyrene, however, leads to pre-
mature chromatin remodeling of H3K4Me3 and H3K9Ac 
and hypomethylation of CpG islands at the LINE-1 pro-
moter due to reduced DNMT1 expression (Teneng et al. 
2011).

PAH exposure is known to induce the formation of 
PAH DNA adducts, which have a tendency to accumulate 
in specifi c cell types (Pratt et al. 2011). Only recently has 
this formation been recognized as a mechanism to trigger 
site-specifi c epigenetic modifi cation. In breast cancer 
MCF-7 cells, benzo(a)pyrene exposure caused DNA ad-
duct formation at CpG dinucleotides expressing aberrant 
methylation changes (Sadikovic et al. 2007). Further-
more, the presence of PAH DNA adducts and afl atoxin B1 
may be associated with RASSFIA hypermethylation in he-
patocellular carcinomas (Feng et al. 2011). Industrial 
coke oven workers chronically exposed to PAHs exhib-
ited increased methylation levels of Alu and LINE-1 as 
well as abnormal DNA methylation patterns at specifi c 
sequences of the p53 gene promoter that correlated with 
levels of PAH exposure (Pavanello et al. 2009). Finally, in 
fi refi ghters, whose occupation puts them at risk of routine 
exposure to incomplete combustion products including 
PAHs, had a higher level of DUSP22 promoter hypometh-
ylation in blood DNA when compared with nonfi refi ghting 
controls (Ouyang et al. 2012). Furthermore, the occupation 
exposure–related DUSP22 promoter methylation corre-
lated with the duration of service year but not with age, 
suggesting cumulative exposure could be measured by an 
epigenetic signature.

Given the widespread exposure of human populations to 
PAHs, both outdoors and indoors, inhaled, ingested, or der-
mal adsorption, and the complex composition of this class of 
compounds, future research should focus on the epigenetic 

effects of mixtures such as PAHs, which are ubiquitous in 
many environmental settings. 

Infectious Pathogens

Infl ammation and oxidative stress are integral components 
of many health conditions and disease states, including type 2 
diabetes, cardiovascular disease, cancer, neurodegenerative 
diseases, immunodefi ciency, aging, and asthma (Ho 2010; 
Hussain and Harris 2007; Scrivo et al. 2011). Chronic in-
fl ammation has been associated with DNA methylation and 
induction of specifi c miRNAs in cancer (Hussain and Harris 
2007; Schetter et al. 2010). As a common response to many 
adverse environmental exposures, infl ammation and oxida-
tive stress after exposure often act as indirect epigenetic 
modulators. Exposure to infectious pathogens, particularly 
bacterial and viral, causes infl ammation and oxidative stress 
(Minarovits 2009; Stein 2011), which could, in turn, trigger 
epigenetic events in host cells or organs. 

