Abstract

Objective

De-identification is a fundamental task in electronic health records to remove protected health information entities. Deep learning models have proven to be promising tools to automate de-identification processes. However, when the target domain (where the model is applied) is different from the source domain (where the model is trained), the model often suffers a significant performance drop, commonly referred to as domain adaptation issue. In de-identification, domain adaptation issues can make the model vulnerable for deployment. In this work, we aim to close the domain gap by leveraging unlabeled data from the target domain.

Materials and Methods

We introduce a self-training framework to address the domain adaptation issue by leveraging unlabeled data from the target domain. We validate the effectiveness on 4 standard de-identification datasets. In each experiment, we use a pair of datasets: labeled data from the source domain and unlabeled data from the target domain. We compare the proposed self-training framework with supervised learning that directly deploys the model trained on the source domain.

Results

In summary, our proposed framework improves the F1-score by 5.38 (on average) when compared with direct deployment. For example, using i2b2-2014 as the training dataset and i2b2-2006 as the test, the proposed framework increases the F1-score from 76.61 to 85.41 (+8.8). The method also increases the F1-score by 10.86 for mimic-radiology and mimic-discharge.

Conclusion

Our work demonstrates an effective self-training framework to boost the domain adaptation performance for the de-identification task for electronic health records.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.