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Abstract 
Adoptive immunotherapy using chimeric antigen-receptor (CAR)-engineered T cells can induce 
robust antitumor responses against hematologic malignancies. However, its efficacy is not durable 
in the majority of the patients, warranting further improvement of T-cell functions. Cytokine 
signaling is one of the key cascades regulating T-cell survival and effector functions. In addition 
to cytokines that use the common γ chain as a receptor subunit, multiple cytokines regulate 
T-cell functions directly or indirectly. Modulating cytokine signaling in CAR-T cells by genetic 
engineering is one promising strategy to augment their therapeutic efficacy. These strategies 
include ectopic expression of cytokines, cytokine receptors, and synthetic molecules that mimic 
endogenous cytokine signaling. Alternatively, autocrine IL-2 signaling can be augmented through 
reprogramming of CAR-T cell properties through transcriptional and epigenetic modification. On the 
other hand, cytokine production by CAR-T cells triggers systemic inflammatory responses, which 
mainly manifest as adverse events such as cytokine-release syndrome (CRS) and neurotoxicity. In 
addition to inhibiting direct inflammatory mediators such as IL-6 and IL-1 released from activated 
macrophages, suppression of T-cell-derived cytokines associated with the priming of macrophages 
can be accomplished through genetic modification of CAR-T cells. In this review, I will outline 
recently developed synthetic biology approaches to exploit cytokine signaling to enhance CAR-T cell 
functions. I will also discuss therapeutic target molecules to prevent or alleviate CAR-T cell-related 
toxicities.
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Introduction

Adoptive immunotherapy is a unique therapeutic approach 
for patients with advanced cancer. The most striking differ-
ence of this therapy from other immunotherapy modalities is 
that it uses living immune cells prepared in vitro as a drug, 
which theoretically enables persistent and specific antitumor 
efficacy until target tumor cells are eradicated. Prominent suc-
cess was achieved by adoptive transfer of chimeric antigen 
receptor (CAR)-T cells—which express modified versions of 
T-cell antigen-receptors (TCRs)—to patients with B-cell ma-
lignancies and multiple myeloma (1–5).

However, long-term follow-up of the treated patients 
suggests that a substantial proportion of patients that ac-
complished an objective response suffer from relapse. For 
example, recently reported real-world data on one of the 
CD19-targeting CAR-T cells tisagenlecleucel (tisa-cel) for pa-
tients with B-cell lymphoblastic leukemia has shown marked 
initial response as was seen in clinical trials. Although 85% 
of the patients infused with tisa-cel accomplished complete 

remission at Day 28, 37% of the responder patients experi-
enced relapse within 1 year, and the 12-month event-free sur-
vival was 50% (6). Relapsed leukemia cells maintained CD19 
expression in about 60% of the cases, suggesting that dys-
function or disappearance of the infused CAR-T cells resulted 
in the regrowth of leukemia cells for these patients. Regarding 
the use of CAR-T cells against solid tumors, although several 
clinical trials report a promising efficacy, the majority of the 
patients cannot attain durable response (7, 8).

Among numerous investigations to fundamentally augment 
the therapeutic efficacy of CAR-T cells, modulation of cyto-
kine signaling in CAR-T cells is one of the most investigated 
strategies (Fig. 1). In addition to the therapeutic standpoint, 
control of serious adverse events that can accompany CAR-T 
cell therapy such as cytokine-release syndrome (CRS) and 
neurological toxicity is another urgent issue to be addressed 
(9). Several cytokines are centrally associated with the patho-
genesis of adverse events and are key targets to control or 
prevent serious side effects.
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In this review, I will summarize roles of various cytokines 
in T-cell functions, the tumor microenvironment and systemic 
immune responses in the context of antitumor T cells and dis-
cuss how these findings can be applied to improve the effi-
cacy and safety of CAR-T cell therapy.

Common γ chain cytokines and antitumor T cells

In addition to the TCR (signal 1) and co-stimulatory (signal 
2) signaling, cytokine signaling (signal 3) constitutes an es-
sential part to induce optimal T-cell functions (10). Common 
γ chain cytokines (IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21)—all 
of which include the same γ chain subunit in their receptors—
are the most established group of molecules that are associ-
ated with multiple T-cell attributes. Whereas IL-4 negatively 
regulates effector T-cell responses, IL-2, IL-7, IL-15, and IL-21 
are critically associated with the development, survival, prolif-
eration, and effector functions of T cells (11–13).

