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Abstract

The growing interest of modeling human diseases using ge-
netically modified (transgenic) nonhuman primates (NHPs)
is a direct result of NHPs (rhesus macaque, etc.) close rela-
tion to humans. NHPs share similar developmental paths
with humans in their anatomy, physiology, genetics, and
neural functions; and in their cognition, emotion, and social
behavior. The NHP model within biomedical research has
played an important role in the development of vaccines, as-
sisted reproductive technologies, and new therapies for
many diseases. Biomedical research has not been the prima-
ry role of NHPs. They have mainly been used for safety eval-
uation and pharmacokinetics studies, rather than determining
therapeutic efficacy. The development of the first transgenic
rhesus macaque (2001) revolutionized the role of NHP mod-
els in biomedicine. Development of the transgenic NHP
model of Huntington’s disease (2008), with distinctive clini-
cal features, further suggested the uniqueness of the model
system; and the potential role of the NHP model for human
genetic disorders. Modeling human genetic diseases using
NHPs will continue to thrive because of the latest advances
in molecular, genetic, and embryo technologies. NHPs rising
role in biomedical research, specifically pre-clinical studies,
is foreseeable. The path toward the development of transgen-
ic NHPs and the prospect of transgenic NHPs in their new
role in future biomedicine needs to be reviewed. This article
will focus on the advancement of transgenic NHPs in the
past decade, including transgenic technologies and disease
modeling. It will outline new technologies that may have sig-
nificant impact in future NHP modeling and will conclude
with a discussion of the future prospects of the transgenic
NHP model.
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Introduction

T he search for a better animal model to capture human
physiological and disease conditions has been the goal
of biomedical research for decades. This is the key to

achieving medical advancement that ultimately benefits
patients. Although model systems such as drosophila,
C. elegans and zebrafish have played important roles in bio-
medicine, such as the discovery of the regulatory role of non-
coding RNA in healthy and disease conditions (Ambros,
2003; Ambros, 2008), this review will focus on the mamma-
lian model systems, specifically nonhuman primates
(NHPs). While there are numerous model systems available
for researchers, mammalian models (rodents, etc.) remain in
the mainstream and are currently the most favored species to
advance our knowledge in basic biology, physiology, human
diseases, and the development of novel therapeutics
(Ambros 2003; Gilley et al. 2011; Golding et al. 2006;
Grossniklaus et al. 2010; Hauschild et al. 2011; Hitz et al.
2009; Marsh et al. 2003; Stieger et al. 2009; Tessanne et al.
2012; Tyska et al 2000; von Horsten et al. 2003; Yang et al.
2008a; Zeiss 2010; Zschemisch et al. 2012). The develop-
ment of genetic and molecular techniques such as pronuclear
microinjection (Hogan 1994), embryonic stem cell (Evans
1996; Evans 2008; Nichols et al. 1990; Thomson et al.
1998; Thomson and Marshall 1998), and gene targeting
(Joyner et al. 1989; Koller and Smithies 1989; Zijlstra et al.
1989) in the 1980s revolutionized the platform for conduct-
ing biomedical research. This led to a new era in animal
modeling, specifically in rodents, that allowed the dissection
of genetic components, gene functions, and regulatory net-
works in healthy and diseased conditions (Chan et al. 2001;
Dawson et al. 2008; Golding et al. 2006; Jinnah et al. 1990;
Kang and Grossniklaus 2011; Melo et al. 2007; Rubinsztein
2002; Sasaki et al. 2009; Sommer et al. 2012; Sun et al.
2008; Tessanne et al. 2012; Vaitukaitis 1998; Yang et al.
2008a). Since the first transgenic mice were created in the
1980s, thousands of genetically modified mice have been
created. Transgenic mice that carry genetic defects known to
cause human diseases have been the prime interest. In gene-
ral, transgenic rodents or animals can be categorized by ex-
pression patterns, which include: Overexpression, Gene
targeting: (knock-in, knock-out, and knock-down), Condi-
tional expression, and Inducible expression. Although an
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expression pattern could be manipulated by strategies such
as the selection of promoters, tetracycline inducible system,
Cre-lox conditional expression system, and artificial chromo-
some (AC), the transgene has to be inserted into a genome in
order to achieve long term expressions that can be passed to
the next generation through the germ cells. Although most of
the currently available genetic engineering techniques have
been successfully used for the generation of genetically
modified rodents, the rodent model does not always recapitu-
late human conditions (Elsea and Lucas 2002; Gilley et al.
2011; Rice 2012). Due to physiologic differences between
rodents and higher primates, such as life span (Gilley et al.
2011), brain size and complexity (Chen et al. 2000; Gilley
et al. 2011; Hsiao et al. 1996; Polymeropoulos et al. 1997;
Yang et al. 2008a) and motor repertoire (Courtine et al.
2007; Rice 2012), as well as the availability of cognitive be-
havioral testing (Bachevalier et al. 2011; Bachevalier et al.
2001; Bachevalier and Nemanic 2008; Ewing-Cobbs et al.
2012), NHPs are considered one of the best animal models;
especially for complex disorders that correlate with aging,
cognitive behavioral function, mental development, and psy-
chiatric dysfunctions. In addition to neural psychiatric relat-
ed disorders, metabolic function (Hogstedt et al. 1990;
O’Sullivan et al. 2012; Smith et al. 1978), reproductive
physiology (Hewitson et al. 2002; Kundu et al. 2013; Obal-
dia et al. 2011; Wolf 2009), and immunology (Gallo et al.
1989; Thomas et al. 1982) are other areas of research where
the NHP model has been widely used.

