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This article introduces predefined-time stable dynamical systems which are a class of fixed-time stable
dynamical systems with settling time as an explicit parameter that can be defined in advance. This concept
allows for the design of observers and controllers for problems that require to fulfil hard time constraints.
An example is encountered in the fault detection and isolation problem, where mode detection in a timely
manner needs to be guaranteed in order to apply a recovery action. Furthermore, through the notion of
strong predefined-time stability, the approach hereinafter presented permits to overcome the problem of
overestimation of the convergence time bound encountered in previous methods for the analysis of finite-
time stable systems, where the stabilization time is often an unbounded function of the initial conditions
of the system. A Lyapunov analysis is provided together with a detailed discussion of the applications to
consensus and first order sliding mode controller design.
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1. Introduction

Nowadays, there exist several applications of dynamical systems that are characterized by requiring to
meet hard response-time constraints while being robust to uncertainties such as external disturbances or
parameter variation. A basic case is encountered in the fault detection and isolation problem, where it is
of paramount importance to guarantee the mode detection in a timely manner in order to apply a recovery
action (Lee & Park, 2012), because in some situations a late response may lead to a no recovery scenario.
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i2 J. D. SÁNCHEZ-TORRES ET AL.

When, additionally, robustness to external disturbances and/or parameter uncertainty is required, sliding
mode (SM) algorithms have been one of the most promising methods (Drakunov & Utkin, 1992; Utkin,
1992).

Nonetheless, even if various developments in finite-time stability, fixed-time stability and deadbeat
control have been carried out to deal with these time requirements (see e.g., Roxin, 1966; Weiss & Infante,
1967; Michel & Porter, 1972; Ryan, 1991; Bhat & Bernstein, 2000; Hong, 2002; Orlov, 2005; Moulay
& Perruquetti, 2006 for finite-time stability, Andrieu et al., 2008; Cruz-Zavala et al., 2010; Polyakov,
2012 for fixed-time stability and Smith, 1957; Tallman & Smith, 1958 for deadbeat control), the design
of robust controllers and observers guaranteeing that time constrains are met is still challenging. One
of the main reasons is because, in current methods, there is no explicit relationship between the system
parameters and the convergence time bound. As a consequence, current settling-time estimation methods
are usually conservative and inaccurate.

Such is the case in several control approaches with the finite-time feature, like Bhat & Bern-
stein (2000), Orlov (2005) and Moulay & Perruquetti (2006), where the stabilization time is often
an unbounded function of the initial conditions of the system. To make the settling time bounded for
any initial condition a stronger form of stability, called fixed-time stability, was introduced by Andrieu
et al. (2008) for homogeneous systems and by Cruz-Zavala et al. (2010), Polyakov (2012) and Polyakov
& Fridman (2014) for systems with SMs. The settling time of fixed-time stable systems presents a class
of uniformity with respect to their initial conditions.

Unfortunately, when current fixed-time algorithms are applied to control or observation problems,
there are still hard issues related to the convergence-time estimation. The main drawback is that the
relationship between the parameters of the system and the bound of the convergence time is not explicit;
thus, finding the system parameters to achieve a desired maximum stabilization time is challenging,
leading to very conservative estimations of the settling-time bound and to a transient response of lower
quality than necessary as consequences. Consider for example the work by Cruz-Zavala et al. (2011),
where the settling-time bound estimate is approximately 100 times larger than the actual true fixed sta-
bilization time. To overcome this parameter selection problem, a simulation-based approach has been
proposed under the concept of prescribed-time stability (Fraguela et al., 2012); nonetheless, since the
method is simulation-based, it lacks rigorous analysis and explicit formulas for the settling-time compu-
tation are not provided. A rigorous approximation of the settling time in planar systems controlled with
uniform finite-time controllers is given by Oza et al. (2015); however, this approach implies cumbersome
calculations and the resulting estimate is not directly related to the system parameters.

In order to cope with the problems presented above, a class of systems where an upper bound of the
fixed stabilization time is a tunable parameter is proposed. Such systems are defined as predefined-time
stable systems. Moreover, two categories are identified within this definition: weakly predefined-time
stable systems only possesses the aforementioned property, while strongly predefined-time stable systems
present the additional advantage that this tunable parameter is not only an upper bound for the settling time
but precisely the least upper bound, thus avoiding any unnecessary overestimation of the convergence
time.

Predefined-time stability is strongly related to the continuous deadbeat control; for example, a classic
case of predefined-time stable controllers are those based on the posicast method (Smith, 1957; Tallman
& Smith, 1958), where part of the input command is delayed to achieve deadbeat control. However,
predefined-time algorithms based on deadbeat control are not robust to external disturbances or parameter
uncertainty and time requirements are not guaranteed to be met when they are present.

Having defined the concept of predefined-time stability, this paper presents the analysis of a class of
first-order predefined-time stable dynamical systems (Sánchez-Torres et al., 2014, 2015). In contrast to
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PREDEFINED-TIME STABLE DYNAMICAL SYSTEMS i3

most of the fixed-time stable systems, the bound on the convergence time associated with this class of
systems is not a conservative estimate but truly the minimum value that is greater than all the possible
exact settling times. Moreover, this bound is not based on simulations due to the fact that all the mentioned
properties are characterized by a suitable Lyapunov theorem. Furthermore, the system structure contains
no delay terms, making its analysis and design easier when compared to the mentioned deadbeat methods.
Contrary to previously proposed methods, under mild assumptions, the approach hereinafter presented
guarantees that time constraints are met even in the presence of uncertainty.

In addition to the predefined settling time, the devised systems depend on other parameters whose
values determine whether the right-hand sides of the differential equations are continuous or discon-
tinuous and, from both cases, predefined-time controllers are derived. Besides, taking advantage of the
discussed features, more general first order SM controllers with predefined-time reaching phase are
introduced. Finally, a predefined-time consensus algorithm is designed for complete networks.

The rest of this article is structured in the following manner: Section 2 exposes the main results of
this article including necessary the mathematical preliminaries, a class of predefined-time stable systems
and the characterization of the Lyapunov conditions they satisfy. In Section 3, the influence of the tuning
parameters on the proposed class of systems is analysed and a suggestion for their selection is provided.
In addition, a brief numerical study on the relationship between the parameter selection and the effect
of noisy measurements is presented. Section 4 shows the design of first order SM controllers where the
reaching phase stage ends after a predefined time. Taking advantage of the strong stability features of
the proposed family of systems, a consensus algorithm for complete networks is presented in Section 5.
Finally, Section 6 presents the conclusions of this article.

2. Predefined-time stability: definitions and Lyapunov characterization

2.1. Basic definitions for unperturbed systems

Consider the system

ẋ = f (t, x; ρ), (2.1)

where x ∈ R
n is the system state, ρ ∈ R

b with ρ̇ = 0 represents the parameters of the system, and
f : R+ × R

n → R
n is a nonlinear function. The time variable t is defined on the interval [t0, ∞), where

t0 ∈ R+ ∪ {0}. For this system, the initial conditions are x0 = x(t0).