Upon cytokine engagement with their cognate recep-
tors, the receptors recruit and activate Janus kinase 1 
(JAK1) and JAK3, which then phosphorylate several signal 
transducer and activator of transcription (STAT) proteins. 
Different cytokines activate multiple STAT proteins to dif-
ferent extents, which gives rise to their unique and non-
redundant functions. Whereas IL-2, IL-7, and IL-15 mainly 
activate STAT5, the main downstream target of IL-21 is 
STAT3 (14). Cytokine-mediated STAT5 activation supports 
the survival of effector T cells partly through transcriptionally 
upregulating anti-apoptotic BCL2 family proteins (15, 16). 
STAT5 also regulates the expression of cytolytic molecules 
such as granzyme B and perforin (17, 18). The role of STAT3 
signaling in T cells is more diverse. Whereas STAT3 is re-
quired for memory T-cell formation (19, 20), its activation 
also promotes terminal T-cell differentiation through cooper-
ating with effector-related transcription factors such as BATF 
and IRF4 (21). Other studies report that STAT3 negatively af-
fects the migration of antitumor T cells in the tumor through 
downregulating CXCR3 (22, 23).

Despite these complex functions of downstream molecules, 
IL-2, IL-7, IL-15, and IL-21 overall provide beneficial effects 
on antitumor and antiviral T-cell immunity. Since these cyto-
kines are not necessarily produced in sufficient amounts in 
the tumor microenvironment, exogenous cytokine administra-
tion was considered as one of the solutions to boost antitumor 
T-cell immunity (24–26). Early clinical studies explored the 
antitumor effects of systemically administered cytokines as 
monotherapy or in the context of adoptive immunotherapy. 
Although several cytokines such as IL-2 and IL-15 induced 
objective clinical responses or enhanced the persistence of 
infused antitumor T cells, they resulted in frequent and some-
times severe toxicities such as capillary leak syndrome fol-
lowed by multi-organ damage in a dose-dependent manner 
(27–30). Because of these safety concerns, multiple strat-
egies to locally provide cytokines for CAR-T cells have 
been studied subsequently (Table 1). In early investigations, 
Markley and Sadelain (31) expressed individual common γ 
chain cytokines in CAR-T cells and demonstrated that the ec-
topic expression of IL-7 or IL-21 prominently enhanced the 
antitumor activity of CAR-T cells. Adachi et al. (32) showed 
that co-transduction of CCL19 in addition to IL-7 further en-
hanced the therapeutic activity of CAR-T cells through re-
cruiting endogenous antitumor immune cells.

In addition to the secretion of soluble cytokines, multiple 
designs have been invented to induce cytokine-mediated 
signaling in a constitutive or inducible manner, which include 
ectopic expression of a constitutively active IL-7 receptor (IL-
7R) (33), a membrane-tethered IL-15/IL-15R complex (34) 
and incorporation of a truncated IL-2R β-chain signaling do-
main within the CAR construct (Fig. 2) (35). Recent studies 
have further advanced a state-of-the-art system that transmits 
desired combinations of cytokine signaling in an inducible 
manner. Lin et al. (36) designed an artificial cytokine-receptor 
system, in which extracellular FK506-binding protein 12 
(FKBP12) F36V was linked to the transmembrane and 
intracellular JAK-recruiting domains of the thrombopoietin 
receptor and desired combinations of cytokine-receptor do-
mains. It can homodimerize and activate cytokine signaling in 
response to the addition of the FKBP12 ligand AP1903.

Systemic cytokine administration can also deliver cytokine 
signaling to specific cells by designing synthetic molecules. 
Zhang et al. (37) developed an orthogonal IL-2 and IL-2R 
β-chain to avoid the systemic toxicity of IL-2. Ectopic expres-
sion of orthogonal IL-2Rβ in CAR-T cells enabled selective 
induction of IL-2 signaling upon administration of orthogonal 
IL-2. Although the effect of IL-9 signaling has been less well 
elucidated compared with other common γ chain cytokines, 
Kalbasi et al. (38) recently demonstrated that signals through 
the IL-9R augmented CAR-T cell functions. They tested the 
orthogonal IL-2R extracellular domain combined with intra-
cellular domains of various cytokine receptors and identified 
that fusion with the IL-9R most efficiently improved both lon-
gevity and cytolytic activity of CAR-T cells.