Although the application of NHPs in biomedicine has
a decades long history, NHPs have been primarily used
in pharmacokinetic (Glogowski et al. 2012; Kanazawa
et al. 1990; Kao et al. 2006; King and Dedrick 1979; Liu
et al. 2009; Lutz et al. 1984) and toxicity studies (Jarvis et al.
2010; Lee et al. 1994), specifically in drug development,
physiological response, and efficacy studies of new treat-
ments. Studies on the understanding of normal physiological
functions (Gallo et al. 1989; Kundu et al. 2013; O’Sullivan
et al. 2012; Wolf 2009) and chemical induced conditions
mimicking human disease conditions (Blesa et al. 2012;
DeLong and Coyle 1979; Vezoli et al. 2011) are also areas of
research in which the NHP model plays a key role. The crea-
tion of the first transgenic NHP in 2001 (Chan et al. 2001)
and subsequent development of the transgenic NHP model
of Huntington’s disease (HD) in 2008 (Yang et al. 2008a)
revolutionized the traditional role of NHPs in biomedicine to
the new frontier of modeling human genetic disorders. The
interest in NHP models has increased in the past decade be-
cause of reports on the new creation of transgenic NHPs, ap-
plication of transgenic technology in different primate
species (marmoset, cynomolgus monkey, and more) (Niu
et al. 2010; Sasaki et al. 2009; Sun et al. 2008), and the es-
tablishment of new primate research centers and consortiums
in different countries. Nonetheless, the hope is to recapitulate
human disease conditions through NHPs, not only physio-
logically, but also genetically by the creation of transgenic
NHPs using the latest genetic engineering tools; advancing

the understanding of disease pathogenesis and finding new
therapeutics for human diseases.
Unlike NHPs, rodents, or other model systems such as

C-elegans or flies, are often used in the frontline of technolo-
gy development, and as a concept model for new technology
and drug development. In theory, genetic engineering tech-
niques established in rodents can be translated into NHPs.
However, ethical concerns such as the use of higher primates
in research, limitations on the supply of NHPs, and their
high cost are often the factors for consideration in the devel-
opment of a genetically modified NHP model. To overcome
these barriers, highly efficient methods are necessary for cre-
ating transgenic NHPs, because the number of animals re-
quired in the process is a major limiting factor and engenders
ethical concerns. For example, it took two decades to create
transgenic NHPs after the first transgenic mouse was created,
simply because a traditional pronuclear microinjection ap-
proach is not as efficient (0.5-4% in livestock such as pig
and 20-25% in mice) when compared to retroviral or lentivi-
ral vectors (90%-100%) (Chan et al. 2001; 2002; Niu et al.
2010; Niemann and Kues 2003; Sasaki et al. 2009; Sun et al.
2008; Yang et al. 2008a). The development of a more effi-
cient and safer lentiviral vector system created a transgenic
HD monkey in 2008, and was followed by the creation of
transgenic marmosets and pigtail macaques that expressed a
green fluorescent protein (GFP) gene as a proof of principle
(Niu et al. 2010; Sasaki et al. 2009; Yang et al. 2008a).
The advancement of the transgenic NHP model has been

driven by the availability of high efficiency genetic tools.
Although only a handful of transgenic monkeys have been
reported, the application of the transgenic NHP model in
biomedical research is just beginning. The commitment of
the National Institutes of Health to the National Primate
Research Centers in the United States, the recent develop-
ment of the Japanese consortium of a marmoset model for
neuroscience research, and the aggressive development of
primate research in China and other nations shows the im-
portance of the transgenic NHP model. The transgenic NHP
model is expected to become an important model system,
specifically in translational and preclinical studies as well as
basic research.

Key Technologies Leading to Successful
Genetic Manipulation in NHPs, and the
Latest Technologies That May Impact
Future Development in Genetically
Modified NHPModels

Most transgenic NHPs, including germline (Chan et al.
2001; Niu et al. 2010; Sasaki et al. 2009; Sun et al. 2008;
Yang et al. 2008a) or focal transgenesis (Kordower et al.
2000; Mittoux et al. 2000; Palfi et al. 2007), are primarily
generated by viral vectors and overexpression of the gene of
interest. Due to the limitation of the genetic engineering
tools that are currently available, transgenic NHP modeling
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has focused on dominant genetic diseases such as HD (Chan
et al. 2001; Yang et al. 2008a), while others working with
transgenic NHPs reported only the over expression of GFP
(Niu et al. 2010; Sasaki et al. 2009; Sun et al. 2008). Gene
targeting technology has been successfully used for develop-
ing a functional knock-down and functional knock-out rodent
models of human diseases. This process uses homologous
recombination in embryonic stem cells (ESCs), followed
by blastocyst injection to create chimeric rodents (Bertelli
et al. 2009; Lin et al. 2001; Woodman et al. 2007), or by
nuclear transplantation to create cloned rodents (Rideout et al.
2002; Wakayama 2007; Wakayama and Yanagimachi 2001).
A similar technique has not been reported in the creation of
transgenic NHPs.
Since the report on the creation of Dolly (Wilmut et al.

