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Abstract

The skin is the largest organ in the body and one of the primary barriers to the environment. In order 
to optimally protect the host, the skin is home to numerous immune cell subsets that interact with 
each other and other non-immune cells to maintain organ integrity and function. Regulatory T cells 
(Tregs) are one of the largest immune cell subsets in skin. They play a critical role in regulating 
inflammation and facilitating organ repair. In doing so, they adopt unique and specialized tissue-
specific functions. In this review, we compare and contrast the role of Tregs in cutaneous immune 
disorders from mice and humans, with a specific focus on scleroderma, alopecia areata, atopic 
dermatitis, cutaneous lupus erythematosus and psoriasis.
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Introduction

The immune system is constantly engaging with the outside 
environment. In order to prevent and contain life-threatening 
infections, it must recognize foreign pathogens, mount pro-
ductive responses and react more vigorously when attacks 
are repeated. It has become increasingly appreciated that an 
equally important function of the immune system is to regu-
late inflammation. The ‘regulatory arm’ serves to limit collat-
eral damage in the face of exuberant and fulminant immune 
responses. Thus, the stimulatory and regulatory arms of the 
immune system have co-evolved to efficiently fight infec-
tion in tissues while maintaining organ integrity and function. 
When this delicate balance is disrupted, the result is recurrent 
infections, chronic tissue inflammation or both.

Regulatory T cells (Tregs) are loosely defined by high ex-
pression of both Foxp3 and the high-affinity IL-2 receptor (1, 
2). It was first shown that transfer of splenocytes depleted of 
CD4+CD25high cells into athymic nude mice resulted in pro-
nounced tissue inflammation. Co-transfer with CD25+CD4+ 
T cells prevented this phenotype (2). Soon after, it was dis-
covered that Scurfy mice, which develop severe spontan-
eous autoimmunity, have a mutation in the Foxp3 gene (3), 
and mutations in human FOXP3 were shown to be respon-
sible for the IPEX (immune dysregulation, polyendocrinopa-
thy, enteropathy, X-linked) syndrome, a disease similar to that 
seen in Scurfy mice (3–5).

The similarities between the phenotype of patients with 
the IPEX syndrome and Scurfy mice led several groups to 

functionally interrogate the role of Foxp3 in the immune 
system. This transcription factor was shown to be essential 
for Treg development, maintenance and function (1, 6), and 
selective ablation of Tregs by targeting Foxp3 resulted in le-
thal systemic inflammation (7). These studies and many oth-
ers firmly establish a critical role for CD4+CD25+Foxp3+ Tregs 
in establishing and maintaining immune regulation in both 
mice and humans.

Although the importance of Tregs in maintaining immune 
homeostasis is now well accepted, exactly how these cells 
function remains an active area of investigation. Initially 
thought to be a homogenous cell lineage predominantly res-
iding in primary and secondary lymphoid organs, Tregs have 
emerged as a largely diverse, dynamic and adaptable popu-
lation, that stably reside in both lymphoid and non-lymphoid 
tissues (8). In recent years, it has become increasingly appre-
ciated that Tregs establish and maintain immune homeostasis 
in a tissue-specific manner (9). That is, Tregs residing in dif-
ferent tissues utilize different mechanisms that are dependent 
to a large extent on the tissues themselves and the nature of 
the inflammation to which each tissue is predisposed.

Currently, we are only beginning to fully understand the 
biology of Tregs in tissues. In this review, we focus on how 
Tregs regulate immune responses in skin. We discuss the 
unique phenotype of Tregs in this tissue and their association 
with cutaneous autoimmune and chronic inflammatory skin 
diseases.
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Overview of Tregs in skin

In both mice and humans, Tregs constitute between 20 and 
80% of CD4+ T cells in skin at steady-state. These cells accu-
mulate in skin during a defined window of neonatal life (10). 
In skin, both Tregs and commensal bacteria localize to hair 
follicles (HFs) (11, 12) and the frequency of Tregs fluctuates 
with the HF cycle. These cells also are quantitatively reduced 
in skin of germ-free mice (11).