Enhancing T-cell-intrinsic cytokine secretion

T cells secrete multiple cytokines upon stimulation by 
antigen. In addition to effector cytokines such as IFN-γ and 
TNF-α, CD4+ T cells and, to a lesser extent, CD8+ T cells 

Figure 1.  Multiple approaches to incorporate cytokine signaling 
in CAR-T cells. In addition to ectopic expression of soluble or 
membrane-tethered cytokines, CAR-T cells can be engineered with 
wild-type or synthetic cytokine receptors. Alternatively, autocrine 
cytokine signaling (mainly IL-2) can be augmented through genetic 
modification of CAR-T cells
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secrete IL-2, which enhances the proliferation and survival 
of antigen-stimulated CAR-T cells in an autocrine and para-
crine manner (39, 40). Antigen-experienced memory T cells 
progressively differentiate from stem-cell-like memory T cells 
to central memory T cells and effector memory T cells (41). 
Whereas IFN-γ and TNF-α secretion is maintained until ter-
minal differentiation, T cells lose the capacity to secrete IL-2 
as they differentiate (42, 43). In other words, polyfunctional 
cytokine secretion is one of the characteristics of immature 
memory T cells. T cells also undergo extensive alteration of 
their functional profiles upon exhaustion, which is defined as 
the impairment of effector functions, including IL-2 secretion, 
because of chronic and repetitive antigen stimulation (44). 
Since CAR-T cells go through differentiation along with mas-
sive expansion and are rendered exhausted due to persistent 
encounter with the target tumor cells, they are prone to lose 
IL-2 production, which further deprives them of survival sig-
nals (45).

One of the strategies to maintain cell-intrinsic IL-2 signaling 
in CAR-T cells is to modify them to acquire resistance to ter-
minal differentiation and/or exhaustion. Both terminal differ-
entiation and exhaustion are associated with global gene 
expression changes, which are further regulated by epigen-
etic mechanisms (46–48). Recent studies have extensively 
explored key epigenetic factors whose modification can en-
hance the longevity and durable effector responses of CAR-T 
cells after repetitive antigen exposure (49). We have recently 
reported that genetic ablation of PRDM1, which encodes 
the transcriptional repressor Blimp-1, maintained an early 
memory phenotype and IL-2 production in CAR-T cells after 
repeated antigen stimulation (50). In addition to its direct re-
pression of IL-2 transcription (51), Blimp-1 promotes terminal 
differentiation of T cells, which impairs their polyfunctional 
cytokine secretion (52).

T-cell exhaustion is also controlled by an array of epigen-
etic factors such as DNMT3A, TOX, the NR4A family, and the 

BET bromodomain family. Recent work has already demon-
strated that genetic or pharmacological inhibition of these 
proteins positively affects T-cell effector functions through 
repressing exhaustion-related transcriptional programs of 
CAR-T cells (45, 53–56). Interestingly, these studies suggest 
that T-cell differentiation and exhaustion are regulated by dis-
tinct transcriptional and epigenetic mechanisms. Blimp-1 ab-
lation did not prevent the upregulation of immunoinhibitory 
molecules such as PD-1 and their transcriptional regulators 
in chronically stimulated T cells (50). Simultaneous modifica-
tion of differentiation- and exhaustion-associated factors may 
further augment T-cell functions. This concept was recently 
exemplified by a study showing that dual knockout of PRDM1 
and NR4A3 in CAR-T cells enhanced both T-cell longevity 
and effector functions (57). Further investigation to identify 
combined modification to optimally improve T-cell stemness 
and counteract exhaustion would be important to refine this 
strategy.

Alternatively, cytokine supplementation during in vitro 
T-cell expansion contributes to generating CAR-T cells 
with superior antitumor functions. Although IL-2 potently 
promotes T-cell proliferation, it also accelerates terminal 
effector differentiation and deprives T cells of long-lived 
potential (58). Pre-clinical studies demonstrated that 
T-cell stimulation using other cytokine cocktails such as 
IL-7 + IL-15 (59) or IL-15 + IL-21 (60) resulted in efficient 
expansion and acquisition of CAR-T cells with a less differ-
entiated phenotype compared with the standard IL-2 sup-
plementation protocol.