1997), the first mammalian species cloned by somatic cell
nuclear transplantation (SCNT) in 1997, the scientific com-
munity has embraced the exciting era of animal cloning. Ide-
ally, somatic cells such as skin fibroblasts can be genetically
modified, selected, characterized, and followed by SCNT. In
theory a colony of cloned animals with identical genetic
backgrounds, and perhaps phenotypes, could be established
(Hauschild-Quintern et al. 2013; Hauschild et al. 2011;
Schnieke et al. 1997; Yang et al. 2007) for the production of
valuable pharmaceutical products. A colony could also be
used for the creation of animal models that recapitulate hu-
man disease conditions that are used for studying disease
pathogenesis and developing novel therapeutics. Although
SCNT has been relatively successful in rodents such as mice
(Rideout et al. 2002; Wakayama 2007) and livestock such as
pig, cattle, and sheep (Hauschild et al. 2011; Meissner and
Jaenisch 2006; Tessanne et al. 2012; Wilmut et al. 1997), a
SCNT cloned NHP has not been achieved (Mitalipov and
Wolf 2006; Simerly and Navara 2003). Tremendous amounts
of effort and resources have been invested in the develop-
ment of SCNT in NHPs; discouraging results have hampered
the interest in creating cloned NHPs. While the development
of SCNT continues in a less aggressive manner, the search for
alternative approaches in creating functional knock-down or
functional knock-out NHPs by novel gene targeting technolo-
gies has increased. Gene targeting in somatic cells followed
by SCNT is an ideal approach for creating a NHP model of re-
cessive genetic diseases or dominant negative genetic diseas-
es. New genetic tools such as small hairpin RNA (shRNA),
zinc finger nuclease (ZFNs), and Transcription Activator-
Like Effector Nucleases (TALENs) have opened a new era of
genetic engineering, and added new strategies for creating
transgenic animals. Gene targeted transgenic rodents and
livestock have been successfully created by these methods
(Carbery et al. 2010; Golding et al. 2006; Hauschild-Quintern
et al. 2013; Hauschild et al 2011; Tessanne et al. 2012; Whyte
and Prather 2012; Zschemisch et al. 2012). Translation of
these technologies into NHPs is foreseeable in the future,
while optimization in terms of targeting efficiency is inevitable
before the production of transgenic NHPs.
Several approaches have been attempted for the creation

of transgenic NHPs. Among these methods, transgenesis,

mediated by viral vectors, specifically lentiviral vectors, has
been the most successful method (Chan et al. 2001; Niu
et al. 2010; Sasaki et al. 2009; Yang et al. 2008a). Transgene-
sis by perivitellie space delivery of viral vector into oocytes,
or early preimplantation embryos (zygotes or two to four cell
embryos), was first reported in the creation of transgenic cat-
tle at an unprecedented efficiency of close to 100% (Chan
et al. 1998). Today, all reported transgenic NHPs were creat-
ed by lentiviral vector mediated gene transfer in oocytes, or
early preimplantation embryos, except the first transgenic
NHP, ANDi, who was created by using a retroviral vector
(Chan et al. 2001). Lentiviral vector is one of the most effec-
tive methods for gene transfer in mammalian cells, including
neural cells that are generally difficult to achieve by other
gene transfer methods (Kordower et al. 1999; Naldini 1998;
Pfeifer 2004; Yang et al. 2008b; Zufferey et al. 1998). Pseu-
dotyped lentiviral vector is capable of infecting all cell types
with a lipid membrane, unlike retroviral vector that primarily
targets actively dividing cells (Naldini 1998; Naldini et al.
1996; Pandya et al. 2001). Various species of transgenic
NHPs have been generated by lentiviral vector, including
rhesus macaques, cynomolgus monkeys, and marmosets
(Chan et al. 2001; Niu et al. 2010; Sasaki et al. 2009; Yang
et al. 2008a). It seems that lentiviral mediated gene transfer
will continue as the main delivering vehicle for creating
transgenic NHPs, while incorporation of new technologies
such as shRNA, ZFN, and TALENs are foreseeable.

In addition to lentiviral mediated gene transfer, sperm me-
diated gene transfer (SMGT) developed in the 1980s has been
attempted to create transgenic NHPs (Chan et al. 2000a; Chan
et al. 2000b; Chan et al. 2000c). Instead of co-incubation of
sperm with naked DNA, followed by artificial insemination in
domestic species (Lavitrano et al. 1989; Lavitrano et al.
2013), NHP sperm were incubated with plasmid DNA, fol-
lowed by intracytoplasmic sperm injection (ICSI) (Chan et al.
2000a; Chan et al. 2000c). Although this approach did not re-
sult in transgenic NHPs, a similar approach has been success-
fully used for creating transgenic mice (Perry et al 1999). In
theory, SMGT is a perfect approach for creating transgenic an-
imals using simple fertilization steps with genetically modi-
fied spermatozoa. However, the inconsistent gene transfer rate
(5-60%) shown in the production of transgenic pigs suggests
(Lavitrano et al. 2006) that further investigation is needed for
optimizing the procedures for NHPs. In fact, the latest devel-
opment of induced pluripotent stem cell (iPSC) technologies,
and the subsequent derivation of germ cells such as sperma-
tids (Easley et al. 2012), may open a new door for SMGT.
Mature spermatozoa have been generated using grafted sper-
matogonia (Hermann et al. 2012). By combining different
technologies as described, primary cultures such as skin fibro-
blasts can be genetically modified followed by in vitro differ-
entiation to spermatids, testicular transplantation, recovering
transgenic spermatozoa for ICSI, followed by embryo transfer.
Transgenic spermatids can be used for ICSI directly followed
by embryo transfer.

