Abstract

The existence of an extremal in an exponential Sobolev-type inequality, with optimal constant, in Gauss space is established. A key step in the proof is an augmented version of the relevant inequality, which, by contrast, fails for a parallel classical inequality by Moser in the Euclidean space.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.