
Introduction

Animal Models of Peripheral Neuropathy: Modeling What We Feel,
Understanding What They Feel

Joanna M. Brell

A lmost everyone has experienced the severe discomfort
associated with hitting the “funny bone,” the pushing
of the humerus distal medial epicondyle against the

ulnar nerve. There is nothing amusing, however, about neu-
ropathic pains and paresthesias that occur chronically, as
with peripheral neuropathy. This issue of the Journal details
the science of peripheral neuropathy as discovered through
animal models. This introduction highlights the clinical
description of peripheral neuropathy in order to center on the
challenges of constructing animal models.
Peripheral neuropathy (PN) is a pervasive and complex

condition affecting approximately 20 million people in the
United States and more than 10% of persons aged 40 years
or older (Gregg et al. 2004). PN encompasses a variety of
etiologies and manifestations. The majority are acquired con-
sequences of other conditions or processes. Table 1 summa-
rizes some of the causes or contributors to PN. About one
third of cases are considered to be idiopathic (Dyck et al.
1981). Many patients diagnosed with idiopathic PN have
abnormal glucose tolerance tests or elevated fasting glucose
levels and are considered to be prediabetic (Smith and
Singleton 2013). Hypertriglyceridemia and obesity without
diabetes also may be important etiologic or contributing fac-
tors in humans (Tesfaye et al. 2010) and rodents (Vincent
et al. 2009). Diabetes mellitus is the most common identified
cause of PN, and 60–70% of the current 26 million diabetics
(Centers for Disease Control and Prevention 2011) have
some degree of neuropathy. The increasing worldwide prev-
alence of metabolic syndrome and its associated conditions,
including diabetes, suggest that PN will continue to be an
important clinical subject. Mitochondrial abnormalities relat-

ed to oxidative stress from hyperglycemia or hyperlipidemia
are hypothesized to play an important role in diabetic PN
(Picard and Turnball 2013; Sleigh et al. 2011). The use of
pharmaceuticals (nucleoside/nucleotide reverse transcriptase
inhibitors and cancer chemotherapy compounds) that target
mitochondria is also associated with development or wors-
ening of PN (Leung 2012; Xiao and Bennett 2012). Whether
mitochondrial damage is a common mechanism in all PN
remains to be determined. Without question, animal models
will continue to be important in unraveling the pathobiology
of PN.

The most common type of PN is distal symmetrical
sensorimotor polyneuropathy, which occurs in diabetes, with
diminished thermal and vibratory sensation leading to sen-
sory loss and eventually involving pain and autonomic fibers
(Tesfaye et al. 2010). With PN, clinical symptoms depend on
the predilection of causative conditions to target particular
peripheral fiber types (sensory, motor, autonomic, or differ-
ent permutations of these three) and the type of stimulus that
activates each nociceptor (e.g., thermal or mechanical).
Assorted regions and functions of the peripheral neuron are
affected, whether by direct injury or genetic predisposition,
including dorsal root ganglion cation channel signaling
(Staaf et al. 2009), axon transport (Holzbauer and Scherer
2011), and myelin sheath formation (Robinson et al. 2008).
Clinically, a continuum of symptoms can occur, ranging
from muscle weakness, spasticity, hyporeflexia, burning-type
or aching pain, hyperalgesias, hypoalgesias, allodynia,
dysesthesias, paresthesias, anesthesia in the hands and feet,
poor proprioception, and hypotension to cardiac conduction
abnormalities. Sensorimotor and sensory neuropathies occur
more frequently than autonomic neuropathy, which may
affect bowel function, bladder emptying, heart rate variation,
and blood pressure controls. Human peripheral nervous sys-
tem (PNS) perturbations lead to sensations that are episodic,
paroxysmal, or constant, as well as evoked or spontaneous
sensations, a spectrum of situations that render preclinical
modeling problematic.
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Challenges in Modeling Neuropathic Pain

