-
Views
-
Cite
Cite
Angelika Miko, Karin Pries, Andreas Schroeter, Reiner Helmuth, Molecular mechanisms of resistance in multidrug-resistant serovars of Salmonella enterica isolated from foods in Germany, Journal of Antimicrobial Chemotherapy, Volume 56, Issue 6, December 2005, Pages 1025–1033, https://doi.org/10.1093/jac/dki365
- Share Icon Share
Abstract
Objectives: The objectives of this study were to determine antimicrobial susceptibility and to characterize the molecular mechanisms of multidrug resistance among German food-borne Salmonella isolates of different serovars.
Methods: A total of 319 epidemiologically independent multidrug-resistant isolates from German foodstuffs comprising 25 different serovars were tested for their antimicrobial susceptibility by broth microdilution. The presence of antimicrobial resistance genes, integrons of classes 1 and 2 and their integrated resistance gene cassettes as well as the Salmonella genomic island 1 (SGI1) was investigated by PCR and DNA sequencing. Localization of integrons and relevant resistance genes was done by Southern hybridization. Sequence analysis revealed mutations in the quinolone resistance-determining region of the gyrA gene.
Results: The most prevalent resistances found in the multidrug-resistant serovars of Salmonella enterica from foods were to streptomycin (94%), sulfamethoxazole (92%), tetracycline (81%), ampicillin (73%), spectinomycin (72%), chloramphenicol (48%) and trimethoprim (27%). Twenty-four resistance genes covering six antimicrobial families (β-lactams, aminoglycosides, phenicols, sulphonamides, tetracycline, and trimethoprim) were identified in the food isolates, many of them integrated as gene cassettes in class 1 and class 2 integrons. Class 1 integrons were detected in 65% of the multidrug-resistant Salmonella isolates comprising 16 different serovars, while class 2 integrons were found in 10% of the isolates belonging to two serovars only. The results demonstrate a clear predominance of both SGI1-borne resistance genes and class 1 integrons in Salmonella serovar Typhimurium DT104 and of class 2 integrons in Salmonella serovar Paratyphi B (d-tartrate positive). Nalidixic acid resistance found in 15% of the isolates was associated with single mutations in the gyrA gene.
Conclusions: This study confirms the role of foods of animal and other origin as a reservoir of multidrug-resistant Salmonella and underlines the need for continuing surveillance of food-borne zoonotic bacterial pathogens along the food chain.