Definition 2.1 (Globally fixed-time attraction (Polyakov, 2012)) A non-empty set M ⊂ R
n is said to

be globally fixed-time attractive for system (2.1) if any solution x(t, x0) of (2.1) reaches M in some finite
time t = t0 + T(x0), where the settling-time function T : R

n → R+ ∪ {0} is bounded by some positive
number Tm, i.e., T(x0) ≤ Tm for all x0 ∈ R

n.

Note that there are several possible choices for Tm; for example, if T(x0) ≤ Tm for a positive number
Tm, also T(x0) ≤ λTm with λ ≥ 1. This motivates the definition of a set which contains all the bounds
of the settling-time function.

Definition 2.2 (Settling-time set) Let the set of all the bounds of the settling-time function for system
(2.1) be defined as follows:

T = {Tmax ∈ R+ : T(x0) ≤ Tm ∀ x0 ∈ R
n} . (2.2)
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In addition, the minimum bound for the settling-time function of (2.1) is defined in the following
manner:

Definition 2.3 (Least upper bound for the settling time) Consider the set T defined in (2.2). The least
upper bound of the settling-time function, denoted by Tf , is defined as

Tf = min T = sup
x0∈Rn

T(x0). (2.3)

Remark 2.1 For several applications it could be desirable for system (2.1) to stabilize within a time
Tc ∈ T which can be defined in advance as function of the system parameters, that is Tc = Tc(ρ).
The cases where this property is present motivate the definition of predefined-time stability. A strong
notion of this class of stability is given when Tc = Tf , i.e., Tc is the true fixed-time in which the system
stabilizes. A weak notion of predefined-time stability is presented when Tc ≥ Tf , that is, if well it is
possible to define an upper bound of the settling-time function in terms of the system parameters, this
overestimates the true fixed-time in which the system stabilizes.

Definition 2.4 For the system parameters ρ and a constant Tc(ρ) > 0, a non-empty set M ⊂ R
n is said

to be

(i) Globally weakly predefined-time attractive for system (2.1) if any solution x(t, x0) of (2.1) reaches
M in some finite time t = t0 + T(x0), where the settling-time function T : R

n → R is such that

T(x0) ≤ Tc ∀ x0 ∈ R
n.

In this case, Tc is called the weak predefined time.

(ii) Globally strongly predefined-time attractive for system (2.1) if any solution x(t, x0) of (2.1) reaches
M in some finite time t = t0 + T(x0), where the settling-time function T : R

n → R is such that

sup
x0∈Rn

T(x0) = Tc.

In this case, Tc is called the strong predefined time.

2.2. Generalization to perturbed systems

Consider the system

ẋ = f (t, x, d; ρ), (2.4)

where x ∈ R
n is the system state, d ∈ Ω ⊂ R

m, with Ω bounded, is a perturbation term, ρ ∈ R
b with

ρ̇ = 0 represents the parameters of the system, and f : R+ × R
n × R

m → R
n is a nonlinear function.

The time variable t is defined on the interval [t0, ∞), where t0 ∈ R+ ∪ {0}. For this system, the initial
conditions are x0 = x(t0).

Note that the settling time of system (2.4) to a given set depends not only on x0 but also on the
trajectory ω ∈ Ω[t0,∞) = {d : [t0, ∞) → Ω | d is a function} followed by the perturbation d(t).
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PREDEFINED-TIME STABLE DYNAMICAL SYSTEMS i5

Definition 2.5 For the system parameters ρ and a constant Tc(ρ) > 0, a non-empty set M ⊂ R
n is said

to be

(i) Globally weakly predefined-time attractive for system (2.4), if any solution x(t, x0, ω) of (2.4)
reaches M in some finite time t = t0+T(x0, ω), where the settling-time function T : R

n×Ω[t0,∞) →
R is such that

T(x0, ω) ≤ Tc ∀ x0 ∈ R
n, ω ∈ Ω[t0,∞).

In this case, Tc is called the weak predefined time.

(ii) Globally strongly predefined-time attractive for system (2.4), if any solution x(t, x0, ω) of (2.4)
reaches M in some finite time t = t0+T(x0, ω), where the settling-time function T : R

n×Ω[t0,∞) →
R is such that

sup
x0∈Rn ,ω∈Ω[t0,∞)

T(x0) = Tc.

In this case, Tc is called the strong predefined time.

2.3. Lyapunov stability

First, the following theorem provides a useful Lyapunov condition for weakly predefined-time attractive
sets:

Theorem 2.1 (Lyapunov characterization of weak predefined-time stability, Sánchez-Torres et al., 2014,
2015) If there exists a continuous radially unbounded function

V : R
n → R+ ∪ {0}

such that x ∈ M if and only if V(x) = 0 and any solution x(t) of (2.1) or (2.4) satisfies

V̇ ≤ − 1

pTc
exp(V p)V 1−p (2.5)

for constants Tc = Tc(ρ) > 0 and 0 < p ≤ 1, then the set M is globally weakly predefined-time
attractive for system (2.1) or (2.4), respectively, and the weak predefined time is Tc.

Proof. The solution to (2.5) is

V(t) ≤
[

ln

(
1

t−t0
Tc

+ exp(−V p
0 )

)] 1
p

,

where V0 = V(x0).
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i6 J. D. SÁNCHEZ-TORRES ET AL.

Note that V(t) = 0 if t−t0
Tc

+ exp(−V p
0 ) = 1, hence the settling-time function for the system (2.1) is

such that

T(x0) ≤ Tc

[
1 − exp(−V p

0 )
] ∀ x0 ∈ R

n,

and for the system (2.4) is such that

T(x0, ω) ≤ Tc

[
1 − exp(−V p

0 )
] ∀ x0 ∈ R

n, ω ∈ Ω[t0,∞).

Then, since 0 < exp(−V p
0 ) ≤ 1, Tc is an upper bound for the settling-time function and, therefore, the

weak predefined time. �

Theorem 2.1 characterizes weak predefined-time stability in a very practical way since the Lya-
punov condition (2.5) directly involves a bound on the convergence time. Nevertheless, this condition
is not enough to imply strong predefined-time stability. The following theorems provide Lyapunov
characterizations for strongly predefined-time attractive sets for both perturbed and unperturbed systems:

Theorem 2.2 (Lyapunov characterization of strong predefined-time stability) If there exists a continuous
radially unbounded function

V : R
n → R+ ∪ {0}

such that x ∈ M if and only if V(x) = 0 and any solution x(t) of (2.1) satisfies

V̇ = − 1

pTc
exp(V p)V 1−p (2.6)

for constants Tc = Tc(ρ) > 0 and 0 < p ≤ 1, then the set M is globally strongly predefined-time
attractive for system (2.1) and the strong predefined time is Tc.

