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ABSTRACT
Objective The US Vaccine Adverse Event Reporting
System (VAERS) collects spontaneous reports of adverse
events following vaccination. Medical officers review the
reports and often apply standardized case definitions,
such as those developed by the Brighton Collaboration.
Our objective was to demonstrate a multi-level text
mining approach for automated text classification of
VAERS reports that could potentially reduce human
workload.
Design We selected 6034 VAERS reports for H1N1
vaccine that were classified by medical officers as
potentially positive (Npos¼237) or negative for
anaphylaxis. We created a categorized corpus of text
files that included the class label and the symptom text
field of each report. A validation set of 1100 labeled text
files was also used. Text mining techniques were applied
to extract three feature sets for important keywords,
low- and high-level patterns. A rule-based classifier
processed the high-level feature representation, while
several machine learning classifiers were trained for the
remaining two feature representations.
Measurements Classifiers’ performance was evaluated
by macro-averaging recall, precision, and F-measure, and
Friedman’s test; misclassification error rate analysis was
also performed.
Results Rule-based classifier, boosted trees, and
weighted support vector machines performed well in
terms of macro-recall, however at the expense of
a higher mean misclassification error rate. The rule-based
classifier performed very well in terms of average
sensitivity and specificity (79.05% and 94.80%,
respectively).
Conclusion Our validated results showed the possibility
of developing effective medical text classifiers for VAERS
reports by combining text mining with informative
feature selection; this strategy has the potential to
reduce reviewer workload considerably.

INTRODUCTION
Biomedical research is often confronted with large
data sets containing vast amounts of free text that
have remained largely untapped sources of infor-
mation. The analysis of these data sets poses
unique challenges, particularly when the goal is
knowledge discovery and real-time surveillance.1

Spontaneous reporting systems (SRSs), such as the
US Vaccine Adverse Event Reporting System
(VAERS), encounter this issue.2 When extraordi-
nary events occur, such as the H1N1 pandemic,
routine methods of safety surveillance struggle to

produce timely results due to the resource-intensive
nature of manual review. Consequently, there is an
urgent need to develop alternative approaches that
facilitate efficient report review and identification
of safety issues resulting from the administration of
vaccines. Text classification (TC) provides an
alternative and more efficient process by distin-
guishing the most relevant information from
adverse event (AE) reports.
Medical TC is the process of assigning labels to

a span of text (sentence, paragraph, or document)
using trained or rule-based classifiers,3e10 or
both.11 12 The utilization of natural language
processing (NLP) techniques may provide better
classification results through improvements in text
exploration. However, according to Cohen and
Hersh, TC should be placed closer to the text
mining (TM) field than the full-blown NLP field.13

TM and NLP techniques have been used before to
identify AEs in electronic health records
(EHRs)14e17; however, the issue of a complete
surveillance system that could be generalized has
not been addressed yet.
Safety surveillance in VAERS (and other SRSs)

has two main purposes. The first purpose is
monitoring known adverse effects for unusual
features or increases in reporting rate (ie, number of
reports/number of doses) while looking for poten-
tial associations with new products (eg, H1N1
vaccine) or new demographic groups. The second
purpose is looking for unexpected AEs by identi-
fying unusual patterns. In the first case, we are
more interested in the identification of the actual
adverse cases, while in the second case we primarily
need to know whether the identified patterns
represent ‘real’ conditions in terms of clinical
syndromes.
Here, we present a multi-level TM approach that

was applied to a group of VAERS reports involving
the AE of anaphylaxis for text classification
purposes. This investigation of TM for anaphylaxis
could serve as a model for TM in the first purpose
of safety surveillance in VAERS and could also serve
as the basis to generalize our work to other AEs
that are acute, serious, and occur in close temporal
proximity to the vaccination. Our scope was not to
present a fully developed system for AE identifica-
tion but rather to study patterns in the narrative of
VAERS reports that are used to identify a known
adverse effect. The strength of our study lies in
demonstrating the feasibility of using TM on large
SRS databases to exploit the information content
of a new data source, other than EHRs or clinical
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trials data, for adverse event identification as well as in saving
time and human resources.

BACKGROUND
Vaccine Adverse Event Reporting System
The Vaccine Adverse Event Reporting System is a passive
surveillance repository that monitors the number and type of
AEs that occur after the administration of vaccines licensed for
use in the USA.18 VAERS contains both structured (eg, vaccina-
tion date) and unstructured data (eg, symptom text). The VAERS
case reports should be distinguished from any other type of
medical documentation (eg, discharge summaries), since both
experts (physicians) and non-experts (patients and relatives) act
directly as the reporters of AEs. Therefore, special processing is
needed to handle the frequent non-medical syntax and semantics.