HF epithelial cells express the chemokine CCL20, which 
plays a role in driving CCR6-expressing Tregs to accumu-
late in skin during neonatal life (13). Interestingly, CCL20 ex-
pression is reduced in HF epithelium in germ-free mice but 
expression is increased in human fetal skin explants upon 
exposure to commensal bacteria (13). These results suggest 
that HFs and skin commensal bacteria help establish Tregs 
in skin early in life.

Tregs circulating in peripheral blood express several other 
skin-homing receptors. Peripheral blood of healthy humans 
contains a large percentage of Tregs that express a carbo-
hydrate modification of P-selectin glycoprotein ligand-1 
(Psgl-1) called cutaneous lymphocyte antigen (CLA) and the 
skin-homing receptor CCR6 (14, 15). Similar to circulating 
Tregs in humans, Tregs in murine spleen express Psgl-1 that 
facilitates Treg homing to inflamed skin (16). Another skin-
homing receptor is CCR4 (17). The ligands for CCR4 are 
CCL17 and CCL22 which are expressed by dermal endo-
thelial cells and myeloid cells, respectively (18, 19). CCR4 
deficiency confers a competitive disadvantage for Tregs to 
accumulate in skin and lungs of mice (20). Finally, ~80% of 
Tregs in murine skin express the master transcription factor 
for the T-helper 2 (TH2) subset, Gata3 (21). Whether Gata3 
expression influences chemokine-receptor expression that 
enables Tregs to effectively migrate to or within skin is cur-
rently unknown.

Taken together, both mouse and human studies support 
the notion that Tregs migrate to skin via expression of unique 
chemokine receptors and this process is influenced by HF 
biology and commensal microbes. Whether these processes 
play a role in human skin and if alterations in these pathways 
contribute to human skin disease remain to be determined.

Tregs in scleroderma

Diffuse systemic scleroderma (SSc) is an autoimmune dis-
order characterized by excessive fibrosis in barrier tissues 
such as skin, gut and lungs [reviewed in (22)]. Interestingly, 
these are the non-lymphoid organs that house the majority 
of the body’s Tregs in the steady-state (9). A  critical event 
in the development of skin fibrosis is the aberrant activation 
of fibroblasts (23). Pathologic fibrosis is thought to be very 
similar to wound healing, occurring in three phases: initiation, 
inflammatory and fibrotic (23). Following an injury, a repara-
tive inflammatory response is activated, which in turn leads 
to the differentiation of resting fibroblasts to extracellular 
matrix (ECM) component-producing myofibroblasts (24). 
Excess deposition of ECM components such a collagen and 
fibronectin eventually leads to fibrosis (25, 26).

The major immune cells that have been studied in the con-
text of fibrosis are TH2 cells and macrophages. In addition, 

the cytokine TGF-β (transforming growth factor β) is well es-
tablished to play a central role in augmenting fibroblast ac-
tivation and ECM deposition (27, 28). TH2 cytokines such as 
interleukin 13 (IL-13) and IL-4 can drive the differentiation and 
proliferation of fibroblasts (29, 30). The role of Tregs in tissue 
fibrosis has been controversial. In specific contexts, Tregs 
can express TGF-β and, in other contexts, they suppress TH2 
immune responses, rendering them with the potential to both 
augment and inhibit fibroblast activation (22). These seem-
ingly opposing actions of Tregs on fibroblast biology have yet 
to be fully resolved.

Several observational studies in humans have found de-
creased frequencies of Tregs in peripheral blood of SSc 
patients when compared with healthy controls and other cu-
taneous autoimmune diseases (31, 32). Some studies have 
also reported increased frequencies of Tregs in both periph-
eral blood and skin lesions during the inflammatory and fi-
brotic phases of disease (33–35). However, these Tregs were 
shown to be dysfunctional and had reduced suppressive 
capacity (36).