Bacterial infection with Helicobacter pylori is a high-
risk factor for gastric cancer and was found to be associated 
with hypermethylation of specifi c CpG islands in gastric 
mucosa, which is consistent with aberrant DNA methylation 
marks seen in gastric cancer (Maekita et al. 2006). Further-
more, H. pylori was shown to induce DNA hypermethylation 
of the E-cadherin promoter (Chan et al. 2003), which is an 
adhesion molecule involved in tumor invasion and metasta-
sis, and RUNX3 (Kitajima et al. 2008), which is a potential 
tumor suppressor gene. Viruses are known to induce various 
cancers (Fernandez and Esteller 2010), and some of their 
regulatory epigenetic mechanisms have been elucidated. The 
link between the hepatitis B virus and hepatocellular carci-
noma has been known for decades (Kew 1986; Sherman and 
Shafritz 1984) and is now believed to occur in a multistep 
manner, with the majority of the epigenetic changes occur-
ring in the earlier stages (Um et al. 2011). Many epigenetic 
alterations have been identifi ed in hepatitis B virus X protein–
induced carcinogenesis, including DNA hypermethylation 
of p16[INK4a] and subsequent transcriptional activation 
of DNMT1 in HepG2 cells through the p16(INK4a)-cyclin 
D1-cyclin–dependent kinase (CDK) 4/6-retinoblastoma protein 
(pRb)-E2F1 pathway (Jung et al. 2007), hypermethylation of 
multiple specifi c CpG islands occurring in a stepwise man-
ner (Um et al. 2011), including aberrant methylation of the 
E-cadherin, RASSFIA (Zhong et al. 2003), and GSTP1 (Zhong 
et al. 2002) promoters, histone deacetylation of E-cadherin, 
and downregulation of miRNA-373 (Arzumanyan et al. 2012). 
The human papillomavirus is linked to cervical cancers and 
head and neck, skin, and other cancers (zur Hausen 2009). It 
has been known for decades that human papillomavirus is 
associated with DNA hypermethylation, which may prove to 
be a useful biomarker for cancer (Cao et al. 2008; Fernandez 
and Esteller 2010; Wentzensen et al. 2009). In addition to 
methylation, human papillomavirus E7 has the ability to bind 
and regulate the enzymatic activity of DNMT1 (Burgers et al. 
2007) and has also been shown to perturb the chromatin 
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remodeling machinery, such as histone deacetylase activity 
(Brehm et al. 1999), histone acetylase activity (Peng et al. 
2000), and acetyltransferase domain of pCAF (Avvakumov 
et al. 2003). The Epstein-Barr virus is associated with naso-
pharyngeal carcinoma, Burkitt lymphoma, Hodgkin disease, 
and lymphoproliferative tumors (Fernandez and Esteller 2010; 
Minarovits 2009). Epigenetic modifi cations of Epstein-Barr 
virus include DNA methylation (Fernandez et al. 2009), his-
tone remodeling (Countryman et al. 2008; Fejer et al. 2008; 
Gerle et al. 2007), and the aberrant expression of distinct 
miRNAs (Cai et al. 2006). An Epstein-Barr virus–encoded 
oncoprotein, latent membrane protein 1 (LMP1), upregulates 
DNMT1, DNMT3a, and DNMT3b, resulting in a phenotype 
similar to that of H. pylori, with hypermethylation of the 
E-cadherin promoter (Tsai et al. 2002). In addition to bacteria 
and viruses, microbes such as protists, fungi, and archaea, have 
been suggested to partake in disease pathogenesis through 
epigenetic regulation (Minarovits 2009). However, little is 
known in this area of microbial epigenetics of disease. 

Upon microbial recognition, Toll-like receptors (TLRs1) in 
the host initiate an immune response that results in increased 
expression of infl ammatory genes and upregulation of many 
specifi c miRNAs, including miRNA-21, miRNA-146, and 
miRNA-155 (Quinn and O’Neill 2011). MiRNAs are impor-
tant components of both innate and adaptive immunity. INF-� 
is normally suppressed by miRNA-29 through direct targeting 
of INF-� mRNA in natural killer cells and T cells in mice, but 
upon bacterial infection with Listeria monocytogenes or 
Mycobacterium bovis bacillus Calmette-Guerin, the miRNA is 
downregulated (Ma et al. 2011). Aberrant or chronic regulation 
of specifi c miRNAs has been associated with chronic infl am-
mation, autoimmunity, and cancer (O’Connell et al. 2012; 
Quinn and O’Neill 2011). In addition to host miRNAs, many 
viruses have also been found to contain their own set of 
miRNAs, including Epstein-Barr virus and other herpes 
viruses, simian virus 40, and human adenovirus, which poten-
tially affect the human immune response by downregulating 
specifi c defense genes (Cullen 2006; Taganov et al. 2007). 

Understanding microbe-induced epigenetic modifi ca-
tions may have a therapeutic benefi t because of the reversibility 
of epigenetic processes through RNA therapy strategies and 
the possibility of preventing microbe provocation of disease 
development. 

Particulate Matter, Diesel Exhaust Particles, 
Ozone, and Other Outdoor Pollutants

Epidemiologic studies involving particulate matter (PM1) or 
other outdoor pollutants such as ozone and nitrogen dioxide 
have provided evidence for causal adverse health effects, in-
cluding asthma (London and Romieu 2009; Peden 2011), 
chronic respiratory diseases (Grigg 2009; Kelly and Fussell 
2011; Soto-Martinez and Sly 2010), cardiovascular diseases 
(Brook et al. 2010; Franchini et al. 2012; Zanobetti et al. 
2011), type 2 diabetes (Coogan et al. 2012), and diseases of 
the central nervous system, including neurodevelopmental 

disorders, stroke, Alzheimer’s disease, and Parkinson’s dis-
ease (Genc et al. 2012). 