The quality of CAR-T cells can also be modified by 
different CAR transduction approaches. For example, 
genomic insertion of a CAR gene using CRISPR/Cas9-
mediated homologous recombination or a piggyBac trans-
poson system can efficiently generate CAR-T cells (60–62). 
These CAR-T cells exhibited immature and non-exhausted 
phenotypes partly because of attenuated CAR expression 

Table 1.  Cytokine signaling that enhances CAR-T cell functions

Cytokine Strategies to deliver signals Effects on CAR-T cell properties References

IL-2 • � Incorporating the receptor within the CAR 
construct

•  Orthogonal IL-2/IL-2R

Enhanced proliferative and effector functions (35, 37)

IL-7 •  Ectopic expression
• � Expression of the constitutively active receptor

Long-lived potential; durable effector functions (31–33)

IL-9 • � Orthogonal IL-2/IL-9R Maintenance of stemness; enhanced effector functions (38)
IL-15 •  Membrane-tethered expression Prolonged survival (34)
IL-8 •  �  Ectopic expression of the receptor (CXCR1 and 

CXCR2)
Enhanced T cell migration into the tumor (74)

IL-10 •  Administration of IL-10:Fc fusion Restoration of exhausted T cell functions by metabolic 
reprogramming

(75)

IL-12 •  Ectopic expression
•  Cell-surface expression
•  Incorporation within the CAR construct

Direct upregulation of cytotoxicity; modulation of the 
immunosuppressive tumor microenvironment

(66–69)

IL-18 •  Ectopic expression
•  Expression of GM-CSFR/IL-18R fusion receptor

Enhanced effector functions; remodeling of the tumor 
microenvironment

(71–73)

IL-23 •  Ectopic expression of the p40 subunit Increased effector functions; less-exhausted phenotype (76)
IL-33 •  Ectopic expression with high-affinity IL-2 Modification of the tumor microenvironment (77)
IL-36γ •  Ectopic expression Enhanced cytotoxic activity; modulation of the tumor 

microenvironment
(78)

IL-37 •  Recombinant cytokine administration Restoration of exhausted T cell functions (79)
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levels compared with viral transduction methods, which 
will potentially result in superior persistence and durable 
antitumor efficacy.

Non-common γ chain cytokines associated with T-cell 
properties

In addition to the common γ chain cytokines, a number of 
studies have shown unique effects of other cytokines on 
CAR-T cell efficacy. Initial attempts explored the effects of 
IL-12 on antitumor T cells. IL-12 is a proinflammatory cyto-
kine with antitumor functions. In addition to directly aug-
menting the cytotoxic activity of T cells (63), IL-12 reduces 
the immunosuppressive tumor microenvironment through 
modifying the properties of regulatory T cells and myeloid-
lineage cells (64, 65). Consistent with these findings, ec-
topic expression of IL-12 in CAR-T cells enhanced their 
proliferation and effector functions in pre-clinical mouse 
models of solid tumors (66, 67). To deliver IL-12 signaling to 
intratumoral T cells more locally, subsequent studies have 
developed multiple synthetic systems, such as cell surface-
tethered expression of IL-12 (68) and IL-12 integration into 
the extracellular CAR domain (69).

IL-18 is another well-known cytokine associated with the 
induction of inflammatory myeloid cells in conjunction with 
IL-12 (70). Similar to IL-12, CAR-T cells armored with IL-18 
enhanced the antitumor efficacy partly through modulating 
the tumor microenvironment such as an increase of macro-
phages with an M1 phenotype and an increase of mature 
dendritic cells (71). Other studies elucidated the direct effect 
of IL-18 on effector T-cell functions (72, 73). A list of cyto-
kines that have been reported to affect CAR-T cell functions 
is shown in Table 1 (66–79). Future clinical trials will elucidate 
if the effect of these cytokines demonstrated in pre-clinical 
models really helps to improve the therapeutic efficacy of 
CAR-T cells.

One of the interesting findings from these studies is that the 
effect of exogenous administration of cytokines on the overall 
antitumor response is determined by a complex interplay of 
multiple immune cells and the metabolic environment, which 
cannot be predicted precisely by their direct action on T cells 
evaluated in vitro. For example, IL-10 is a pleiotropic cytokine 
with both immunosuppressive and immunostimulatory func-
tions. IL-10 dampens the ability of antigen-presenting cells 
to stimulate T cells (80), whereas it also elevates cytotoxic 
activity of CD8+ T cells (81). Guo et al. (75) demonstrated that 
the administration of an IL-10/Fc fusion protein restored mito-
chondrial respiration in exhausted T cells, which resulted in 
enhanced effector functions in both endogenous and adop-
tively transferred antitumor T cells.