The few studies that have examined Tregs in peripheral tis-
sues affected in SSc have been similarly confounding. Fewer 
Tregs were observed in SSc skin compared with healthy or 
psoriatic skin lesions and this decrease was associated with 
a reduction in TGF-β and IL-10 (31). In contrast, a later study 
showed increased Tregs in the epidermis and dermis of pa-
tients with early stage SSc when compared with skin from late-
stage SSc patients and healthy controls (37). Additionally, one 
study that examined Tregs from blood and skin of limited and 
diffuse SSc patients found that Tregs in skin lesions produced 
pro-fibrotic TH2 cytokines like IL-13 and IL-4 (38). Thus, these 
dysfunctional Tregs could contribute to maintenance or ex-
acerbation of disease. Finally, a study analyzing Tregs in skin 
lesions of SSc patients found reduced Tregs in the tissue but 
not in peripheral blood (32).

Overall, these studies correlate quantitatively reduced and/
or qualitatively dysfunctional Tregs with SSc; however, con-
sensus and definitive data are lacking. This may be secondary 
to the methodology used to study these cells, as immuno-
histochemical or immunofluorescent staining for Foxp3 and 
CD4 are relatively non-specific markers for Tregs in human 
tissues (39–41). In addition, human SSc is most likely a highly 
heterogeneous disease and Tregs may play different roles in 
different disease subtypes.

Although the literature regarding Tregs in scleroderma war-
rants further elucidation, there are several clinical results sug-
gesting that Treg augmentation may be a viable therapy for 
SSc. In a recent clinical trial, patients suffering from chronic 
graft-versus-host disease (GVHD) were treated with low-dose 
IL-2 to preferentially boost Tregs. Clinical manifestations of 
specific subtypes of chronic GVHD closely resemble that of 
scleroderma. Augmenting Tregs led to a decrease in skin fi-
brosis in some patients in these studies (42, 43). Interestingly, 
enhanced Treg engraftment and increased Treg numbers 
correlated with reduced skin fibrosis in SSc patients under-
going autologous hematopoietic stem cell transplantation to 
treat this disease (44). Taken together, these findings suggest 
that Tregs may play a significant role in reducing or even re-
versing tissue fibrosis in humans.
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Tregs in alopecia areata

In mice, Tregs localize to the bulge region of the HF and 
their frequency in skin is tightly correlated with the HF cycle 
(11, 45). There is increased accumulation of Tregs during the 
telogen (resting) phase of HF cycle and they decrease dur-
ing the anagen (growth) phase. Tregs are in close proximity 
with HF stem cells (HFSCs) and play a major role in facili-
tating the telogen to anagen transition, a process mediated 
by HFSCs (11, 45). A subset of Tregs expresses the notch 
ligand Jag1, and this pathway plays a role in the activation 
and differentiation of HFSCs in mice (11). Similarly, in human 
skin, Tregs localize around the HF bulge and the relative per-
centage of these cells is increased in skin with higher hair 
density (12).

Several studies have implicated Tregs in the pathogen-
esis of alopecia areata (AA), a relatively common auto-
immune disease that is characterized by an arrest in HF 
cycling induced by excessive pro-inflammatory cytokine 
production [reviewed in (46)]. Genome-wide association 
studies (GWAS) in AA have revealed single-nucleotide 
polymorphisms in regions encoding Treg signature genes 
such as CD25, the ikaros family member Eos (IKZF4), cyto-
toxic T-lymphocyte antigen 4 (CTLA-4) and Foxp3 (47, 48). 
Compared with healthy controls, there is markedly reduced 
frequency of Tregs around the HF in AA skin (49). Clinically, 
Treg augmentation with low-dose IL-2 administration has 
been used as a therapy for AA patients resistant to conven-
tional treatments. Following an increase in Treg frequency, 
successful hair regeneration was achieved in 80% of the 
patients undergoing this therapy, although this study only 
included five patients (50).

Taken together, studies from mice and humans provide 
multiple levels of evidence implicating Tregs in HF biology, 
AA pathogenesis and a novel potential avenue of therapy 
for this disease. However, the underlying mechanisms that 
render Tregs dysfunctional in AA patients and why/how this 
appears to be restricted to the skin are currently unknown.

Tregs in atopic dermatitis

Atopic dermatitis (AD) is a prevalent inflammatory skin dis-
ease that can affect both children and adults. It results from 
abnormalities in the epidermal barrier and associated chronic 
aberrant cutaneous inflammation. TH2 cells and type 2 cyto-
kines (e.g. IL-4 and IL-13) play a major role in disease patho-
genesis (51, 52).