The generation of chimeric embryos made by blastocyst
injection of genetically modified ESCs is commonly used
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for creating gene-targeted rodents (Xia et al. 2006; Zimmer
and Gruss 1989). The first challenge in gene targeted-rodents
is to determine successful germline transmission, followed
by an extensive breeding program to establish a line of trans-
genic mice with a stable and defined genotype. In theory, a
similar approach can be achieved in NHPs, but this theory is
not without concerns and challenges. It takes three to four
years to reach pubertal age, and five to six months of gesta-
tion time in rhesus macaque (Chan et al. 2001; Chan 2004;
Chan et al. 2002; Yang et al. 2008a). In addition, the rhesus
macaque is a seasonal breeder, reproductively active in
spring and winter. The rhesus macaque normally carries a
singleton. These facts further hinder the breeding process. In
this case, New World monkeys like the marmoset may be a
better choice because of their short pubertal age and non-
seasonal breeding cycle (Okano et al. 2012; Sasaki et al.
2009). Tachibana and colleagues reported successful produc-
tion in regards to creating chimeric monkeys by aggregation
of early embryo (Tachibana et al. 2012) and support the no-
tion that the generation of transgenic chimeric monkeys is a
possible approach. Unlike rodents, NHP ESCs injected into
blastocysts cannot integrate into the inner cell mass and de-
velop chimeric embryos (Tachibana et al. 2012). Nonethe-
less, chimeric animals, including rodents and livestock, have
been generated for decades; mice are the only species that
adapted to the technology successfully with significant im-
pact on the field. Therefore, chimeric technology in NHP is
interesting, but its application in developing a transgenic
NHP model may not be an ideal approach. The level of chi-
merism varies among individuals and requires extensive
characterization steps and breeding.

SCNT, one of the most anticipated approaches for creating
transgenic animals, has great promise for creating identical
transgenic NHPs for modeling human genetic diseases and
the development of novel therapeutics. A cohort of geneti-
cally identical animals, (with similar if not identical clinical
phenotypes) with a genetic defect linked to human disease,
is an ideal model for drug development. Because of the neg-
ative reports in creating cloned NHPs in the past two decades
(Mitalipov and Wolf 2006; Simerly et al. 2003; Simerly and
Navara, 2003), the progress in SCNT has been significantly
hampered. The rise of new technologies has further reduced
the interest and effort in developing SCNT in NHPs. Al-
though reports on deriving ESCs from SCNT embryos has
drawn considerable attention to the fact that personal stem
cells can be generated, there are ethical concerns in using an
oocyte as the host remains (Byrne et al 2007). The develop-
ment of iPSC technology has once again shifted the research
direction in personal medicine away from SCNT (Takahashi
et al. 2007; Takahashi and Yamanaka 2006). Questions on
whether iPSCs are different from ESCs (Hyun et al. 2007),
and if the origin of iPSCs influences clinical outcome (Fair-
child 2010; Kadereit and Trounson 2011; Kim et al. 2010;
Suarez-Alvarez et al. 2010), remains the focus of research.
Personal stem cells derived by reprogramming of a patient’s
own cells is the best cell source for cell replacement therapy
(Blin et al. 2010; Hwang et al. 2010; Lunn et al. 2011;

Perrier and Peschanski 2012; Tucker et al. 2011). It seems
that the interest in SCNT derived personal stem cells
will continue to fade, but the importance of developing an
identical or cloned transgenic NHP model for human diseases
remains strong. From an animal model perspective, specifi-
cally in drug discovery research, a cohort of animals with
identical genetic background and perhaps similar, if not
identical, clinical phenotypes would be a unique resource for
precise and accurate determination of therapeutic efficacy of
novel treatments: without or with minimal influence of genetic
variation. Nevertheless, the failure of a traditional SCNT
method in NHP suggests the fundamental differences between
species, and that a new strategy is necessary to overcome the
barrier.
While the development of a transgenic NHP model has

