Abstract

Objective

Prediction of disease phenotypes and their outcomes is a difficult task. In practice, patients routinely seek second opinions from multiple clinical experts for complex disease diagnosis. Our objective is to mimic such a practice of seeking second opinions by training 2 agents with different focuses: the primary agent studies the most recent visit of the patient to learn the current health status, and then the second-opinion agent considers the entire patient history to obtain a more global view.

Materials and Methods

Our approach Dr. Agent augments recurrent neural networks with 2 policy gradient agents. Moreover, Dr. Agent is customized with various patient demographics information and learns a dynamic skip connection to focus on the relevant information over time. We trained Dr. Agent to perform 4 clinical prediction tasks on the publicly available MIMIC-III (Medical Information Mart for Intensive Care) database: (1) in-hospital mortality prediction, (2) acute care phenotype classification, (3) physiologic decompensation prediction, and (4) forecasting length of stay. We compared the performance of Dr. Agent against 4 baseline clinical predictive models.

Results

Dr. Agent outperforms baseline clinical prediction models across all 4 tasks in terms of all metrics. Compared with the best baseline model, Dr. Agent achieves up to 15% higher area under the precision-recall curve on different tasks.

Conclusions

Dr. Agent can comprehensively model the long-term dependencies of patients’ health status while considering patients’ demographics using 2 agents, and therefore achieves better prediction performance on different clinical prediction tasks.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.