Review process
Medical officers (MOs) review all serious and death VAERS
reports manually. Specifically, they review the unstructured free
text fields to identify the clinical entities in a given case report,
decide upon the acquisition of additional information (eg,
request a copy of the medical records), and consider whether any
regulatory action is warranted. VAERS reports are coded with
Medical Dictionary for Regulatory Activities (MedDRA)
preferred terms (PTs).19 Non-medical data-entry personnel apply
PTs to terms in AE reports according to coding conventions and
algorithms; the codes are not considered to be medically
confirmed diagnoses. MOs may screen and select case reports
based on MedDRA codes, but they cannot fully rely on them for
the analysis of safety data, mainly due to the MedDRA limita-
tions. The inability of MedDRA to automatically group PTs
with similar meanings from different system organ classes
makes PT based searches incomplete unless they are based on
a validated standardized MedDRA query, which are resource
intensive to develop.20 The process is performed in two steps
(figure 1), both of which are laborious and time-consuming.
Step 1 involves manual review of case reports, which can
number in the thousands, while step 2 involves review of
medical records and other documentation for a smaller number
of possible cases (see example for anaphylaxis; figure 1). Here,
we incorporated a variety of TM techniques and automated
classifiers to reliably substitute the manual classification of
anaphylaxis case reports at the first step and, thus, reduce
human effort.

Brighton case definitions: the example of anaphylaxis
The Brighton Collaboration (https://brightoncollaboration.org)
develops standardized, widely disseminated, and globally

accepted case definitions for a large number of adverse events
following immunizations (AEFIs). Each case definition is devel-
oped in a strict process that is monitored by a specific interna-
tional working group of up to 20 experts and, among other
items, incorporates a systematic literature search and evaluation
of previous findings.21 Based on certain criteria, the Brighton
Collaboration defines the patterns that should be discovered in
the reports of a surveillance system. Often, MOs try to match
them with the reported symptoms in each case report (or the
medical record at step 2). The Brighton Collaboration has
developed a case definition for anaphylaxis (see online supple-
mentary appendix 1), which is an acute hypersensitivity reac-
tion with multi-organ-system involvement and can rapidly
progress to a life-threatening reaction.22 Common causes for
anaphylaxis include allergens, drugs, and immunizations.23

According to the Brighton case definition for anaphylaxis,
specific major and minor criteria are described per organ system;
MOs try to discover these criteria in each case report, fit them
into a pattern, and classify the report as anaphylaxis or not. For
example, when they read the report ‘immediately after vacci-
nation the patient presented with face edema, difficulty
breathing, red eyes, wheezing, and localized rash at site of
injection; also complained for weakness and reported fever
2 days before vaccination’ they classify it as potentially positive
primarily because there are at least two organ systems involved:
dermatologic (face edema, red eyes) and respiratory (difficulty
breathing, wheezing). The described ‘rash’ is localized and
should not be considered as a dermatologic criterion, while
neither ‘fever ’ or ‘weakness’ are related to the vaccination or
included in the case definition. It should be mentioned that the
above narrative would alarm MOs even if the sudden onset
(stated by ‘immediately after ’) and the apparent rapid progres-
sion of symptoms (even though not clearly stated) were missing.
Often, the time dimension is missing from VAERS reports, so
MOs would still pick up this report for further review and
definition of the diagnostic certainty at step 2.

METHODS
Corpus and validation set
We selected a subset of all the case reports that were submitted
to VAERS following influenza A (H1N1) 2009 monovalent
vaccines,24 covering a period from November 22, 2009 to January
31, 2010 (Ntotal¼6034). This time-window corresponded to the
same period that a thorough analysis of H1N1 reports was
performed following the receipt of a safety signal from Canada
in mid-November.18 25 26 Twelve MOs reviewed the reports daily
(the workload share was approximately equal); their task was
to use the Brighton Collaboration criteria for anaphylaxis to
label them as potentially positive requiring further investigation
or negative. Then, in one session with all MOs participating,
the potentially positive reports were selected by consensus
(Npos¼237); the remaining reports were classified as negative
(Nneg¼5797). MOs’ classification was the gold standard for our
study. Subsequently, the identification number and the
symptom text field were extracted, and a class label was
assigned to each case report according to the gold standard (‘pos’
vs ‘neg’ label for potentially positive vs negative reports,
respectively). These data were included in a text file (one text file
per report); all text files were further organized in a categorized
corpus under two distinct categories (‘pos’ vs ‘neg’). Moreover,
a second set was created for validation purposes following
a similar process: two MOs retrospectively reviewed (February 1,
2010eApril 28, 2010) the case reports for H1N1 vaccine
and created a validation set (Nvalid¼1100) with the same
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Flu reports 
6034
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1st step
237
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Review