Tregs have been shown to attenuate skin inflammation in 
several mouse models of AD (53–55); however, their role in 
human AD is less clear. A recent study showed that retinoic 
acid receptor-related orphan receptor α (RORα)-expressing 
Tregs in skin were important in suppressing type 2 cytokines 
from type 2 innate lymphoid cells (ILC2s) in a model of AD 
(55). Another study showed that IL-4 production from ILC2s 
blocks the function of Tregs to promote food allergy (56). 
Finally, the introduction of a specific mutation in the Foxp3 
locus in mice that is identical to a mutation found in humans 
results in uncontrolled TH2 responses, TH2 cytokine produc-
tion from Tregs and pronounced skin and lung inflammation, 
similar to that seen in IPEX patients harboring this mutation 
(57). Thus, in mouse models, a consensus is emerging that 

Tregs suppress type 2 inflammation in skin to prevent or at-
tenuate allergic responses and AD-like disease.

The strongest evidence in humans that Treg dysfunction 
predisposes to the development of AD comes from patients 
with the IPEX syndrome. These patients have dysfunctional 
Tregs because of mutations in the FOXP3 gene (4) and suffer 
from autoimmune enteropathy, anemia and polyendocrinopa-
thy as well as spontaneous severe allergic disorders such as 
food allergy and allergic airway disease (5, 58). Strikingly, the 
major skin manifestation in IPEX patients is an eczematous 
dermatitis that closely resembles severe AD (59).

The role of Tregs in AD that is not associated with the IPEX 
syndrome is, however, less clear. Several studies have shown 
an increase in Tregs in blood from AD patients (60, 61) and 
others have shown that these cells produce TH2 cytokines, 
potentially contributing to disease progression instead of 
regulating inflammation (62). Because activated T effector 
cells (Teff cells, i.e. non-Tregs) transiently express Foxp3, it is 
unclear if the T cells that produce TH2 cytokines, as observed 
in AD patients, are bona fide Tregs. Comprehensive pheno-
typic and mechanistic studies interrogating Tregs in AD skin 
during flares and remission are necessary to better illuminate 
the role of Tregs in this disease.

Tregs in cutaneous lupus erythematosus

Systemic lupus erythematosus (SLE) is a multi-organ auto-
immune disease that commonly affects the skin, in which case 
it is termed cutaneous lupus erythematosus (63). Although 
the exact etiology is unclear, SLE is strongly associated with 
autoantibody production, some of which is directed toward 
antigens that are widely expressed in skin (64).

As in most autoimmune diseases, Tregs have been im-
plicated in the pathogenesis of SLE; however, many mouse 
models of SLE do not have overt skin manifestations. The 
NZB × NZW F1 strain is a common model to study SLE-
like disease in mice (65–67). These animals spontaneously 
develop lupus-like symptoms such as lymphadenopathy, 
splenomegaly, circulating anti-dsDNA autoantibodies and 
glomerulonephritis but no skin pathology. Compared with 
nonautoimmune BALB/c mice, (NZB × NZW) F1 mice have 
a reduced frequency of Tregs throughout their life (68–70).

Because sun exposure is thought to play a major role in 
driving the skin pathology in patients with SLE (71), it is inter-
esting to speculate that (NZB × NZW) F1 mice do not de-
velop skin disease because they have never been exposed 
to sunlight. However, skin pathology is observed in the MRL/
MPJ-lpr/lpr (MRL/lpr) mouse strain, another common model 
of spontaneous SLE (67). These mice carry a loss-of-function 
mutation in the Fas-receptor gene and develop skin lesions 
(72). After an initial increase in Treg frequencies, there is a 
rapid decline in Tregs in the MRL/lpr mice with age and this 
decline follows a concomitant development of SLE symptoms 
with a sharp increase in Teff cells (73, 74).