Exposure to fi ne urban PM in mice and in mouse alveo-
lar epithelial cells increased DNMT1 transcription and meth-
ylation of the p16 promoter (Soberanes et al. 2012). Because 
p16 suppression or inactivation has been found in roughly 
50% of all cancers, this epigenetic effect potentially links 
chronic PM exposure to carcinogenesis (Li, Poi, et al. 2011). 

PM is a mixture of chemicals, but the largest contributors 
of traffi c-related PM are diesel exhaust particles. Many stud-
ies have focused on the epigenetic changes in PM or diesel 
exhaust particle exposure, including changes at repeat 
elements and specifi c gene promoter regions, which thus alter 
expression levels (Baccarelli and Bollati et al. 2009; Baccarelli 
et al. 2009; Tarantini et al. 2009). We have investigated 
exposure of diesel exhaust particles in a cohort of children 
with high risk of allergies and asthma and showed that higher 
diesel exhaust particle exposure is signifi cantly associated 
with an increase in global hypomethylation and hypermeth-
ylation of the promoter of IFN-� and FOXP3 in saliva DNA 
(Brunst et al. 2012). Intriguingly, this diesel exhaust particle–
associated global demethylation is signifi cantly intensifi ed 
by the presence of GSTP1 or GSTM1 genetic polymorphisms 
(Brunst et al., unpublished data). This fi nding is an excellent 
example of health outcomes from environmental, genetic, 
and epige netic interaction. In another study, diesel exhaust 
particles were shown to induce COX-1 expression through 
chromatin modifi cation of H4 near the COX-1 gene pro-
moter region, as well as HAT and HDAC1 regulation in the 
human bronchial epithelial cell line, BEAS-B2 (Cao et al. 
2007). In human bronchial epithelial cells, diesel exhaust 
particle exposure induced aberrant miRNA expression in 
roughly 63% of the 313 detectable miRNAs studied (Jardim 
et al. 2009). Such changes in bronchial epithelium due to 
chronic exposure, along with other changes, may potentially 
cause respiratory disease or cancer. Chronic exposure to die-
sel exhaust particles in Aspergillus fumigatus–sensitized 
mice induced hypermethylation of the IFN-� promoter and 
hypomethylation of CpG-408 in the IL-4 promoter of CD4+ 
cells along with aberrant immunoglobulin E production (Liu 
et al. 2008). Such alterations in T helper gene expression 
can potentially be damaging to tissues through chronic 
infl ammation; this knowledge can enhance our understand-
ing of asthma pathogenesis. Further, some of the epigenetic 
changes caused by diesel exhaust particles have been shown 
to carry across cell division and are potentially transgenera-
tional (Ji and Khurana Hershey 2012). There is clearly a 
need for more development and transgeneration epigenetic 
studies to elucidate this possibility as the United States 
tackles the epidemics of asthma and other allergic diseases. 

Because air pollution increases myocardial infarctions 
and cardiovascular mortality, a recent cohort study explored 
the relationship between exposure to air pollution and spe-
cifi c blood markers for immune response as well as subse-
quent DNA methylation states of specifi c gene promoters in 
elderly men (Bind et al. 2012). It found the exposure affected 
four key biomarkers of infl ammation: fi brinogen, C-reactive 
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protein, ICAM-1, and VCAM-1. Exposure to black carbon 
and nitrogen dioxide increased fi brinogen, ICAM-1, and 
VCAM-1 levels in the blood, whereas ozone exposure best 
correlated with changes in levels of C-reactive protein and 
ICAM-1. In subjects with higher Alu methylation or lower 
LINE-1, tissue factor, or TLR-2 methylation, the effects of 
air pollution were more profound, suggesting that epigenetic 
states play a crucial role in the response to air pollution. This 
further supports the hypothesis that air pollution–induced 
epigenetic events that lead to cardiovascular pathogenesis 
occur through thrombosis, systemic cytokine-mediated in-
fl ammation, and endothelial dysfunction.