Cytokine-release syndrome

Cytokine-release syndrome is the most frequent and ser-
ious side effect that accompanies adoptive immunotherapy. 
Its main symptoms consist of fever, nausea, fatigue, and 
myalgia (82). In severe cases, patients develop hypoten-
sion, hypoxia, and multi-organ dysfunction. Another major 
toxicity is immune effector cell-associated neurotoxicity 
syndrome (ICANS), which usually happens at later time 

points than CRS. It most often manifests as self-limiting 
delirium, encephalopathy, and aphasia. Prolonged seiz-
ures and cerebral edema may happen in life-threatening 
cases. Although CRS is observed in a variety of treatments, 
including allogeneic stem cell transplantation and immune-
checkpoint inhibitors, its developmental risk is especially 
high in CAR-T cell therapy and bispecific T-cell engagers 
(BiTEs), which induce antigen-specific cytotoxicity in en-
dogenous T cells.

The development of severe CRS and ICANS seems to 
be less frequent in real-world data compared with those in 
early clinical trials, likely because of improved selection cri-
teria and more established management. In the patients with 
B-cell leukemia treated by tisa-cel, overall and  grade ≥3 CRS 
was documented in 63% and 21% of the patients, and overall 
and grade ≥3 ICANS in 21% and 7% of the patients, respect-
ively (6).

Mechanistically, CRS is triggered mainly by the inflam-
matory cytokine IL-6 derived from activated macrophages, 
which induces endothelial activation followed by increased 
vascular permeability (Fig. 3) (83, 84). Macrophage activation 
is at least partly provoked by GM-CSF secreted by antigen-
stimulated CAR-T cells (85). CD40L expressed in CAR-T cells 
also triggers macrophage activation. As a novel mechanism 
underlying the development of CRS, Liu et al. (86) demon-
strated that granzyme B secreted from CAR-T cells activates 
caspase 3 within tumor cells, which then cleaves gasdermin 
E and causes pyroptosis—inflammatory programmed cell 
death that triggers the activation of adjacent macrophages 
through secretion of damage-associated molecular patterns 
(DAMPs).

The anti-IL-6R antibody tocilizumab can effectively se-
quester soluble IL-6R and then inhibit the activation of IL-6 
signaling. ICANS is less frequently responsive to tocilizumab 
treatment than CRS, suggesting that factors other than IL-6 
are associated with its pathogenesis. On the basis of pre-
clinical data implicating a role for the IL-1 family—which con-
sists of IL-1α and IL-1β (83, 84)—in neurotoxicity, the IL-1R 
antagonist anakinra has been investigated for its efficacy and 
the appropriate timing for administration.

Another strategy is to equip T cells with CRS-preventing 
machinery. Pharmacologic or genetic inhibition of GM-CSF 
produced by CAR-T cells has been shown to reduce the 
risk of CRS and neurotoxicity in a murine CRS model (87). 
Interestingly, blockade of GM-CSF may also enhance CAR-T 
cell proliferation. Beneficial effects of GM-CSF blockade 
were also demonstrated in a different study (88). Chen et al. 
(89) showed that TNF-α was one the main mediators of endo-
thelial activation, suggesting TNF knockout in CAR-T cells 
as a potential strategy to alleviate CRS. CAR-T cell-derived 
IFN-γ is also associated with the activation of macrophages 
(90). Knockout of IFNG in CAR-T cells mitigated macro-
phage activation without impairing the antitumor efficacy of 
CAR-T cells against hematologic malignancies. In fact, re-
cent reports show that the administration of the anti-IFN-γ 
monoclonal antibody emapalumab was effective to alleviate 
the symptoms of tocilizumab-refractory CRS (91). These re-
cent findings indicate that the development of CRS is trig-
gered by multiple cytokines and cannot be ascribed to IL-6 
alone (Fig. 3).
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CAR-NK cells: an alternative option to CAR-T cells

NK cells are innate immune cells with potent cytotoxic activity. 
Similar to T cells, NK cells can also acquire antigen specifi-
city when engineered with a CAR (92). Recent clinical trials 
showed that adoptive transfer of CAR-NK cells derived from 
cord blood cells induced potent therapeutic efficacy against 
patients with non-Hodgkin’s lymphoma or chronic lympho-
cytic leukemia: 8 of the 11 treated patients accomplished 
complete remission and most of them maintained remission 
beyond 1 year (93). Although NK cells are considered to be 
short lived compared with T cells, CAR-NK cells were de-
tected in the peripheral blood at least 1 year after infusion. As 
clearly shown in pre-clinical studies (94), ectopic expression 
of IL-15 significantly augmented the expansion and persist-
ence of CAR-NK cells.