Currently, it is unknown why some mouse models of SLE 
develop cutaneous manifestations, whereas others do not. 
However, overall, the majority of studies in these strains sug-
gest that disease development is not due to an inherent de-
fect in Tregs, but an imbalance between Teff cells and Tregs 
in diseased tissues.
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IL-2 production is compromised and expression of the high-
affinity IL-2-receptor α-chain (CD25) is lower on T cells in SLE 
patients (75). This is consistent with genetic polymorphisms 
in the IL-2 pathway associated with SLE (76). Because IL-2 
is essential for Treg development, maintenance and function, 
it is possible that this defect leads to an imbalance between 
Teff cells and Tregs in some patients with SLE. Consistent with 
this, Tregs have been shown to be both quantitively and quali-
tatively defective in peripheral blood of patients with active 
SLE (77, 78). However, like most studies attempting to quan-
tify Tregs in the peripheral blood of patients with autoimmune 
diseases, there have been conflicting reports. A number of 
studies show reduced Treg frequencies in SLE (77, 78), few 
suggest no change (79) and others have shown increased 
Tregs (80).

These seemingly conflicting results may be secondary 
to differing methodologies and/or how Tregs are defined in 
each study. However, it is most likely that this is secondary to 
the fact that SLE is a highly heterogenous disease and that 
defects in Tregs may only play a role in a subset of these 
patients. It is currently unknown whether SLE patients who 
harbor defects in the IL-2 pathway and/or reduced Treg to 
Teff cell ratios have an increased propensity to develop skin 
manifestations.

As deficiency in IL-2 production is thought to contribute to 
SLE, several clinical trials are underway to improve disease 
outcome with low-dose IL-2 therapy. In one small clinical trial, 
low-dose IL-2 treatment led to a 40% increase in Tregs with 
a marked amelioration of skin eruptions, myositis and arth-
ritis. In addition, the serum anti-dsDNA antibody titer was 
decreased after four cycles of treatment (81, 82). Thus, aug-
menting Tregs through the IL-2 pathway may be a promising 
approach to treat specific subsets of SLE patients.

Another approach that is being considered is adoptive 
Treg cell therapy. Here, Tregs are isolated from the peripheral 
blood of patients with autoimmune disease, expanded to high 
numbers ex vivo and these highly activated cells are adop-
tively transferred back to the same patient. Interestingly, this 
approach has recently been attempted in an SLE patient with 
cutaneous manifestations (83). This patient maintained stable 
disease throughout the 24-week follow-up period with no clin-
ical flares. Mechanistic studies performed on skin showed a 
stable increase in activated Tregs, with an associated reduc-
tion in the interferon γ (IFN-γ) pathway and an increase in the 
IL-17 pathway. The significance and reproducibility of these 
findings are currently unknown, given that only one patient 
completed the trial. However, this is the first evidence that 
adoptive Treg therapy may stably alter the inflammatory mi-
lieu in diseased tissues of patients with SLE.

Tregs in psoriasis

Psoriasis is a common inflammatory skin disease character-
ized by hyper-proliferation of keratinocytes and a pronounced 
infiltrate of immune cells (84). It is well established from stud-
ies in mice and humans that the IL-23/IL-17 axis of inflamma-
tion plays a dominant role in this disease (85–87). In mice, 
topical application of Imiquimod (IMQ), a Toll-like receptor 7 
(TLR7)/TLR8 ligand, leads to psoriasis-like skin inflammation 
that recapitulates some elements of the human disease (85). 

In this model, Tregs can restrain skin inflammation (88). IMQ 
treatment results in a significant increase in Treg frequency 
compared with untreated mouse skin, as seen in human 
psoriasis (88). Treg accumulation is important for disease 
resolution, as Treg depletion after IMQ treatment results in ex-
acerbated skin inflammation (88). Treatment with the vitamin 
D3 analog, maxacalcitol, reduced IMQ-induced psoriasiform 
skin inflammation by inducing Tregs, which was concomi-
tant with a reduction in IL-17/IL-23 production (89). Taken to-
gether, these and other studies suggest that Tregs play a role 
in attenuating psoriasiform skin inflammation in mice.

