Abstract

This paper gives the first explicit, two-sided estimates on the cusp area of once-punctured-torus bundles, 4-punctured sphere bundles, and two-bridge link complements. The input for these estimates is purely combinatorial data coming from the Farey tessellation of the hyperbolic plane. The bounds on cusp area lead to explicit bounds on the volume of Dehn fillings of these manifolds, for example, sharp bounds on volumes of hyperbolic closed 3-braids in terms of the Schreier normal form of the associated braid word. Finally, these results are applied to derive relations between the Jones polynomial and the volume of hyperbolic knots, and to disprove a related conjecture.

You do not currently have access to this article.