Proof. Since the equality version of (2.5) holds, the settling-time function is known to be exactly

T(x0) = Tc

[
1 − exp(−V p

0 )
]
,

where V0 = V(x0).
Besides, given that V is radially unbounded, supx0∈Rn [1 − exp(−V p

0 )] = 1 and it follows that

sup
x0∈Rn

T(x0) = Tc. �
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PREDEFINED-TIME STABLE DYNAMICAL SYSTEMS i7

The following theorem extends the Lyapunov result given in Theorem 2.2 to the strong predefined-
time stability of perturbed systems:

Theorem 2.3 If there exists a continuous radially unbounded function

V : R
n → R+ ∪ {0}

such that x ∈ M if and only if V(x) = 0 and any solution x(t) of (2.4) satisfies

sup
d∈Ω

V̇ = − 1

pTc
exp(V p)V 1−p (2.7)

for constants Tc = Tc(ρ) > 0 and 0 < p ≤ 1, then the set M is globally strongly predefined-time
attractive for system (2.4) with Tc as the strong predefined time.

Proof. If (2.7) is satisfied, it holds that

sup
ω∈Ω[t0,∞)

T(x0, ω) = Tc

[
1 − exp(−V p

0 )
] ∀ x0 ∈ R

n

with V0 = V(x0). Then, since V is radially unbounded, it follows that

sup
x0∈Rn ,ω∈Ω[t0,∞)

T(x0, ω) = Tc. �

2.4. A class of predefined stable systems

Finally, a class of strongly predefined-time stable systems is presented. These systems depend on the
least upper bound for the settling time, i.e., the strong predefined time, as an explicit parameter.

Definition 2.6 (Predefined-time stabilizing function) For x ∈ R
n, the predefined-time stabilizing

function is defined as

Φm,q(x) = 1

mq
exp (‖x‖mq)

x

‖x‖mq , (2.8)

where m ≥ 1 and 0 < q ≤ 1
m .

Some important properties of the function (2.8) are:

1. The Maclaurin representation of (2.8) is given by

Φm,q(x) = 1

mq

[
x

‖x‖mq + x + x
∞∑

i=2

‖x‖i

i!

]
, (2.9)

where it is observed that Φm,q(x) is continuous and non-Lipschitz for 0 < q < 1
m and, discontinuous

for q = 1
m .
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i8 J. D. SÁNCHEZ-TORRES ET AL.

2. For x ∈ R, the predefined-time stabilizing function can be written as Φm,q(x) =
1

mq exp (|x|mq) |x|1−mqsign(x) for 0 < q < 1
m and, Φm,q(x) = exp (|x|) sign(x) for q = 1

m .

With the definition of this stabilizing function, the following lemma presents a dynamical system
with the strong predefined-time stability property.

Lemma 2.1 (A predefined-time stable dynamical system) For every initial condition x0, the system

ẋ = − 1

Tc
Φm,q(x) (2.10)

with Tc > 0, m ≥ 1 and 0 < q ≤ 1
m is globally strongly predefined-time stable with strong predefined

time Tc. That is, x(t) = 0 for all t ≥ t0 + Tc in spite of the value of x0.

Proof. Consider the Lyapunov function V = ‖x‖m, defined for x ∈ R
n. The derivative of V along the

trajectories of (2.10) is

V̇ = m ‖x‖m−1 xT

‖x‖ ẋ = m ‖x‖m−2 xT ẋ

= − 1

qTc
‖x‖m−2 exp (‖x‖mq) xT x

‖x‖mq

= − 1

qTc
exp (‖x‖mq) ‖x‖m(1−q)

= − 1

qTc
exp (V q) V 1−q,

which is negative definite. Therefore, system (2.10) is asymptotically stable. In addition, considering
that V is a continuous radially unbounded function, from Theorem 2.2, the desired result follows. �

Example 2.1 (A multi-variable case) Consider the system

ẋ = − 1

Tc
Φm,q(x − xss)

with x ∈ R
3, xss = [3, 0, −1]T , Tc = 0.1 time units, m = 1 and q = 1/2.

Figure 1 shows the trajectories of the system for several initial conditions. It can be observed that all
these trajectories converge to the equilibrium point xss at least in the strong predefined time Tc = 0.1.

3. Influence of the tuning parameters

In this section, the influence of the product mq, on the dynamics of the predefined-time stable system
(2.10), as well as the effect of both mq and Tc in the performance of this system in the case of noisy
measurements, are analysed.
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Fig. 1. Time response of the system state variables.

3.1. Influence of mq on the dynamics of the system

With the purpose of evaluating how the parameters m and q, or more precisely the product mq, affect
the behaviour of the strongly predefined-time stable system given by (2.10), the following function is
introduced:

W(t) = ‖x(t)‖ .

The first aspect to be considered is the smoothness of the convergence of system (2.10) to the
manifold x = 0. In order to do this, the time derivative of W(t) is required; since ‖x‖ is a valid Lyapunov
function that satisfies the equality version of (2.5) with p = mq, this derivative is given by

Ẇ(t) = − 1

mqTc
exp (W(t)mq) W(t)1−mq. (3.1)

Let T(x0) be the exact settling time of system (2.10); that is, T(x0) = Tc

[
1 − exp

(−Wmq
0

)]
. Then,

Ẇ(T(x0)+t0) is the first time derivative of ‖x‖ at the exact moment of convergence and, since W(T(x0)+
t0) = 0, it follows that

Ẇ(T(x0) + t0) = −01−mq

mqTc
.
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i10 J. D. SÁNCHEZ-TORRES ET AL.

Thus, ‖x‖ converges to zero with a time derivative that is equal to zero for 0 < mq < 1 and undefined
for mq = 1. However, if mq = 1, it can be proved that

lim
t→T(x0)+t0

− Ẇ(t) = − 1

Tc
.

In spite of this, values of mq higher than 1
2 produce a visually abrupt convergence. In order to understand

this phenomenon, an analysis of the second derivative of W(t) at the moment of converge is performed
as well.

Differentiating (3.1) produces

Ẅ(t) = (mq − 1 − mqW(t)mq)W(t)−mq

mqTc exp (−W(t)mq)
Ẇ(t)

= (1 − mq + mqW(t)mq)W(t)1−2(mq)

(mqTc)
2 exp (−2W(t)mq)

.

Then, the second time derivative of ‖x‖ at the exact moment of convergence is given by

Ẅ(T(x0) + t0) = (1 − mq)01−2(mq)

(mqTc)
2 .

Thus, ‖x‖ converges to zero with a second time derivative that is equal to zero for 0 < mq < 1
2 , undefined

for mq = 1
2 , and infinite for mq > 1

2 . However, if mq = 1
2 , it can be proved that

lim
t→T(x0)+t0

− Ẅ(t) = 2

Tc
2 .

The fact that Ẅ(T(x0) + t0) is infinite for mq > 1
2 explains why the convergence of ‖x‖ to zero is

appreciably less smooth in this case than when mq ≤ 1
2 .

The second aspect that should be studied is the steepness of the initial response of ‖x‖, which is
characterized by Ẇ(t0). Letting x0 = x(t0), it follows from (3.1) that

Ẇ(t0) = − 1

mqTc
exp (‖x0‖mq) ‖x0‖1−mq .

Figure 2 portrays TcẆ(t0) as a function of mq for several values of ‖x0‖ of both low and high
orders of magnitude. It can be observed that, for every ‖x0‖, there exists a value of mq that maximizes
TcẆ(t0); that is, that produces the least steep initial response of ‖x‖. If mq is significantly far from this
optimum value, the initial response might be so drastic to the extent of causing major errors in numerical
simulations and digital implementations.