Studies in adult and pediatric psoriasis patients reveal an 
imbalance between Tregs and TH17 cells (90). Although both 
cell types are increased, the ratio of TH17 cells to Tregs is 
higher in both blood and skin of patients with psoriasis (91). 
Additionally, Tregs isolated from psoriatic plaques are un-
able to suppress TH17 responses (86). A  recent study ana-
lyzed psoriatic plaques from different anatomical locations to 
understand the molecular differences between scalp, palmo-
plantar and conventional plaque psoriasis (92). This analysis 
revealed an increase in Tregs across all psoriatic subtypes, 
but there were distinct differences in IL-17, IL-22 and IFN-γ 
production (92).

Thus, although Treg numbers are increased in psoriatic skin 
lesions, they are clearly not capable of resolving inflamma-
tion. To this end, it has been proposed that instead of being 
able to suppress immune responses, Tregs in psoriatic skin 
actually contribute to the pathogenesis of the disease (93). 
Several studies have revealed that subsets of Tregs in skin 
of psoriasis patients produce IL-17-family cytokines (93–96). 
Interestingly, Tregs and TH17 cells are closely related, with 
similar ontogenies and transcriptional profiles (97).

High expression of the TNF-receptor superfamily members, 
CD27 and OX40, on Tregs in skin plays a role in suppressing 
Treg differentiation toward TH17 cells (98). Tregs that lack 
CD27 and OX40 expression have high levels of IL-17A as well 
as the TH17 master transcription factor RORγt. Furthermore, 
in skin of psoriasis patients, CD27 expression on Tregs in-
versely correlates with IL-17A production from these cells 
(98). A similar finding was observed in skin of patients with 
hidradenitis suppurativa, a skin disease that is also associ-
ated with exuberant TH17-mediated inflammation (99, 100).

Taken together, these studies implicate Tregs in the patho-
genesis of psoriasis; however, a comprehensive analysis of 
the extent to which these cells are dysfunctional in the skin of 
these patients has yet to be reported.

Concluding remarks and future directions

Tregs clearly establish and maintain immune homeostasis in 
both murine and human tissues. Quantitative and/or qualita-
tive defects in these cells have been implicated in the patho-
genesis of several autoimmune diseases. Pharmacologic 
Treg augmentation and adoptive Treg therapy are exciting 
new approaches to treat these disorders. Given the diversity 
of functions that Tregs perform and the overall heterogeneity 
of this immune cell subset, it would appear that we have only 
scratched the surface in elucidating the molecular pathways 
that we can target to functionally manipulate these cells for 
therapeutic benefit.
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However, a deeper understanding of how Tregs function 
in human tissues is important and necessary. Many of the 
mechanistic studies focusing on the function of these cells 
in skin have been performed in mice. Although these results 
are informative, it is worth noting that there are fundamental 
differences between mouse and human skin. For example, 
the epidermis in normal mouse skin is ~2–3 cell layers thick, 
whereas the epidermis in human skin is ~4–5 times this thick-
ness. In addition, several tissue-resident immune cells that 
are present in mouse skin, for example dendritic epidermal T 
cells (DETCs) and dermal γδ T cells, are present at very low 
frequencies or entirely absent in human skin (101).

Mice also have fur, whereas humans do not. HF morpho-
genesis is quite different between mouse and human skin. 
The active growth phase of the HF cycle lasts only ~2–3 
weeks in mice with a high degree of synchronicity, whereas 
HF cycling in human skin is highly asynchronous and mosaic, 
with the growth phase lasting several years (102).

All of these factors are likely to influence Treg biology and 
may play a profound role in differences observed in this cell 
subset between the two species. To this end, recent single-
cell transcriptomic analysis comparing Tregs in murine and 
human skin revealed very little overlap in gene expression 
outside of the ‘core’ Treg transcriptional signature (103).

In summary, skin is a highly immunologically active organ 
that is home to a large percentage of the body’s Tregs. Multiple 
lines of investigation suggest that dysfunction in these cells 
contributes to cutaneous autoimmunity and chronic skin in-
flammation in both mice and humans. A better understanding 
of the mechanisms utilized by Tregs in human skin will undoubt-
edly advance our knowledge of how and why these cells be-
come dysfunctional in disease states, as well as enabling the 
development of novel targeted therapies aimed at augmenting 
skin Tregs to restore the immune balance in this tissue.
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