Dust Mites, Pet Dander, Insects, Fungi, and 
Other Indoor Allergens

Indoor allergens such as dust mites, pet dander, insect allergens, 
and fungi have been known to induce sensitization and allergy-
related immunologic diseases such as asthma, rhinitis, and 
atopic dermatitis in susceptible individuals (Bush 2008; Platts-
Mills 2007). Some studies have provided evidence for the pre-
vention of sensitization to indoor allergens through avoidance 
strategies (Baxi and Phipantanakul 2010; Mounier et al. 1992), 
but these treatment studies have yielded inconsistent and con-
troversial results. Understanding the full mechanism of sensiti-
zation and allergic response from indoor allergens is essential 
for improvement in therapeutics and promotion of safer home 
environment. On this note, it is unfortunate that little is known 
about the epigenetic effects of indoor allergens. 

Evidence is growing, however, that the immune response 
to specifi c allergens includes multiple, highly regulated epi-
genetic modifi cations. In response to allergens, T helper (TH) 
lymphocytes are differentiated into TH2 cells, which express 
the cytokines interleukin 4, interleukin 5, and interleukin 13, 
which play a major role in the allergic response through in-
creased histone acetylation. The TH2 cells maintain their cyto-
kine memory after cell division and are responsive to the 
allergen. During differentiation, demethylation at the TH2 lo-
cus causes a change in the local chromatin conformation, al-
lowing the DNA to open and recruit transcription factors such 
as GATA3 for immediate expression of TH2 cytokines in re-
sponse to the allergen (Van Panhuys et al. 2008). In addition, 
TH2 polarization in CDT4 cells is associated with IL-4 expres-
sion and IFN-� repression, which occurs through rapid meth-
ylation of the CpG island in the -53 position by DNMT3a, 
inhibiting the transcription factor binding of ATF2/c-Jun and 
CREB (Jones and Chen 2006). In a more recent epigenome-
wide study, methylation patterns in CD19+ B lymphocytes 
were assessed in healthy and house dust mite–sensitized 
groups. Differences in DNA methylation were found globally 
and at specifi c genetic loci involved in the immune response, 
including CYP26A1 (Pascual et al. 2011). 

Additionally, miRNAs are believed to play a role in the 
regulation of both innate and adaptive immune responses 
and the pathogenesis of immunologic diseases (Pauley and 
Chen 2008). In asthma risk, HLA-G is an asthma-susceptibility 

gene that contains a single nucleotide polymorphism in 
the 3′ untranslated region that stimulates miRNA targeting 
of miR-148a, miR-148b, and miR-152 to this gene (Tan 
et al. 2007). It is not certain whether allergen-induced asthma 
or other immunologic diseases contain the same complexity 
of miRNA expression and regulation, but some studies have 
alluded to this hypothesis. House dust mite antigens activate 
TLR-4 from the innate immune response. This response is 
associated with expression of unique miRNA such as 
miR-126, which targets TH2 cell function through GATA3 
regulation (Mattes et al. 2009). With the possibility of more 
indoor allergen–induced miRNA regulation of the immune 
response, future treatment strategies could arise from miRNA-
based use of oligonucleotides in anti-infl ammatory treatments.