A suggestion for the value of mq as a function of the norm of x0 is provided in Fig. 3. For a given
‖x0‖, this suggestion corresponds to the value of mq in

(
0, 1

2

]
that maximizes TcẆ(t0). The resulting

suggested value is valid for any constant Tc > 0 since, naturally, it would also maximize Ẇ(t0). The
restriction for mq to be less than or equal to 1

2 is placed in order to maintain an acceptable smoothness
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PREDEFINED-TIME STABLE DYNAMICAL SYSTEMS i11

Fig. 2. Steepness of ‖x‖ at t = t0 for several values of ‖x0‖.

at the time of convergence given that, as has been discussed, a larger value would cause ‖x‖ to reach
zero with an infinite second time derivative.

Remark 3.1 Adjusting the parameters of a predefined-time stable system in accordance with detailed
knowledge of its initial conditions would certainly defeat the purpose of predefined-time stability
itself. However, it should be noted that using the suggestion given by Fig. 3 based on the expected
order of magnitude of ‖x0‖ should suffice to avoid extremely steep initial responses and their related
complications.

3.2. Noisy measurements

In the non-ideal case where the measurement of x presents noise, system (2.10) becomes

ẋ = − 1

Tc
Φm,q(x + v), (3.2)
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i12 J. D. SÁNCHEZ-TORRES ET AL.

Fig. 3. Suggested value for mq as a function of the initial condition.

where v is a random variable that represents the noise. In this scenario, the trajectories of the system
cannot be perfectly confined to the manifold x = 0 and some error is unavoidable. Certainly, the
magnitude of this error would depend on the values of the parameters Tc and mq and this dependence
is to be assessed. In order to do so, the scalar version of system (3.2) was simulated for several values
of Tc and mq and with a Gaussian-distributed noise v. This noise was zero-mean and with a standard
deviation of 0.1. The simulations were carried out through Euler’s method with a sampling period of
0.01 time units and from the initial condition x(0) = 0. In each case, the average absolute error from
t = 0 to t = 400, given by

1

400

∫ 400

0
|x(t)| dt

was calculated. The results for this average absolute error as a function of the tuning parameters are
depicted in Fig. 4.

As it was expected, the effect of the noise grows in magnitude as Tc decreases, since smaller values of
Tc impose a faster and steeper convergence. The effect of mq, however, was not so clear since the several
occurrences of this expression in the differential equation of the system have different influences. In
particular, as mq increases, the factors 1

mq and 1
‖x+v‖mq decrease but exp ‖x + v‖mq increases. The evidence

in Fig. 4 suggests that this opposing effects come to the best balance when mq is near the middle of the
interval (0, 1].

4. Predefined-time SM controllers

A basic problem in the design of feedback control systems is the stabilization and tracking in the
presence of uncertainty caused by plant parameters variation and external perturbations. In order to
deal with this problem, several approaches have been proposed. Most of them are based on Lyapunov
stability theory and variable structure systems with SMs. The SM techniques are based on the idea of
the sliding manifold, that is, an integral manifold with finite reaching time (Drakunov & Utkin, 1992),
and have been widely used for the problems of control and observation of dynamical systems due to
their characteristics of finite time convergence as well as robustness and insensitivity to uncertainties
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PREDEFINED-TIME STABLE DYNAMICAL SYSTEMS i13

Fig. 4. Average absolute error as a function of the tuning parameters for a predefined-stable system with noisy measurements.

due to external bounded disturbances and parameters variation (Utkin, 1992; Utkin et al., 2009). With
this idea, the aim of this section is to present a class of first order SM controllers with the novel property
of a predefined-time reaching phase.

4.1. Motivation

In order to apply the previous results to SM controller design, consider the dynamical system

ẋ = u + Δ(t, x) (4.1)

with x, u ∈ R
n, Δ : R+ × R

n → R
n and t0 = 0. The main objective is to stabilize system (4.1) at

the point x = 0 in a predefined time Tc, starting from an arbitrary state x0 = x(0) and in spite of the
unknown disturbance Δ(t, x).

Firstly, weakly and strongly predefined-time stable continuous controllers are presented. Also, a
stability and robustness analysis in the presence of a class of vanishing perturbation is performed.

Lemma 4.1 (A weak predefined-time controller) Let the function Δ(t, x) be considered as a vanishing
perturbation term such that ‖Δ(t, x)‖ ≤ δ ‖x‖, with 0 < δ < ∞ a known constant. Then, by selecting
the control input

u = −
(

1

Tc
+ kmq

)
Φm,q(x) (4.2)

with Tc > 0, m ≥ 1, 0 < q < 1
m , and k ≥ δ, the system (4.1) closed by (4.2) is globally weakly

predefined-time stable with Tc as the weak predefined time.
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i14 J. D. SÁNCHEZ-TORRES ET AL.

Proof. Consider the Lyapunov function V = ‖x‖m defined for x ∈ R
n; its derivative along the trajectories

of (4.1)-(4.2) is given by V̇ = m ‖x‖m−2 xT ẋ. Therefore,

V̇ = m ‖x‖m−2 xT

[
Δ(t, x) −

(
1

Tc
+ kmq

)
Φm,q(x)

]

= m
[‖x‖m−2 xTΔ(t, x) − k exp(‖x‖mq) ‖x‖m(1−q)

]− 1

qTc
exp(‖x‖mq) ‖x‖m(1−q) .

From expression (2.9), it follows that

V̇ ≤ − 1

qTc
exp(‖x‖mq) ‖x‖m(1−q) + m

[‖x‖m−2 |xTΔ(t, x)| − k ‖x‖m
]
.

Applying the Cauchy-Schwarz inequality,

V̇ ≤ − 1

qTc
exp(‖x‖mq) ‖x‖m(1−q) + m

[‖x‖m−2 ‖x‖ ‖Δ(t, x)‖ − k ‖x‖m
]

≤ − 1

qTc
exp(‖x‖mq) ‖x‖m(1−q) − (k − δ)m ‖x‖m .

It is observed that the system is globally asymptotically stable. Moreover,

V̇ ≤ − 1

qTc
exp(V q)V 1−q.

Then, by direct application of Theorem 2.1, the proof is finished. �

Lemma 4.2 (A strong predefined-time controller) Let the function Δ(t, x) be considered as a vanishing
perturbation term such that ‖Δ(t, x)‖ ≤ δ ‖x‖, with 0 < δ < ∞ a known constant. Then, by selecting
the control input

u = − 1

Tc
Φm,q(x) − δx (4.3)

with Tc > 0, m ≥ 1, and 0 < q < 1
m , the system (4.1) closed by (4.3) is globally strongly predefined-time

stable with Tc as the strong predefined time.