Although all symptoms are burdensome, neuropathic pain
(NeP) clearly impacts patient function, even though symp-
toms of paresthesia and anesthesia may occur more frequent-
ly (Baron 2009; Xiao and Bennett 2012). Of the 116 million
US adults with pain, approximately 18% have neuropathic-
type pain (Toth et al. 2009). Poor quality sleep, depression,
and anxiety are associated with chronic NeP (Turk et al.
2010). Neuropathic pain is related to high use of healthcare
resources as well as decreased workplace productivity (Tölle
et al. 2006). Molecular targets continue to be identified for
pain manipulation, both centrally and peripherally; however,

neuropathic pain has been notoriously difficult to control.
NeP mechanisms are well reviewed in the pain literature
(Von Hehn et al. 2012). The activation of nociceptors leads
to the interruption of usual PNS signaling and includes
events such as the ectopic firing of neurons, alterations in
spinal cord circuits, and the subsequent changes in somato-
sensory cortex organization (Gustin et al. 2012). The cogni-
tive aspects of human NeP allow for individual concepts of
pain: the International Association for the Study of Pain
makes this clear in their definition of pain as “an unpleasant
sensory and emotional experience associated with actual or
potential tissue damage or described in terms of such dam-
age” (Loeser and Treede 2008). This differs from nocicep-
tion, which is defined as “the neural processes of encoding
and processing noxious stimuli” (Loeser and Treede 2008).
Additionally, acute pain can evolve to chronic pain over
time; however, the process is not as discernible as signs of
acute pain, especially in animal systems (Farmer et al. 2012).
Although PNS damage can be quantified in animal models
and by clinical neurologic testing, more injury does not al-
ways equate with more pain or sensory symptoms (Baron
2009; Gilron et al. 2013), supporting the multifaceted di-
mensions of NeP.
Experienced human sensations are connected to external

and environmental influences. For example, in chemotherapy-
induced PN, many factors are weighed when considering
whether the neuropathy is severe enough to warrant the dis-
continuation of potentially life-saving anticancer therapy.
Figure 1 highlights the integration of pathophysiologic com-
ponents of nerve damage and patient circumstances that influ-
ence symptom gravity and clinical decision-making. These
oncology-related psychosocial issues include stage and prog-
nosis of underlying condition, level of disability from the
neuropathy, previous experience with pain, social support,
economics, and employment status. In postamputation phan-
tom limb pain, personal factors related to anxiety and stress
influence patient pain scores (Ephraim et al. 2005). Thus,
nerve damage is not the sole determing factor of the human
neuropathic condition. This total patient experience informs
preclinical research and suggests that animal models include
some psychosocial aspects.
Higher cortical encoding of the transmitted peripheral no-

ciceptive information is challenging to discern in animal
models. Animal models are not as adept at recapitulation of
human sensory conditions because animals do not have spe-
cific means to relay the quality of pain. Many models use
nonspontaneous or evoked reflex reactions to simulate hu-
man pain; evoked and spontaneous pain may not use the
same pathways (King et al. 2011). Because of animals’ limit-
ed ability to discriminate allodynia and hyperalgesia, these
human sensations have been considered by some researchers
to lack animal correlates (Hansson 2003; King et al. 2011).
Reflex testing models have not been reproducible and infor-
mative enough to lead to novel agents approved for neuro-
pathic pain (Barrot 2012). Observable activities and
behaviors in rodents, such as abnormal posture, changes in
grooming, paw licking, aggressive behavior, and facial

Table 1 Example causes of and contributors to
peripheral neuropathy

Metabolic

Diabetes mellitus (Juranek et al. 2013; O’Brien et al. 2013)

Hypothyroidism (Ørstavik et al. 2006)

Uremia/renal failure (Krishnan and Kiernan 2007)

Infectious

Human immunodeficiency virus ( Brannagan et al. 1997;

Mangus 2013)

Varicella zoster virus (Oaklander 2001; Steain et al. 2010)

Mycobacterium leprae (Truman et al. 2013; Visser

et al. 2012)

Immune

Guillain-Barre syndrome (Kanda 2013; Soliven 2013)

Chronic inflammatory demyelinating polyneuropathy

(Pollard 2002)

Toxic

Anticancer therapy (chemotherapy, radiation therapy)

(Hausheer et al. 2006; Höke 2013)

Alcohol (Koike et al. 2003)

Arsenic (Vahidnia et al. 2007)

Nutrition

Deficiencies in vitamins B1, B12 (Ohnishi et al. 1980;

Tefferi and Pruthi 1994)

Deficiencies in α-tocopherol (Sokol 1988)

Excessive doses of pyridoxine (B6) (Krinke et al. 1985;

Rao and Sills 2013)

Traumatic

Extremity amputation (Flor et al. 2006)