Heavy Metals

Metal exposures have been implicated in neurological dis-
ease (Edwards and Meyers 2008; Rooney 2011; Zawia et al. 
2009), cancers (Christensen and Marsit 2011; Edwards and 
Meyers 2008; Navarro Silvera and Rohan 2007; Zhitkovich 
2011), diabetes (Chen et al. 2009; Edwards and Meyers 
2008; Pozharny et al. 2010), and cardiovascular disease 
(Poreba et al. 2011; Zhang et al. 2009), among others. Tradi-
tionally, the effects of metals on disease development were 
thought to be mediated by DNA damage, which has been 
studied extensively and reviewed previously (Bal et al. 
2011). However, recent epidemiological and experimental 
research suggests that exposure to metals can cause drastic 
changes in the epigenome and the effects are persistent. The 
epigenetic targets of some heavy metals have recently been 
reviewed (Arita et al. 2009; Cheng et al. 2012; Fragou et al. 
2011; Martinez-Zamudio and Ha 2011). Exposure to heavy 
metals, such as cadmium, was found to induce DNA hyper-
methylation or hypomethylation, depending on the duration 
of exposure (reviewed in Cheng et al. 2012). Exposure to 
chromium, arsenic, nickel, methylmercury, lead, and organo-
tin induces changes in DNA methylation patterns, either at 
the global or the individual gene level. Moreover, exposure 
to heavy metals has also been found to result in changes in 
the histone code, affecting histone methylation, acetylation, 
ubiquitination, and phophorylation. Nickel, copper, arsenic, 
and organotin have been shown to cause global histone mod-
ifi cations. Changes in miRNA expression (Ding and Zhu 
2009; Marsit et al. 2006; Wang et al. 2012; Zhou et al. 2012) 
have been demonstrated for cadmium, arsenic, and mercury 
exposure in various plant species and/or mammalian cancer 
cells. In conclusion, heavy metals can activate or suppress 
gene expression through epigenetic modifi cations, and these 
changes can last throughout life.

Future Directions and New 
Research Opportunities

It is clear that this review is by no means exhaustive in details. 
Instead, one of its intents is to bring up untapped areas of 
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research and unique opportunities for future investigations in 
environmental epigenetics, which we believe has great poten-
tials to enhance our understanding of disease risk and health 
outcome. 

First, most environmental exposures involve mixtures. 
This is true for indoor and outdoor pollutants, PAHs, diesel 
exhaust, PM, EDCs, tobacco smoke, and smoke from incom-
plete combustion. Thus, the classical toxicology approach that 
focuses on the health effects of environmental agents, one 
compound at a time, and on the exposure period to a particular 
life stage needs to be re-evaluated. In the past, this traditional 
approach made signifi cant impacts in the fi eld. Examples are 
the progress made in understanding the health effects of lead 
exposure on children (Lanphear et al. 2005) and the causal 
relationship between diisocyanate exposure and adult occupa-
tional asthma (Bernstein et al. 2011). However, with the advent 
of mass spectrometry and other detection technologies, hun-
dreds of chemicals or metabolites can be measured simultane-
ously with high accuracy. Hence, the fi eld of exposure science 
has shifted its attention to the biological responses of mixtures. 
The paradigm-shifting concept of defi ning environmental 

exposure as an “exposome” (Wild 2005) has recently emerged. 
The term refers to the summation of all exposures an individ-
ual experiences over his or her lifetime, from conception to 
advanced age. Insults or cues from the external environment 
constantly modify the internal milieu; the combined exposure 
to both the external and internal changes defi nes the ultimate 
exposure. It was further argued that one’s internal exposome 
may provide a better estimate of the ultimate exposure, which 
may be diffi cult to measure (Rappaport and Smith 2010). It is 
important to note that the composition and temporal sequence 
of these exposures are equally important in determining their 
effects. Thus, the degree of interactions could be infi nite and 
tends to multiply over time as the individual ages. Further-
more, the nature of these interactions can be synergistic, an-
tagonistic, combinatorial, attenuating, summation, subtractive, 
opposite, and more. In the context of system biology, the bio-
logical effects of an exposome can be defi ned by its emergent 
properties (O’Connor 1994; Upinder and Iyengar 1999). In 
other words, the consequences can only be viewed in its en-
tirety and no single component of the exposome (i.e., a single 
exposure, a window of susceptibility, a dose or a route, the 

Figure 1 Every individual starts with a defi ned genetics, which may predispose an individual to certain diseases. During the life course, every 
individual is exposed to multiple divergent external environment factors (tree) and internal environment factors (lifestyle; fl ags), leading to 
different health issues. Depending on the exposures, the magnitude of the epigenomic signature within each individual will differ, leading to 
changes in the transcriptome. Although some individuals may not advance to the next life stage because of the deadly exposure (dead end), 
most of them will fi nish the life journey with differing burden of diseases, depending upon the environment–epigenome interactions that 
evolve during the life course (e.g., twins will have dissimilar exposures and disease outcomes). The “exposome” is the summation of all ex-
posures an individual experiences over his or her lifetime.
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frequency of exposure, or a target alone) can predict the 
disease or health outcome. 