Proof. Consider the Lyapunov function V = ‖x‖m defined for x ∈ R
n; its derivative along the trajectories

of (4.1)-(4.3) is given by

V̇ = m ‖x‖m−2 xT

[
Δ(t, x) − 1

Tc
Φm,q(x) − δx

]

= − 1

qTc
exp(‖x‖mq) ‖x‖m(1−q) + m ‖x‖m−2

[
xTΔ(t, x) − δ ‖x‖2

]
.
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PREDEFINED-TIME STABLE DYNAMICAL SYSTEMS i15

Since xTΔ(t, x) ≤ ‖x‖ ‖Δ(t, x)‖ ≤ δ ‖x‖2, the expression m ‖x‖m−2
[
xTΔ(t, x) − δ ‖x‖2

]
is non-

positive. Furthermore, for any x ∈ R
n, this expression can equal zero in the particular scenario where

xTΔ(t, x) = δ ‖x‖2; that is,

sup
‖Δ(t,x)‖≤δ‖x‖

m ‖x‖m−2
[
xTΔ(t, x) − δ ‖x‖2

] = 0 ∀ x ∈ R
n.

From this it can be concluded that

sup
‖Δ(t,x)‖≤δ‖x‖

V̇ = − 1

qTc
exp(‖x‖mq) ‖x‖m(1−q) = − 1

qTc
exp(V q)V 1−q ∀ x ∈ R

n.

Then, by direct application of Theorem 2.3, the proof is finished. �

Secondly, a continuous controller is analysed for the case of non-vanishing perturbations.

Lemma 4.3 (Continuous controller in presence of non-vanishing perturbations) Let the function Δ(t, x)
be considered as a non-vanishing bounded disturbance such that ‖Δ(t, x)‖ ≤ δ, with 0 < δ < ∞ a
known constant. Then, by selecting the control input

u = − 1

Tc
Φm,q(x) (4.4)

with Tc > 0, m ≥ 1, and 0 < q < 1
m , the system (4.1) closed by (4.4) is uniformly ultimately-bounded

of the form ‖x‖ ≤
[

1−mq
mq W

(
mq

1−mq (mqTcδ)
mq

1−mq

)] 1
mq

with Tc as an upper bound for the convergence

time to this region. Here, W(·) stands for the Lambert function (Lambert, 1758), the inverse function of
f (ξ) = ξ exp(ξ) for ξ ∈ R, i.e. ξ = W(ξ exp(ξ)) (see Corless et al. (1996)).

Proof. Consider the Lyapunov function V = ‖x‖m defined for x ∈ R
n; its derivative along the trajectories

of (4.1)-(4.4) is given by V̇ = m ‖x‖m−2 xT ẋ. Therefore,

V̇ = m ‖x‖m−2 xT

[
Δ(t, x) − 1

Tc
Φm,q(x)

]

= m ‖x‖m−2

[
xTΔ(t, x) − 1

mqTc
exp (‖x‖mq) ‖x‖2−mq

]
.

From expression (2.9), it follows that

V̇ ≤ −m ‖x‖m−2

[
1

mqTc
exp (‖x‖mq) ‖x‖2−mq − |xTΔ(t, x)|

]
.

Applying the Cauchy-Schwarz inequality,

V̇ ≤ −m ‖x‖m−2

[
1

mqTc
exp (‖x‖mq) ‖x‖2−mq − ‖x‖ ‖Δ(t, x)‖

]

≤ −m ‖x‖m−1

[
1

mqTc
exp (‖x‖mq) ‖x‖1−mq − δ

]
.
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i16 J. D. SÁNCHEZ-TORRES ET AL.

It is observed that, in order to obtain V̇ < 0, it is necessary that 1
mqTc

exp (‖x‖mq) ‖x‖1−mq > δ. Solving
this expression for ‖x‖ yields

‖x‖ >

[
1 − mq

mq
W
(

mq

1 − mq
(mqTcδ)

mq
1−mq

)] 1
mq

and, therefore, the system is uniformly ultimately-bounded.

Moreover, for ‖x‖ >
[

1−mq
mq W

(
mq

1−mq (mqTcδ)
mq

1−mq

)] 1
mq

, it holds that

V̇ ≤ − 1

qTc
exp(V q)V 1−q.

Then, from arguments similar to those used to prove Theorem 2.1, it is clear that the region ‖x‖ ≤[
1−mq

mq W
(

mq
1−mq (mqTcδ)

mq
1−mq

)] 1
mq

is reached before t = Tc. �

Finally, in order to improve the robustness of the continuous controller, weak predefined-time and
strong predefined-time stable discontinuous controllers, including integral SM extensions, are introduced
for the case of non-vanishing perturbations.

In order to obtain discontinuous controllers, the parameters m and q may be set such that mq = 1.
In this case, the function Φm,q(x) is written as Φ1(x).

4.2. Robust predefined-time discontinuous controllers

Lemma 4.4 (A robust weak predefined-time controller) Let the function Δ(t, x) be considered as a
non-vanishing bounded disturbance such that ‖Δ(t, x)‖ ≤ δ, with 0 < δ < ∞ a known constant. Then,
by selecting the control input

u = −
(

1

Tc
+ k

)
Φ1(x) (4.5)

with Tc > 0 and k ≥ δ, the system (4.1) closed by (4.5) is globally weakly fixed-time stable with Tc as
the weak predefined time.

Proof. Consider the Lyapunov function V = ‖x‖m defined for x ∈ R
n; its derivative along the trajectories

of (4.1)-(4.5) is given by V̇ = m ‖x‖m−2 xT ẋ. Therefore,

V̇ = m ‖x‖m−2 xT

[
Δ(t, x) −

(
1

Tc
+ k

)
Φ1(x)

]

= m
[‖x‖m−2 xTΔ(t, x) − k exp(‖x‖) ‖x‖m−1

]− m

Tc
exp(‖x‖) ‖x‖m−1 .

From expression (2.9), it follows that

V̇ ≤ − m

Tc
exp(‖x‖) ‖x‖m−1 + m

[‖x‖m−2 |xTΔ(t, x)| − k ‖x‖m−1
]
.
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PREDEFINED-TIME STABLE DYNAMICAL SYSTEMS i17

Applying the Cauchy-Schwarz inequality,

V̇ ≤ − m

Tc
exp(‖x‖) ‖x‖m−1 + m

[‖x‖m−2 ‖x‖ ‖Δ(t, x)‖ − k ‖x‖m−1
]

≤ − m

Tc
exp(‖x‖) ‖x‖m−1 − (k − δ)m ‖x‖m−1 .

It is observed that the system is globally asymptotically stable. Moreover,

V̇ ≤ − 1

qTc
exp(V q)V 1−q.

Then, by direct application of Theorem 2.1, the proof is finished. �

Lemma 4.5 (A robust strong predefined-time controller) Under the same conditions of Lemma 4.4, the
selection of the control input

u = −δ
x

‖x‖ − 1

Tc
Φm,q(x) (4.6)

with Tc > 0, m ≥ 1, and 0 < q ≤ 1
m , leads to the closed-loop system (4.1)-(4.6) that is globally strongly

predefined-time stable with Tc as the strong predefined time.

Proof. Consider the Lyapunov function V = ‖x‖m defined for x ∈ R
n; its derivative along the trajectories

of (4.1)-(4.6) is given by

V̇ = m ‖x‖m−2 xT

[
Δ(t, x) − δ

x

‖x‖ − 1

Tc
Φm,q(x)

]

= − 1

qTc
exp(‖x‖mq) ‖x‖m(1−q) + m ‖x‖m−2

[
xTΔ(t, x) − δ ‖x‖].

