Abstract

Background

The clinical management of chronic myeloid leukemia (CML) patients requires the identification of the type of BCR::ABL1 transcript at diagnosis and the monitoring of its expression and potential tyrosine kinase inhibitor (TKI) resistance mutations during treatment. Detection of resistant mutation requires transcript type-specific amplification of BCR::ABL1 from RNA.

Methods

In this study, a custom RNA-based next-generation sequencing (NGS) assay (Dup-Seq BCR::ABL1) that enables (a) the identification of BCR::ABL1 transcript type and (b) the detection of resistance mutations from common and atypical BCR::ABL1 transcript types was developed and validated. The assay design covers BCR exon 1 to ABL1 exon 10 and employs duplicate PCR amplification for error correction. The custom data analysis pipeline enables breakpoint determination and overlapped mutation calling from duplicates, which minimizes the low-level mutation artifacts.

Results

This study demonstrates that this novel assay achieves high accuracy (positive percent agreement (PPA) for fusion: 98.5%; PPA and negative percent agreement (NPA) for mutation at 97.8% and 100.0%, respectively) and sensitivity (limit of detection (LOD) for mutation detection at 3% from 10 000 copies of BCR::ABL1 input).

Conclusions

The Dup-Seq BCR::ABL1 assay not only allows for the identification of BCR::ABL1 typical and atypical transcript types and accurate and sensitive detection of TKI-resistant mutations but also simplifies molecular testing work flow for the clinical management of CML patients.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
You do not currently have access to this article.