With this concept in mind, genetics, epigenetics, tran-
scriptomics, proteomics, metabolomics, bioinformatics, 
demo graphic informatics, exposomics, and the entire life-
course forms a multidimensional “interactome” that integrates 
the internal and external environment to determine the health 
or disease outcomes of an individual. No solitary constituent 
of this environmental interactome has the predictive value of 
the whole. As mechanisms underpinning these interactions 
become understood, phenomena such as nonmonotonic re-
sponse, developmental origin of disease, continued editing of 
epige netic marks, windows of susceptibility, and transgenera-
tional epigenetic inheritance can be better explained. This new 
knowledge and insight will help inform the public, health-care 
professionals, and policy makers. Future research directed to-
ward understanding the emergent properties of various envi-
ronmental interactomes should have signifi cant impacts on the 
fi eld of environmental epigenetics and its implication on hu-
man health and disease variability.

Because it is still diffi cult to measure external and/or in-
ternal exposures over the lifespan, research can perhaps focus 
on epigenetic biomarkers as either causal or surrogate barom-
eters for environmental diseases. Epigenetic biomarkers that 
associate with an exposure and/or with the exposure-induced 
environmental disease will provide invaluable tools for the 
prediction of risk or for early triage of at-risk groups into sur-
veillance or intervention programs. In this regard, persistent 
epigenetic memories may serve as risk predictors for devising 
primary prevention strategies, whereas more nimble marks 
that respond in a quantitative manner to the changing environ-
ment may be useful in monitoring countermeasures. A study 
on hypermethylation of the DSUP22 promoter as a predictor 
for the duration of service in fi refi ghting (Ouyang et al. 2012) 
as well as a study on ASCL3 promoter hypermethylation as an 
indicator for PAH-induced asthma in childhood (Perera et al. 
2009) are early proof-of-principle examples. Future research 
should focus on the identifi cation of a panel of markers or 
epigenetic signatures that has high sensitivity and specifi city 
for a mixture or an entire exposome. The challenge may reside 
in devising noninvasive approaches to fi nd these signatures for 
population studies in which only surrogate tissues samples are 
available. Along the same vein, for certain tissues such as the 
brain, validation of these surrogate epigenetic markers will 
have to rely on functional imaging. Nevertheless, research in 
these directions may have huge benefi ts in meeting the needs 
of managing health and treating diseases that are affected by 
the environment. In summary, epigenetic marks that represent 
broad or narrow, long- or short-term “memories” of exposure 
may be invaluable for unraveling the consequences of combi-
nation exposures over multiple life stages. 

Conclusion

The health outcomes resulting from environmental exposure(s) 
are highly varied and remarkably complex. To advance the 

fi eld of environmental epigenetics and deepen our under-
standing of the detrimental effects of various environmen-
tal factors, we need to conduct future studies using the 
“interactome” approach. This requires consideration of 
the multidi mensional corroborations between genetics, 
epigenetics, exposomics, and demographics of the study 
subjects or the populations. Research focuses need to be 
sharpened to elucidate the unique, but still poorly under-
stood, attributes of epigenetics–environment interaction. 
These may include early-life reprogramming, windows of 
susceptibility, nonlinearity of the dose–response relation-
ship, continuous alteration of the epigenome throughout life, 
the mechanism of transgenerational transmission, and 
whether specifi city exists for the various exposure(s). The 
potential reversibility of epigenetics affords opportunities 
for primary prevention of environmentally induced disease 
either through removal of the adverse exposure(s) or imple-
mentation of countermeasures such as one-carbon metabolism-
based therapies or oligonucleotide therapies targeting miRNA 
regulatory circuitries. Because the exposome results from the 
cumulative effect of epigenetic modifi cations induced by 
multiple environmental exposures accrued over time, it is 
diffi cult to measure. Therefore, epigenetics biomarkers may 
provide better readouts of one’s past exposome to predict 
future disease risk and devise effective countermeasures.
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