Since xTΔ(t, x) ≤ ‖x‖ ‖Δ(t, x)‖ ≤ δ ‖x‖, the expression m ‖x‖m−2
[
xTΔ(t, x) − δ ‖x‖] is non-positive.

Moreover, for any x ∈ R
n, this expression can equal zero in the particular scenario where xTΔ(t, x) =

δ ‖x‖; that is,

sup
‖Δ(t,x)‖≤δ‖x‖

m ‖x‖m−2
[
xTΔ(t, x) − δ ‖x‖] = 0 ∀ x ∈ R

n.

From this it can be concluded that

sup
‖Δ(t,x)‖≤δ‖x‖

V̇ = − 1

qTc
exp(‖x‖mq) ‖x‖m(1−q) = − 1

qTc
exp(V q)V 1−q ∀ x ∈ R

n.

Then, by direct application of Theorem 2.3, the proof is finished. �

Based on the integral SM approach proposed by Matthews & DeCarlo (1988) and Utkin & Shi
(1996), the following result presents an integral controller with predefined-time stability.
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i18 J. D. SÁNCHEZ-TORRES ET AL.

Lemma 4.6 (An integral weak predefined-time controller) Under the same conditions of Lemma 4.4, let
the selection of the control input be

u = − 1

Tcn − Tci

Φmn ,qn(x) − 1

Tci

Φmi ,qi(σ ) − δ
σ

‖σ‖ , (4.7)

where σ = x + z and ż = 1
Tcn −Tci

Φmn ,qn(x), with Tcn > Tci > 0, mn, mi ≥ 1, 0 < qn ≤ 1
mn

, and

0 < qi ≤ 1
mi

. Then, the closed-loop system (4.1)–(4.7) is globally weakly predefined-time stable with
Tcn as the weak predefined time.

Proof. The closed-loop system (4.1)–(4.7) is given by

ẋ = − 1

Tcn − Tci

Φmn ,qn(x) − 1

Tci

Φmi ,qi(σ ) − δ
σ

‖σ‖ + Δ(t, x) (4.8)

σ̇ = − 1

Tci

Φmi ,qi(σ ) − δ
σ

‖σ‖ + Δ(t, x). (4.9)

From Lemma 4.5, it follows that the sub-system (4.9) is confined to the manifold σ = 0 within a strong
predefined time Tci . Consequently, after t = Tci , system (4.8) and (4.9) reduces to

ẋ = − 1

Tcn − Tci

Φmn ,qn(x). (4.10)

Taking t0 = Tci as the initial time, then, from Lemma 2.1, the system (4.10) is globally strongly
predefined-time stable with Tcn − Tci as the strong predefined time. Therefore, the system reaches and
stays at x = 0 by t = Tci + Tcn − Tci = Tcn ; nevertheless, since the convergence of (4.9) to σ = 0 does
not occur exactly at t = Tci , it cannot be assured that Tcn is the least upper bound of the settling time.
Thus, system (4.1)-(4.7) as a whole is weakly predefined-time stable with Tcn as the weak predefined
time. �

When disturbances are present, it is observed that the information available about their bounds
influences the stability properties of the system. For example, the ultimate bound for the continuous
controller depends on δ and the strength or weakness of the discontinuous controllers depend on the use
of δ in the control law. With the aim of overcoming this dependence, the following result presents an
integral controller such that strong predefined-time stability holds for any choice of k ≥ δ as the gain of
the discontinuous term.

Lemma 4.7 (An integral strong predefined-time controller) Under the same conditions of Lemma 4.4,
let the selection of the control input be

u = −h(t − Tci)

Tcn − Tci

Φmn ,qn(x) − 1

Tci

Φmi ,qi(σ ) − k
σ

‖σ‖ , (4.11)

where h(ξ) is the Heaviside step function, σ = x+z and ż = h(t−Tci )

Tcn −Tci
Φmn ,qn(x), with k ≥ δ, Tcn > Tci > 0,

mn, mi ≥ 1, 0 < qn ≤ 1
mn

, and 0 < qi ≤ 1
mi

. Then, the closed-loop system (4.1)–(4.11) is globally
strongly predefined-time stable with Tcn as the strong predefined time.
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PREDEFINED-TIME STABLE DYNAMICAL SYSTEMS i19

Proof. The closed-loop system (4.1)–(4.11) is given by

ẋ = −h(t − Tci)

Tcn − Tci

Φmn ,qn(x) − 1

Tci

Φmi ,qi(σ ) − k
σ

‖σ‖ + Δ(t, x) (4.12)

σ̇ = − 1

Tci

Φmi ,qi(σ ) − k
σ

‖σ‖ + Δ(t, x). (4.13)

From the hypothesis k ≥ δ, it follows that the sub-system (4.13) stabilizes in a time T−
ci

such that
T−

ci
≤ Tci . If T−

ci
= Tci , the strong predefined-time stability follows from Lemma 4.6. Otherwise, system

(4.12)-(4.13) reduces to

{
ẋ = 0 for T−

ci
≤ t < Tci

ẋ = − 1
Tcn −Tci

Φmn ,qn(x) for t ≥ Tci .

Therefore, from Lemma 2.1, system (4.12) and (4.13) is strongly predefined-time stable with t =
Tci + Tcn − Tci = Tcn as the strong predefined time. �

The following example illustrates the controller proposed in Lemma 4.5 and how the exact settling
time of the corresponding closed-loop system approaches the strong predefined time as the trajectory of
the disturbance and the magnitude of the initial condition worsen.

Example 4.1 Consider the following family of scalar dynamical systems indexed by parameter α ∈ R+:

ẋ = cos

(
t

α

)
− sign(x) − 1

Tc
Φm,q(x), x(0) = α, (4.14)

where x ∈ R and the initial time is t0 = 0. Each system of this family is of the form (4.1) closed by (4.6),
with Δ(t, x) = cos(t/α) as the disturbance term and with δ = 1. Given that ‖Δ(t, x)‖ ≤ δ = 1, it follows
from Lemma 4.5 that all systems of family (4.14) converge to x = 0 within a strong predefined time Tc.
However, since both the disturbance trajectory and the initial condition are completely determined by
α, the exact settling time will depend solely on this parameter and can be seen as a function of the form
T(α).

Figure 5 portrays trajectories of (4.14) for several values of the parameter α, while Fig. 6 depicts
the exact settling time as a function of α. In both cases, the strong predefined time was set to Tc = 1
and is marked by a grey, dashed line. The other parameters were chosen so that mq = 0.4.

As it was expected, Fig. 6 shows that the supremum of the settling-time function is Tc. This strong
predefined time is approached by the exact settling time for large values of α because, as α increases,
the initial condition grows in magnitude and the disturbance term approaches the constant function
Δ(t, x) = 1, which is the worst-case scenario considered by the restriction ‖Δ(t, x)‖ ≤ 1 for a positive
initial condition.

4.3. First order predefined-time SM controllers

Consider the system

ẋ = f (t, x) + B(t, x)u + Δ(t, x) (4.15)
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i20 J. D. SÁNCHEZ-TORRES ET AL.

Fig. 5. Trajectories of (4.14) for several values of α.