Surgical (thoracotomy) (Wildgaard et al. 2009)

Inherited

Charcot-Marie-Tooth disease (Vavlitou et al. 2010)

Familial amyotrophic lateral sclerosis (Barret et al. 2011)

Acute porphyria (Lin et al. 2011)
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expressions, may reflect abnormal unevoked sensations and
be usefully relevant to human PN. Correlation with specific
human behaviors could be classified and validated for repli-
cation and interrogated for the concomitant molecular pro-
cesses. Functional compromise, such as alterations in sleep
cycles, social function, and cognition in response to neuropa-
thy, should also be considered in future models (Barrot 2012).
Experimental conditions could better emulate human clinical
trial design with the goal of better informing human clinical
studies. For example, although many studies have used one
sex of animal, assessing both sexes may inform clinical sex
differences in some NeP (Mogil and Chanda 2005; Monti
et al. 2007). In addition, blinded assessments have been
recommended for animal studies (Mogil 2009) as in human
randomized controlled trials. The type of diet and the rodent
strain have been shown to affect thermal hyperalgesia in par-
tial sciatic ligation rats and heat sensitivity in the nonligated
groups (Shir and Seltzer 2001). A neuropathic pain model is
more than the inducement of nerve damage; optimal experi-
mental design also includes the hypothesis-driven selection of
species; animal age; husbandry; types of procedures tested;
time after injury; and selection of measurements for spontane-
ous, operant, or complex behaviors (Mogil 2009).

Behavioral assessment would complement the sophisticat-
ed animal imaging, neurophysiologic tests, and assessment of
exercise that are annotated in animals. Innovative behavior
models, such as measurement of climbing activity in Droso-
phila, which has been shown to decrease with the addition of
cisplatin and evidence of PN on histology examination, are
being developed (Podratz et al. 2011). Confounding factors
with models include the influences of stress, disease, or
injury inflicted to create the PN model. The animals’ usual
functions, such as oral intake, can be interrupted as a conse-
quence of the method of acquiring PN, impeding the actual
neuropathy assessment. Beyond maintaining the health and
comfort of laboratory animals, which is ethically imperative,
it is also essential that animals are used only to conduct scien-
tifically rigorous studies that will yield fundamental data.
However, seemingly unfavorable consequences of model de-
velopment could benefit the experiments if they mimic the
comorbidities that occur in human neuropathy but do not in-
capacitate the animals. Some models of PN-associated dis-
eases, such as leptin-deficient/obese mice (Drel et al. 2006;
O’Brien et al. 2013) and 5T33MM multiple myeloma mice
(Asosingh et al. 2000), are genetically and phenotypically rel-
evant to the human conditions but have been challenging to

Figure 1 Components of chemotherapy-induced peripheral neuropathy (CIPN).
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create and validate as NeP models. New assessment models
that are validated to correlate with human spontaneous sensa-
tion will be breakthroughs in modeling human NeP (Bar-
rot 2012).

Preclinical assessments of pharmacologic therapies for
neuropathic pain and other facets of PN have rarely translat-
ed into United States Food and Drug Administration–
approved beneficial drugs. The lack of approved agents for
PN has fueled criticism about the validity of animal models
for neuropathic pain. Neurokinin 1 receptor antagonists,
which were eventually show to be inactive in human studies,
are the most commonly cited example. Although analgesic
activity with neurokinin 1 receptor blockade was highly
supported in animal models, the primary hypothesis of sub-
stance P as the sole or primary neuropeptide for human pain
transmission is confounded by the numerous other transmit-
ters that seem to simultaneously regulate the sensation of
pain (Hill 2000). Regardless, there currently are no substi-
tutes for animals when assessing pain and other sensations,
even though nonanimal models such as dorsal root ganglion
and myelinated axon cultures and fabricated skin with
sensors (Salowitz et al. 2013) have an important role in
researching biology.

