Abstract

A. Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian groups and prove a “non-abelian” generalization of the statement about the equivariant Saito duality property for invertible polynomials. It turns out that the statement holds only under a special condition on the action of the subgroup of the permutation group called here PC (“parity condition”). An inspection of data on Calabi–Yau three-folds obtained from quotients by non-abelian groups shows that the pairs found on the basis of the method of Takahashi have symmetric pairs of Hodge numbers if and only if they satisfy PC.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.