Fig. 6. Exact settling time of (4.14) as a function of α.

where x ∈ X ⊂ R
n is the system state and X is a non-empty set, u ∈ R

r with r ≤ n is the control
input of the system, f : R+ × R

n → R
n, B : R+ × R

n → R
n×r , and Δ : R+ × R

n → R
n. The time

variable t is defined on the interval [t0, ∞), where t0 ∈ R+ ∪ {0}. For this system, the initial conditions
are x0 = x(t0). In addition, let the function σ : R

n → R
r .

The main objective of the controller is to drive the trajectories of system (4.15) to the manifold
σ(x) = 0. The function σ is selected so that the motion on the sliding manifold σ(x) = 0 has a desired
behaviour.

Letting G(x) = ∂σ(x)
∂x , define D(x) as

D(x) = G(x)B(t, x).

It is assumed that the matrix D(x) has an inverse for all x ∈ X .
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PREDEFINED-TIME STABLE DYNAMICAL SYSTEMS i21

The following lemmas provide controllers which induce a SM in σ(x) = 0 in a strong predefined
time Tc. Three scenarios are presented depending on the perturbation nature. The first case is for the
non-perturbed system, the second one for vanishing perturbations and the third one for non-vanishing
perturbations. For the last two cases, the perturbation is considered to be matched (Drazenovich, 1969).

Lemma 4.8 (Controller for an unperturbed system) For system (4.15) with Δ(t, x) = 0, the selection of
the control input

u = −D−1(x)

[
G(x)f (t, x) + 1

Tc
Φm,q(σ )

]
(4.16)

with Tc > 0, m ≥ 1, and 0 < q ≤ 1
m , induces a strong predefined-time SM in σ(x) = 0 with Tc as the

least upper bound for the settling time.

Proof. The dynamics of σ(x) are given by the first order system

σ̇ = G(x)f (t, x) + D(x)u. (4.17)

Equation (4.17) with the controller presented in (4.16) reduces to

σ̇ = − 1

Tc
Φm,q(σ ).

Therefore, from Lemma 2.1, the manifold σ(x) = 0 is reached in strong a predefined time Tc. �

Lemma 4.9 (Systems with vanishing perturbation) Let the function Δ(t, x) be considered as a matched
and vanishing perturbation term. Hence, there exists a function Δ̄(t, x) such that Δ(t, x) = B(t, x)Δ̄(t, x)
and

∥∥D(x)Δ̄(t, x)
∥∥ ≤ δ ‖x‖, where 0 < δ < ∞ is a known constant. Then, the control input

u = −D−1(x)

[
G(x)f (t, x) + 1

Tc
Φm,q(σ ) − δσ

]
(4.18)

with Tc > 0, m ≥ 1, and 0 < q ≤ 1
m , induces a SM in σ(x) = 0 with strong predefined time Tc.

Proof. The dynamics of σ(x) are given by

σ̇ = G(x)f (t, x) + D(x)
(
u + Δ̄(t, x)

)
. (4.19)

Equation (4.19) with the controller presented in (4.18) reduces to

σ̇ = − 1

Tc
Φm,q(x) − δσ + D(x)Δ̄(t, x).

In this way, by direct application of Lemma 4.2, the manifold σ(x) = 0 is reached in a strong predefined
time Tc. �
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i22 J. D. SÁNCHEZ-TORRES ET AL.

Lemma 4.10 (Systems with non-vanishing perturbation) For this case, let the function Δ(t, x) be con-
sidered as a matched and non-vanishing perturbation term. Hence, there exists a function Δ̄(t, x) such
that Δ(t, x) = B(t, x)Δ̄(t, x) and

∥∥D(x)Δ̄(t, x)
∥∥ ≤ δ, with 0 < δ < ∞ a known constant. Then, the

control input

u = −D−1(x)

[
G(x)f (t, x) + δ

x

‖x‖ + 1

Tc
Φm,q(x)

]
(4.20)

with Tc > 0, m ≥ 1, and 0 < q ≤ 1
m , induces a strong predefined-time SM in σ(x) = 0 with Tc as the

least upper bound for the settling time.

Proof. The dynamics of σ(x) are given by

σ̇ = G(x)f (t, x) + D(x)
(
u + Δ̄(t, x)

)
. (4.21)

Equation (4.21) with the controller presented in (4.20) reduces to

σ̇ = −δ
x

‖x‖ − 1

Tc
Φm,q(x) + D(x)Δ̄(t, x).

Thus, by direct application of Lemma 4.5, the manifold σ(x) = 0 is reached in a strong predefined
time Tc. �

Example 4.2 (Control of the double integrator) Consider the system

ẋ1 = x2

ẋ2 = u + Δ,
(4.22)

where Δ is a bounded disturbance such that |Δ| ≤ δ with δ > 0. For this case, the main objective is to
design a controller that drives the state x1 to a constant trajectory x1r .

Defining the variables e1 = (x1 − x1r) /k and e2 = e1 + x2/k2 with k > 0, from (4.22) it follows that

ė1 = k(e2 − e1)

ė2 = k(e2 − e1) + u/k2 + Δ/k2.
(4.23)

Based on (4.6), the following control law is proposed:

u = −k3(e2 − e1) − k2

(
kcsign(e2) + 1

Tc
Φm,q(e2)

)
. (4.24)
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Fig. 7. Time response of the sliding variable e2.

Hence, system (4.23) closed by (4.24) is

ė1 = k(e2 − e1)

ė2 = −kcsign(e2) − 1

Tc
Φm,q(e2) + Δ/k2.

(4.25)

Therefore, with kc = δ/k2 and by Lemma 4.5, this control law guarantees that sliding motion on
the manifold e2 = 0 occurs in a strong predefined time Tc. The motion on this manifold is given by
ė1 = −ke1 and, consequently, system (4.25) is exponentially stable.

For this case, let Tc = 0.5 time units, k = 10, kc = 0.01, m = 1, q = 1/2, x1r = 5, Δ = sin(3t),
and δ = 1.

Figure 7 shows the trajectories of the variable e2 for several initial conditions. It can be observed
that all these trajectories converge to zero at least in the predefined time Tc = 0.5. Figure 8 shows
the trajectories of the system variables x1 and x2 for several initial conditions. It can be observed that,
once e2 = 0, the trajectories of x1 converge exponentially to five and the trajectories of x2 converge
exponentially to zero.

Remark 4.1 Similar results to those presented in Example 4.2 using Lemma 4.5 can be obtained with
the application of the integral controllers given in Lemmas 4.6-4.7.

5. A predefined-time consensus algorithm for complete networks

In the last decade, there has been a great deal of attention placed on algorithms that achieve a goal in a self-
organizing and distributed fashion. One of such algorithms is the consensus algorithm (see for example
Olfati-Saber & Murray, 2004; Wang & Xiao, 2010; Cai, 2012; Zuo & Tie, 2014 and the references
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Fig. 8. Time response of the system state variables.

therein), in which a network agrees on a common value in a distributed fashion by communicating with
its nearest neighbours. Such an algorithm has applications, for instance, in wireless sensor networks. In
this regard, contributions have been presented in asymptotic consensus (Olfati-Saber & Murray, 2004;
Cai, 2012), finite-time consensus (Cortés, 2006; Wang & Xiao, 2010) and fixed-time consensus (Zuo
& Tie, 2014; Tian et al., 2016). However, a drawback of such approaches is that the convergence time,
which is known to depend on the graph topology, is hard to estimate and the existing estimation methods
are too conservative (Zuo & Tie, 2014). For this reason, methods for the design of consensus algorithms
with predefined convergence time are of great interest.