been focused on modeling disease progression, pathogene-
sis, and its potential preclinical application, a pluripotent
stem cell model provides a unique in vitro platform for drug
discovery research and the development of gene and cell
based therapy (Maury et al. 2012; Saha and Jaenisch 2009;
Tiscornia et al. 2011). Therapeutic efficacy can be deter-
mined in transgenic NHPs such as HD-NHP (Carter and
Chan 2012; Chan et al. 2010; Yang and Chan 2011; Yang
et al. 2008a). The latest development of iPS technology has
not only led to new hope in personal medicine, but has
stimulated the development of personal cell based therapy
(An et al. 2012; Carter and Chan 2012; Chan et al. 2010;
Consortium 2012; Marchetto et al. 2011; Tucker et al. 2011).
iPSCs derived from human patients develop cellular pheno-
types relevant to diseases (An et al. 2012; Consortium 2012;
Cooper et al. 2010; Livesey 2012; Maury et al. 2012;
Sanchez-Danes et al. 2012; Tiscornia et al. 2011; Young and
Goldstein 2012), and the rise of interest in cell based therapy
continues (Abdel-Salam 2011; An et al. 2012; Cooper et al.
2012; Hwang et al. 2010; Marchetto et al. 2011). The
successful genetic correction of HD phenotypes in iPSCs
further suggests the potential of gene and cell based therapy
for genetic disorders such as HD (An et al. 2012). As poten-
tial gene and cell based therapy for treatment of human dis-
eases evolves, there is an urgent need for a preclinical animal
model to validate these findings and evaluate their long-term
safety and efficacy (Carter and Chan 2012; Perrier and Pe-
schanski 2012). The combination of a transgenic NHP model
and iPS technology may create a novel preclinical model sys-
tem for developing personal medicine in higher primates,
and could lead to new insights into translational medicine
that may facilitate and accelerate clinical application in hu-
man patients (Carter and Chan 2012; Perrier and Peschan-
ski 2012).
The success in creating a transgenic HD NHP proved the

principle of modeling human inherited genetic disease using
NHPs (Putkhao et al. 2013; Yang et al. 2008a). The search
for more effective methods to create functional knock-down
and functional knock-out NHP models for dominant nega-
tive and recessive genetic disorders is increasing, due to the
limitations of currently available animal models. While
SCNT is an ideal method for creating a gene targeted animal
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model, as described in the previous section, disappointing
results in the generation of SCNT NHPs has driven the
search for an alternative approach. In the new era of genetic
engineering, novel technologies have evolved including:
gene silencing by small interference RNA (siRNA) (Hitz
et al. 2009; Raymond et al. 2010; Seibler et al. 2007; Seibler
et al. 2005; Van Pham et al. 2012; Xia et al. 2006), gene tar-
geting by ZFNs (Carbery et al. 2010; Ellis et al. 2012; Koba-
yashi et al. 2012; Passananti et al. 2010; Strange and
Petolino 2012), and TALENs (Cermak et al. 2011; Liu et al.
2012; Mahfouz et al. 2011; Sung et al. 2012). These novel
genetic engineering tools open new opportunities in NHP
modeling of human genetic diseases, not only in dominant
genetic disorders, but also recessive and dominant negative
genetic diseases. A NHP model of genetic disorders caused
by the loss of gene function or haploinsufficiency was practi-
cally impossible until the recent development of small
hairpin RNA (shRNA), ZFN, and TALENs. Functional
knock-down (partial loss of function or haploinefficiency)
can be achieved by silencing of the target gene of interest by
shRNA. In gene silencing by shRNA, the targeted gene is
functionally competent with a reduced functional transcript,
depending on the efficacy of shRNA-mediated degradation.
Stable integration of shRNA into the genome for constitutive
expression, or in an inducible manner is necessary. Targeted
disruption of a specific gene will lead to functional knock-
down or haploinefficiency. If one allele is disrupted while
functional knock-out results, or if both alleles are disrupted
by ZFN or TALENs. Unlike shRNA, ZFN creates a perma-
nent gene disruption, the challenge is to efficiently achieve a
gene-targeting event at an early embryonic stage to avoid
mosaicism that could affect functional knock-down, or func-
tional knock-out efficacy in subsequent generations. Al-
though these methods have shown great success in reducing
functional protein in vitro and in transgenic rodents as well
as livestock (Carbery et al. 2010; Hauschild-Quintern et al.
2013; Tessanne et al. 2012; Whyte and Prather 2012; Zsche-
misch et al. 2012), the application in NHPs remains an ex-
ploratory area with great prospects, but not without
challenges. Similar to other techniques described previously,
the major obstacle in translation into NHP is to achieve high
delivery and targeting efficiency so a gene targeted NHP
model of human disease can be generated in a cost-effective
manner with a minimal a number of animals, reducing ethi-
cal concerns.
Gene silencing by shRNA is no different than a traditional

transgenic approach of overexpressing shRNA specifically
targeted to the gene of interest. Lentiviral mediated transgen-
esis is a good choice for creating transgenic NHPs express-
ing gene specific shRNA. Its silencing efficiency relies on
rigorous selection of shRNA in vitro, prior to the creation of
gene targeted NHPs. In case of gene disruption by ZFN and
TALENs, ZFN and TALEN pairs will bind to the targeted
DNA sequence in early embryos and induce double-stranded
break and repair, creating deletion or rearrangement of the
targeted DNA sequence. Today, gene targeted rats and mice
have been created using pronuclear or cytoplasmic microin-

jection of ZFN or TALEN mRNA (Sung et al. 2013;
Zschemisch et al. 2012), or by direct injection of the ZFN
proteins (Gaj et al. 2012). In addition to mRNA injection,
gene targeting in embryonic stem cells, or skin fibroblasts by
overexpression of the ZFN or TALEN pairs followed by
blastocyst injection or SCNT, have been successfully used
for the creation of gene targeted pigs and mice (Hauschild-
Quintern et al. 2013; Hauschild et al. 2011). Gene targeted
large animals created by microinjection of ZFN and TALEN
mRNA have not been reported. Although high targeting effi-
ciency by using ZFN and TALENs followed by SCNT has
shown to be an effective method for the creation of function-
al knock-out pigs (Hauschild-Quintern et al. 2013; Haus-
child et al. 2011; Whyte and Prather 2012), a similar
approach does not translate into NHPs because SCNT re-
mains the major road block. Once again the same challenge
of efficiency arises. One possible approach is overexpressing
the ZFN and TALEN using a traditional delivery and expres-
sion approach such as lentiviral vector. Additionally, adeno
associated virus (AAV) mediated ZFN pairs expressions
have also been suggested as a potential strategy for gene
therapy (Ellis et al. 2012; Lombardo et al. 2007; Rahman
et al. 2013).