Contrary to the traditional notion, multiple mouse studies 
showed that NK cells can induce recall responses to previ-
ously encountered antigen (95, 96). These memory-like fea-
tures were also documented in human NK cells. Priming of 
NK cells with a combination of IL-12, IL-15, and IL-18 enabled 
their efficient expansion and potent IFN-γ secretion functions 
after re-stimulation (97, 98). Phenotypically, they were dim-
positive for CD56 and showed increased expression levels of 
CD94, NKG2A, NKp46, and CD69. NK cells that expanded 
in the presence of these cytokines exhibited a more durable 
effector response in vivo compared with those cultured with 
IL-15 alone (99). In addition to the above cytokines, several 
other common γ chain cytokines such as IL-2, IL-7, and IL-21 
also contribute to enhancing NK cell functions (100–103). 
Combinatorial incorporation of these cytokines and their 
signaling may further support the durable therapeutic re-
sponse of CAR-NK cells.

One of the potential advantages of using NK cells com-
pared with T cells may be that CAR-NK cells are less likely 
to induce CRS, probably because of their different cytokine-
secretion profiles (93). However, the development of CRS 
is highly dependent on the disease burden and peak ex-
pansion of immune cells, making it difficult to perform a 

fair comparison between independently designed clinical 
studies. Since NK cells also produce cytokines that are as-
sociated with the development of CRS, including IFN-γ and 
GM-CSF, enhancing their effector functions may result in 
an increased occurrence of CRS or other side effects with 
unique manifestations.

Conclusions

A variety of approaches have been invented to boost the 
therapeutic efficacy of CAR-T cells. Although further inves-
tigations are definitely required, especially for CAR-T cells 
against solid tumors, efficient expansion of cytokine-armored 
CAR-T cells inevitably increases the risk of CRS and neuro-
toxicity (104, 105). The therapeutic efficacy of CAR-T cells 
may be enhanced without increasing toxicities by improving 
the potential longevity of CAR-T cells instead of their tran-
sient effector functions. CAR-T cells generated from naive 
or stem-cell-like memory T cells induced less CRS, likely 
because of less-potent effector functions (106). Moreover, 
infusion of CAR-T cells derived from naive or stem-cell-like 
memory T cells resulted in more durable antitumor efficacy 
than standard CAR-T cells because of their increased lon-
gevity. These “memory-type” CAR-T cells can also be gen-
erated by genetic modification such as the knockout of 
PRDM1 (50). Another strategy is to design synthetic mol-
ecules with dual functions to augment CAR-T cell effector 
functions and mitigate a cascade related to systemic inflam-
mation. A chimeric cytokine receptor such as GM-CSFR/
IL-18R, which captures the CRS-related cytokine GM-CSF 
secreted by CAR-T cells and activates IL-18 signaling, may 
be a promising example (73).

For CAR-NK cells, further studies are required to dissect 
the phenotypic and functional properties of NK cells with 
enhanced longevity, which may elucidate a differentiation 
hierarchy among the memory-like NK-cell population as 
seen in memory T cells. These findings will further accel-
erate investigations of optimal combinations of cytokine 

Figure 2.  Synthetic biology approaches to provide cytokine 
signaling. CAR-T cells can be provided with cytokine signaling by 
administration of orthogonal cytokines, incorporation of a cytokine 
receptor domain within the CAR structure, or ectopic expression of 
wild-type, mutated, or synthetic cytokine receptors

Figure 3.  Pathophysiology of CRS. Upon antigen-mediated stimula-
tion, CAR-T cells secrete multiple cytokines that trigger activation of 
endogenous macrophages, which then secrete inflammatory cyto-
kines including IL-6 and IL-1 and induce systemic inflammatory re-
sponses. One of the pathogenetic mechanisms related to CRS is 
endothelial activation and increased vascular permeability
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signaling to enhance the durable antitumor responses of 
CAR-NK cells.
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