Although the predictive value of preclinical work in PN
can be enhanced, the conduct of human trials could also be
augmented. Suggested modifications of certain aspects of
chronic pain clinical trial designs should improve confidence
in analgesic clinical trial results, especially to insure that
negative trials are truly negative (Dworkin et al. 2012). In
some types of neuropathy, methods to obtain objective and
generalizable human subject data by the use of patient-
reported outcomes (PROs) have not been standardized.
PROs are the patients’ self-report of how they feel and func-
tion in the context of a medical condition or therapy for a
condition, without any external interpretation. The majority
of PRO instruments are questionnaires; PRO tools for neuro-
pathic symptoms and pain have been used to describe re-
sponses to interventions as the primary outcome measures.
However, not all of these are validated or provide complete
information for either neuropathic pain or other neurosenso-
ry endpoints. Their inconsistent use across studies does not
allow for cross-trial comparisons, hampering comparisons
and data interpretation and illustrating the advantage of
requisite agreement on some common measures. More ob-
jective and standardized definitions will tighten eligibility
criteria to improve the reliability of clinical trial results. In
chemotherapy-induced PN, efforts at clarifying the most
informative measures and standardization are ongoing
(Cavaletti et al. 2013).

Regarding NeP, the National Institutes of Health (NIH)
Pain Consortium is a trans-NIH effort to encourage and ad-
vance all forms of pain research, including neuropathic pain,
and to encourage partnerships between academia, industry,
and government entities (http://painconsortium.nih.gov/).
The Analgesic, Anesthetic, and Addiction Clinical Trial
Translations, Innovations, Opportunities, and Networks
(ACTTION) public–private partnership with the US Food

and Drug Administration promotes research and activities re-
lated to pain/NeP to ultimately develop efficacious analge-
sics that are safe and available to all patient populations
(www.acttion.org/). Peripheral nerve symptom severity and
chronicity have spawned patient advocacy groups such as
the Neuropathy Association. This nonprofit organization
provides patient support and education; another aspect of
their mission is advancement of PN research (www.
neuropathy.org). These groups ensure that the clinical burden
of PN remains in the public forefront and is a research com-
munity priority.

Topics in This Issue

Accomplished animal researchers have depicted the best use
of their models for PN in this issue of the Journal. Two arti-
cles focus on particular clinical conditions associated with
PN: diabetes mellitus (O’Brien et al. 2013) and autoimmune
disease (Soliven 2013). An additional two articles are con-
cerned with neuropathy from infectious agents: human im-
munodeficiency virus (Mangus et al. 2013) and leprosy
(Truman et al. 2013). Animal models to explore PNS toxici-
ty as a result of environmental and chemical exposure
(Rao and Sills 2013) and standard-dose chemotherapy
(Höke 2013) are explained. Drosophila can model peripheral
nerve degeneration (Freeman 2013), a consequence of some
PN. International, national, and local institutional monitor-
ing of laboratory animal welfare is clarified (Brabb et al.
2013), with illumination of NIH guidelines and resources for
use and care of animal model research supported by the NIH
(Brown et al. 2013). As outlined in this issue, animal models
expand our knowledge of PN in conjunction with extension
of technology and behavioral research.

Concluding Thoughts

The predictive ability of animal models will be enhanced by
further collaborations among basic, translational, clinical, and
behavioral scientists that focus on PN symptom perception
by the models. Multiple types of models are necessary to in-
vestigate particular neuropathies. Clinical research priorities
include the significant disability that results from anesthesia
and paresthesias, in addition to NeP. Advances in the science
of PN-induced neural degeneration will aid development of
neuropathic disease–modifying agent strategies, such as re-
generation. Prevention of PNS damage and, subsequently, ab-
normal sensation is the ultimate goal. If a common process
for nerve damage is discovered, treatment/prevention strate-
gies may still need to be specifically devised for each type of
condition. For example, metabolic control of diabetes is feasi-
ble as potential prevention/treatment of neuropathy; however
chemotherapy-induced PN must be prevented or managed
while the insult on normal neuronal tissue continues with re-
peated doses of anticancer therapy. Animal models continue
to provide a window to experienced symptoms and physiolo-
gy and impact the translation of bench discoveries to the

256 ILAR Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/ilarjournal/article/54/3/253/687792 by guest on 23 April 2024

http://painconsortium.nih.gov/
http://painconsortium.nih.gov/
http://painconsortium.nih.gov/
http://painconsortium.nih.gov/
http://painconsortium.nih.gov/
www.acttion.org/
www.acttion.org/
www.acttion.org/
www.neuropathy.org
www.neuropathy.org
www.neuropathy.org
www.neuropathy.org


bedside. In this issue of the Journal, researchers describe and
refine their current models and, with new animal models,
move neurosciences forward to impact patient care.
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