Genetically Modified NHPModel of Human
Inherited Genetic Diseases: Pros and Cons
of Modeling Human Diseasewith
Transgenic NHP

Although a tremendous amount of global effort has been
channeled into the development of transgenic NHP research,
the concept of transgenic NHP modeling of human inherited
genetic diseases is still at the infancy stage. With the support
of the United States National Institutes of Health, pioneering
research has led to the development of the first transgenic
NHP, “ANDi”, followed by the first report of a transgenic
NHP model of HD (Yang et al. 2008a). Together with the
fast development of a transgenic marmoset model in Japan
(Okano et al. 2012; Sasaki et al. 2009) and the increase of
primate research infrastructures in China (Niu et al. 2010;
Sun et al. 2008), the popularity of the transgenic NHP model
is quickly increasing, and its impact on future advancement
of biomedicine is expected.

A transgenic HD monkey model, the first and only report-
ed transgenic NHP model of human disease, is a good exam-
ple to present the pros and cons of modeling human disease
with transgenic NHP. The points for consideration when de-
veloping transgenic NHP human disease model will also be
discussed.

Huntington’s disease is an autosomal dominant inherited
neurodegenerative genetic disease that is caused by the ex-
pansion of the polyglutamine ( polyQ; CAG) repeats in
exon1 of the Huntingtin gene IT15 (HTT) gene (Group
1993). CAG repeat lengths over thirty-nine results in patho-
logical HD. A negative correlation has been shown between
repeat length and age of onset and lifespan (Lee et al. 2012;
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Roos 2010; Ross and Shoulson 2009; Walker 2007). Patients
with the longer CAG repeat lengths exhibit very severe
symptoms of HD starting in adolescence. HD is categorized
into juvenile and adult forms, based on CAG repeat lengths
that result in a distinct course of clinical manifestations
(Andrich et al. 2007; Geevasinga et al. 2006; Rasmussen
et al. 2000; Ribai et al. 2007; Roos 2010; Ross and Shoulson
2009; Ruocco et al. 2006). HD is a devastating neurological
disorder that progressively impacts motor, cognitive, and
psychiatric functions as the patient ages (Crook and
Housman 2011; Ho et al. 2003; Paulsen et al. 2006; Roos
2010; Ross and Shoulson 2009). Although a genetic test is
available, treatments are currently limited to symptomatic
management of the patients’ symptoms.

It is well accepted that NHPs are one of the best model
systems for neuroscience research and modeling human neu-
rological disorder (Okano et al. 2012; Yang and Chan 2011;
Yang et al. 2008a). In the case of HD, the progressive impact
on motor functions: such as chorea, dystonia, and fine motor
control can be evaluated in NHPs with a battery of tests that
are well established for NHPs (Bachevalier et al. 2011;
Bachevalier et al. 2001; Bachevalier and Nemanic 2008;
Ewing-Cobbs et al. 2012). Additionally, the Unified Hun-
tington’s Disease Rating Scale (UHDRS) (Group 1996) is
one of the standard clinical assessments used to evaluate
the presence and severity of motor symptoms, and the
psychiatric dysfunctions that accompany the disease. The
Huntington’s Disease Primate Model Rating Scale
(HDPMRS) is a modified version of the UHDRS that was
developed for HD monkeys that primarily focuses on motor
deficits (Yang et al. 2008a) as an indicator for monitoring the
progression of HD. Although an HD rodent model develops
motor impairment such as dystonia and abnormal gait, dif-
ferences in motor repertoire and anatomical features in ro-
dents have limited the assessment of fine movement ability.
Due to the difference in the organization of the motor sys-
tems and behavior among rodents (Elsea and Lucas 2002;
Gilley et al. 2011; Rice 2012), NHPs, and humans, the trans-
lation of potential interventions using a rodent model may
not be sufficient for accurate evaluation (Elsea and Lucas
2002; Gilley et al. 2011; Rice 2012). Furthermore, differenc-
es in neuro-anatomy and the development of corticospinal
tracts have significant impact on the development of fine mo-
tor abilities (Courtine et al. 2007). New World monkeys such
as squirrels and marmosets can be easily trained to use their
hands, because of the projection patterns of their corticospi-
nal tracts, and because their nonprimary motor cortical areas
are similar to humans. Old World monkeys, like the rhesus
macaque, are considered better suited for evaluating fine mo-
tor skills compared to New World monkeys (Courtine et al.
2007; Lemon et al. 2004; Shimazu et al. 2004). In cases of
HD, as the disease progresses, locomotion and fine motor
abilities become significantly impaired. In order to capture
progressive fine movement deficits during the course of HD,
as well as evaluate therapeutic efficacy of potential interven-
tion, a NHP model of HD is critical for accurate assessment
when using the battery of sophisticated tests that are avail-