In this section it is shown that, using the predefined-time stability framework presented herein, new
consensus algorithms with predefined-time convergence can be proposed. For the sake of brevity, only
complete graphs are considered. The results for general classes of graphs will be reported elsewhere.

5.1. Basic concepts on graph theory

Before presenting the proposed consensus algorithm and its convergence proof, some basic concepts on
graph theory, which are mainly taken from Godsil & Royle (2001), are briefly introduced.

A graph X consists of a vertex (also called node) set V(X ) and an edge set E(X ) where an edge
is an unordered pair of distinct vertices of X . The notation ij is used to refer to an edge and it is said
that j is a neighbour of i. The set of all neighbours of node i is denoted by Ni which has cardinality di.
A graph is connected if for any two nodes i and j there is a sequence of distinct nodes starting at i and
ending at j such that consecutive nodes are neighbours.

The Laplacian of X is L = Q − A where Q = diag(d1, · · · , dn) and A = [aij] such that aij = 1 if the
node i is a neighbour of node j and aij = 0 otherwise. The Laplacian matrix L is a positive semidefinite
and symmetric matrix, thus its eigenvalues are all real and non-negative. If the graph X is connected,
then the eigenvalue λ1(L) = 0 has algebraic multiplicity one with eigenvector 1 = [1 · · · 1]T . For
every graph X , it holds that xTLx = ∑

ij∈E(X )(xj − xi)
2 (Godsil & Royle, 2001). A graph with n nodes
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is complete if each node has n − 1 neighbours. In a complete graph of n nodes, n is an eigenvalue of the
Laplacian L with multiplicity n − 1.

5.2. The proposed consensus algorithm

Let X be the underlying communication network and let

Zi(x) = (di + 1)
∑
j∈Ni

(xj − xi)
2.

Then the proposed consensus algorithm is

ẋi = ui,

ui = 1

2nTcq

exp (Zi(x)q)

Zi(x)q

∑
j∈Ni

(
xj − xi

)
, (5.1)

where 0 < q <
1

2
and k ≥ 0.

In the following, it is shown that, for complete networks, (5.1) is a consensus algorithm with strong
predefined-time convergence and Tc is the least upper bound for the settling time.

Lemma 5.1 Let e = −Lx, then Le = ne.

Proof. Since L is symmetric, then there exist an orthonormal matrix U = [v1 · · · vn] formed by the
eigenvectors of L such that L = UDUT , where D = diag(λ1, λ2, ..., λn) with λ1 = 0 and λ2 = λ3 =
. . . = λn = n because the graph is complete. Let x be expressed using the eigenvectors as a basis; then,
x = α1v1 + α2v2 + · · · + αnvn and e = −Lx = −(α2λ2v2 + · · · + αnλnvn). Following this procedure,
Le = −(α2λ

2
2v2 + · · · + αnλ

2
nvn) = α2n2v2 + · · · + αnn2vn = ne is obtained. �

Theorem 5.1 Let X be the underlying communication network topology. Then, if X is a complete
graph, algorithm (5.1) achieves consensus in the network within a strong predefined time Tc. That is,
x1(t) = · · · = xn(t) ∀ t ≥ t0 + Tc.

Proof. Let ei = ∑
j∈Ni

(
xj − xi

)
and e = [e1, . . . , en]T (notice that e = −Lx), and let

F(e) = [
u1 · · · un

]T

where ui is given by (5.1).
Then, the dynamics of the network under the communication topology X are given by

ẋ = F(e). (5.2)

Let e = −Lx be called the consensus error and notice that whenever e = 0, x1 = · · · = xn, i.e., consensus
is achieved. Then the consensus error dynamics are given by

ė = −LF(e). (5.3)
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Notice that F(e) ∈ span(1) if and only if e ∈ span(1). However, since e = −Lx, then e ⊥ 1; thus,
e ∈ span(1) if and only if e = 0. Therefore, e = 0 is the only possible equilibrium point during the
evolution of (5.3). Furthermore, since the graph is complete,

Zi(x) = nxTLx = xT (ne) = xTLe = eT e = ‖e‖2 .

Thus,

ui = 1

2nTcq

exp
(‖e‖2q

)
‖e‖2q ei

and, by Lemma 5.1, (5.3) becomes

ė = − 1

2Tcq
exp

(‖e‖2q
) e

‖e‖2q = − 1

Tc
Φm,q(e) (5.4)

with m = 2 and 0 < q ≤ 1
m . Therefore, according to Lemma 2.1, (5.4) is strongly predefined-time stable

with Tc as the least upper bound for the settling time. Since the graph is complete, then e = −Lx = 0
implies that x ∈ span(1). Thus, for all t ≥ t0 + Tc, it holds that

x1(t) = x2(t) = · · · = xn(t)

and consensus is achieved. �

Example 5.1 (Predefined-time consensus) Consider a complete network of 10 nodes under the strong
predefined-time consensus algorithm (5.1). Figure 9 shows the dynamics of such a network with param-
eters Tc = 1 and q = 0.5 and initial conditions x(0) = x0 = [0.2 0.3 0.5 0.1 0.4 0.6 0.9 0.7 0.8 1]T .
It can be observed that the network reaches consensus before the strong predefined time t = Tc = 1.

Fig. 9. Predefined-time consensus for a complete network of 10 nodes with Tc = 1 and q = 0.5.
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Remark 5.1 Although the results presented in this article are interesting and promising, in its present
form they are not straightforwardly applicable for the design of high-order SM algorithms or to the
consensus for dynamic networks (Wang & Xiao, 2010). Additionally, the discretization for the applica-
tion in digital systems presents some difficulties (Levant, 2013). Extensions of the presented analysis to
overcome these limitations are under investigation and will be reported elsewhere.

6. Conclusions

In this paper, a novel class of dynamical systems with predefined-time stability was introduced. The
systems in this family converge within a finite time period and present the practical advantage that the
least upper bound for this settling time is known through an explicit and straightforward relationship
with the system gain. The Lyapunov analysis that allows for the characterization of this class of stability
was also presented.

The predefined-time stability analysis was applied in two directions. First, the proposed approach
was applied for the design of first order weak and strong predefined-time SM controllers. Future work
in this direction is concerned with design of high order SM controllers with predefined-time stability.
Second, a new consensus algorithm was proposed. It was shown that if the underlying topology is
a complete graph, the consensus error is strongly predefined-time stable under this algorithm. Future
work in this direction is concerned with the analysis and design of predefined-time consensus algorithms
under general classes of communication topologies, for which the predefined-time stability feature brings
advantages over existing algorithms.

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions.
The authors also gratefully acknowledge fruitful discussions, suggestions and support from Esteban
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