We present an a posteriori estimator of the error in the $$\mathrm{L}^2$$-norm for the numerical approximation of the Maxwell’s eigenvalue problem by means of Nédélec finite elements. Our analysis is based on a Helmholtz decomposition of the error and on a superconvergence result between the $$\mathrm{L}^2$$-orthogonal projection of the exact eigenfunction onto the curl of the Nédélec finite element space and the eigenfunction approximation. Reliability of the a posteriori error estimator is proved up to higher order terms, and local efficiency of the error indicators is shown by using a standard bubble functions technique. The behavior of the a posteriori error estimator is illustrated on a numerical test.

You do not currently have access to this article.