able for NHP. Using New World monkeys has the following
advantages: smaller size, shorter pubertal age, non-
seasoning breeding cycle, and a higher twin pregnancies rate
that facilitates a faster generation time of genetically modi-
fied monkeys and downstream breeding process (Okano
et al. 2012; Sasaki et al. 2009). Old World monkeys, such as
rhesus macaques, have been the major primate model in bio-
medical research because of the well established knowledge
about their physiological and disease conditions, and the
tools (cognitive behavioral tests) that are available for com-
parative studies with humans (Bachevalier et al. 2001; 2011;
Chan 2004; Courtine et al. 2007; Han et al. 2009; Kanazawa
et al. 1990; Kordower et al. 2000).
While motor impairment is one of the earliest clinical

signs for diagnosis, cognitive decline, and psychiatric distur-
bances often precede the onset of motor dysfunction
(Ho et al. 2003; Paulsen et al. 2008; Peavy et al. 2010; Stout
et al. 2011; Tabrizi et al. 2012; Tabrizi et al. 2011; Vaccarino
et al. 2011). A battery of tests to measure the development of
emotional responses, social interactions, cognitive, and mo-
tor skills are well established in NHPs (Bachevalier et al.
2011; Bachevalier et al. 2001; Bachevalier and Nemanic
2008; Ewing-Cobbs et al. 2012) and have been adapted
in HD-monkeys to assess neural developmental milestones
and their correlation with HD progression. In addition to
cognitive behavioral assessment, one of the early clinical
features of HD is progressive brain atrophy (Paulsen et al.
2006; Paulsen et al. 2010). Non-invasive MRIs provide an
optimal quantitative tool for determining anatomical and func-
tional changes that may associate with disease progression.
In addition to structural changes, disruptions of white
matter integrity and connectivity (Sritharan et al. 2010;
Vandenberghe et al. 2009; Weaver et al. 2009) have also been
reported in HD as the disease progresses. Behavioral manifes-
tations in HD patients are often the first evidence of underly-
ing neuropathologic developments; the combination of
neurobehavioral assessment and correlation with MRI imag-
ing is critical for establishing a full picture and timeline in
regards to brain development and changes. Correlation with
other longitudinal measurements including molecular profiles
can be constructed throughout the course of the disease.
In addition to clinical assessments, molecular profiling

studies using peripheral blood, cerebral spinal fluid, and
post-mortem brain tissues are also areas of strong interest in
the search for potential biomarkers and therapeutic targets
(Borovecki et al. 2005; Cha 2007; Runne et al. 2007; Tabchy
and Housman 2006). Recent studies have found abnormali-
ties in lymphocytes, which include an elevated level of oxi-
dative DNA damage (Morocz et al. 2002) and an increased
number of apoptotic monocytes (Bergman et al. 2002). The
alteration of the gene expression pattern specifically ob-
served in lymphocytes may be used as diagnostic informa-
tion complementary to clinical evaluation and as a
biomarker indicating the progression of the disease. The HD
monkey model is a powerful platform for the longitudinal
monitoring of genome-wide expression profiles, including
noncoding RNAs (microRNAs) and metabolomic profiling,
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used to advance our knowledge of HD molecular pathogenic
cascades. While similar longitudinal studies are ongoing
through two major programs, TRACK-HD (Tabrizi et al.
2012) and PREDICT-HD (Paulsen et al. 2008), information
gained from longitudinal studies that parallel human studies
in HD monkeys are important for future preclinical applica-
tion of HD monkeys when monitoring disease progression,
and determining therapeutic efficacy of new therapeutics.
Similar to other neurological disorders such as

Alzheimer’s and Parkinson’s disease, HD is a complex sys-
temic disorder that progresses as an individual ages. While
most of the prior clinical studies are cross-sectional studies
using a cohort of selected pre-symptomatic (prodromal) or
symptomatic patients for comparison studies, the importance
of longitudinal studies has increased (Paulsen et al. 2008;
Tabrizi et al. 2012; Tabrizi et al. 2011). A Discrepancy with
the overestimation of the sensitivity of measurements
in cross-sectional studies also suggests the importance of un-
biased longitudinal studies for precise interpretation of the
results, and for determining possible clinical applications
(Hobbs et al. 2010a; Hobbs et al. 2010b; Solomon et al.
2008; Tabrizi et al. 2012; Tabrizi et al. 2011). Longitudinal
studies on a cohort of prodromal, pre-symptomatic patients,
or animal models using a variety of clinical assessments
such as battery of cognitive behavioral tests, MR imaging,
molecular profiling of accessible tissues, like peripheral
blood and CSF throughout the course of HD development
will be critical for accurate assessment of disease progression
and the establishment of a timeline of disease milestones
based on clinical assessments and molecular markers. One
of the most important bottlenecks in preclinical studies is
the lack of animal models that recapitulate human disease
conditions with precise and well defined clinical progression
referenced by multiple clinically relevant assessments for
determining therapeutic efficacy. The fast development in
gene and cell therapy such as those ongoing developments
in HD will benefit greatly with the use of transgenic HD
monkeys for promoting clinical translation.

Future Developments and Prospects
in Genetically Modified NHPModels in
Biomedicine

The advancement of a transgenic NHP model aligns with the
increasing interest in translational medicine indicated by the
establishment of the National Center for Advancing Transla-
tional Sciences (NCATS). The importance of an animal mod-
el that allows for not only evaluating pharmacokinetic and
toxicity, but also determining the efficacy of novel therapeu-
tic approaches, breaks the bottleneck for the translation from
bench to bedside. Besides the criteria for selecting an
appropriate model system that could maximize the outcome,
awareness of the importance of longitudinal study has in-
creased in the biomedical field, both in research and clinical
studies (Bateman et al. 2012; Morris et al. 2012; Paulsen

et al. 2008; Tabrizi et al. 2012). While there is no perfect ani-
mal model; drosophila, zebrafish, C-elegans, rodents, pigs,
and NHPs are all unique model systems that can address
unique questions that can help with advancing biomedicine.
It is important to match specific research questions with the
best, and most appropriate, animal model.

This review has focused on the latest advancement in the
NHP model, specifically a transgenic NHP model of human
diseases. Along with the advancement of the latest molecular
tools and new concepts for therapeutics such as small mole-
cules, targeted gene knock-down, and the development of
iPSCs for potential personal cell therapy; the need for an ani-
mal model that recapitulates human disease conditions, not
only physiologically, but also genetically, is more important
than ever for assessing therapeutic efficacy. With the in-
creased awareness of the importance of longitudinal studies
as demonstrated by the latest report on longitudinal studies
in HD (Paulsen et al. 2008; Tabrizi et al. 2009; Tabrizi et al.
2012; Tabrizi et al. 2011), animal models such as NHPs that
simultaneously allow longitudinal clinical assessment using
multiple clinical measurements are a crucial component in
translational medicine. The role of a transgenic NHP model
of human diseases in preclinical study is expected to increase
in the near future. The advancement in molecular tools such
as ZFN and TALENs will open new doors for modeling a
wide-spectrum of human genetic diseases without limitation
to dominant genetic disorders.

In addition to the foreseeable impact of a transgenic NHP
model in preclinical study, increased interest in basic re-
search is also expected. NHPs are an important model spe-
cies for understanding neural computation, cognition, and
behavior. NHPs can also be used for probing the circuit-level
basis of human neurological and psychiatric disorders, due
to the greater similarity between the NHP brain and the hu-
man brain. (Elsea and Lucas 2002; Gilley et al. 2011; Okano
et al. 2012; Rice 2012; Sasaki et al. 2009; Yang et al.
2008a). To ideally resolve how complex functions emerge
from the activity of diverse cell types, one should be able to
perturb the activity of genetically, specified cell types and
neural pathways in the primate brain in a temporally precise
fashion. Over the past few years, the ability to optically per-
turb specific brain regions, neural types, and pathways
through an optogenetic approach by genetic expression of
light inducible reagents such as archaerhodopsin from
Halorubrum strain TP009 (ArchT), and channelrhodopsin-2
(ChR2) has revolutionized the field of neuroscience (Boyden
et al. 2005; Deisseroth 2012). Using optogenetic technology
to influence the activity of specific groups of neurons in the
NHP brain in a reliable and systematic way will help us to
understand how neuronal circuits function in primates under
normal and pathologic conditions. Recent studies in NHPs
involving a combination of optical neural controls, fMRI,
and cognitive behavior tests already suggest the potential
role that a NHP model could play in mapping functional
brain networks by induced changes in behavioral and neural
networks (Boyden et al. 2005; Chaudhury et al. 2013;
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Deisseroth 2012; Gerits et al. 2012; Han et al. 2009; Kravitz
et al. 2010; Tsunematsu et al. 2011; Tye et al. 2013). With
the combination of a transgenic NHP model of human dis-
ease and optogenetic technology, precise neural networks in
healthy and diseased conditions can be dissected systemati-
cally. This would open up new horizons in understanding
how neural circuits function in higher behaviors, and in brain
pathologies.

Conclusion

This review discusses the latest developments in a transgenic
NHP model, and the approaches that have, or may have, a po-
tential impact in the future advancement of genetic modifica-
tion of the NHP genome and the creation of a better model of
human diseases. We have used the HD monkey as an example
to lay out the logic behind the development of a transgenic
NHP model. While detailed discussion on pathogenesis and
clinical advancement of HD are not the focus of this review,
readers that are interested in those areas can see the references
provided (Klempir et al. 2006; Paulsen et al. 2008; Ross and
Shoulson 2009; Rubinsztein 2002; Stout et al. 2011; Tabrizi
et al. 2012). Although an HD monkey is the only reported
transgenic, NHP model of human inherited genetic disease,
the author is aware of ongoing efforts in the development of
transgenic marmoset and macaque models for Alzheimer’s
and Parkinson’s, as well as other neurological diseases. In ad-
dition to modeling human disease, the development of opto-
genetic tools and applications for NHPs, perhaps in a NHP
model of human diseases, will lead to a new approach for dis-
secting the neural network in a systemic fashion. Nonetheless,
it is an exciting time in transgenic NHP modeling. The devel-
opment of a transgenic NHP model will continue to thrive and
advance biomedical research in finding the cure for human
diseases.
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