1
VAERS

2
PT & keyword 
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Figure 1 Initially medical officers use specific MedDRA preferred
terms (PT) or other keywords to extract the Vaccine Adverse Event
Reporting System (VAERS) case reports of interest (usually a few
thousand). Manual review requires two steps: (i) review of each case
report (mainly symptom and laboratory text fields) and (ii) review of the
medical record for a much smaller portion of case reports. For example,
in the case of anaphylaxis, which was investigated in the current study,
the PT and keyword search returned 6034 case reports that were
reduced to 237 after manual review; the medical records (MR) for the
latter portion of VAERS reports were obtained and reviewed resulting in
100 confirmed anaphylaxis cases.

632 J Am Med Inform Assoc 2011;18:631e638. doi:10.1136/amiajnl-2010-000022

Research and applications
D

ow
nloaded from

 https://academ
ic.oup.com

/jam
ia/article/18/5/631/835446 by guest on 24 April 2024



distributional properties as the original set, that is, 4% of the
case reports were potentially positive for anaphylaxis
(NvalidPos¼44).

Feature extraction
The backbone of our work has been the TM of VAERS case
reports. The starting point was the ‘informative feature selec-
tion,’ that is, the combination of the Brighton Collaboration
criteria with the MOs’ experience. Three feature representations
were used:
1. Important keywords (first feature representation�>key-

words).
2. Major and minor criteria that included one or more of the

above keywords; MOs considered ‘epinephrine’ to be equal
to a major criterion. Adding the feature representing the
diagnosis of anaphylaxis (sometimes stated in a case report)
to the feature space, a set of low-level patterns were defined
(second feature representation�>low-level patterns).

3. Filtering patterns that consisted of the above criteria
(‘pattern1,’ ‘pattern2’, and ‘pattern3’; at least two major
criteria, one major and one minor criterion, and three minor
criteria, respectively). Diagnosis of anaphylaxis was also
considered to be a filtering pattern alone (‘pattern4’) and,
thus, played a dual role in our work; it should be mentioned
that the proportion of cases that were detected based on the
explicit diagnosis of anaphylaxis were equal to 9% (16 out of
178) in the training set, 3% (2 out of 59) in the testing set
and 9% (4 out of 44) in the validation set. All filtering
patterns were treated as high-level patterns (third feature
representation�>high-level patterns).

Text mining processes and rule-based classifier
First, the free text in our corpus was processed using the
appropriate NLP methods. Second, we worked in two directions
by: (i) creating the list of lemmas (hereafter called dictionary) to
represent the keywords of interest (first feature representa-
tion�>keyword�>lemma), and (ii) developing the anaphylaxis
lexicon, building the grammar, tagging and parsing the free text.
The grammar rules supported the extraction of major and minor
criteria (second feature representation) and patterns (third
feature representation) from the case reports. Using these
patterns, the corresponding part of the algorithm (ie, the rule-
based classifier) classified the reports into potentially positive
and negative. The technical details of these processes are
presented in online supplementary appendix 2.

Supervised machine learning classifiers
A number of machine learning (ML) classifiers that have
been previously found to be the appropriate solutions for TC
problems were trained; most of them have been also used for
medical TC (binary or not): naive Bayes (NB),5 maximum
entropy (ME),27 decision trees (DT),6 recursive partitioning
classification trees (RPCT),28 boosted trees (BT),29 weighted
support vector machines (w-SVM),3 4 SVM for sparse data
(s-SVM),30 stochastic boosting,31 multivariate adaptive regres-
sion splines (MARS),32 regularized discriminant analysis
(RDA),33 random forests (RF),34 generalized additive model
(GAM),31 and weighted k-nearest neighbors (w-kNN).35 The
splitting rules that were used by the decision tree classifiers (DT,
RPCT, and BT) should not be confused with the advanced
grammar rules that represented the filtering patterns and were
used by the rule-based classifier, as described above and
presented in online supplementary appendix 2. For this reason,
the decision tree classifiers and the rule-based classifier could not

form a homogeneous group in a hypothetical comparison with
the other classifiers.
An issue with ML classifiers is that they assign equal weights

to all classes, no matter their rarity; this may affect their
performance in favor of the commonest class. Thus, we included
a weight parameter into the training process that allowed us to
handle the problem of class imbalance; for instance, the libSVM
tool (library for SVM) allows the addition of the weight
parameter to the training process.36 The weight for each class
was calculated by the formula proposed by Cohen4:

wclass ¼ ðNtotal �NclassÞ=Ntotal

where Ntotal is the total number of cases and Nclass the number
of cases per class. Our weighted approach was also applied to BT,
GAM, and s-SVM.
Python (v 2.6.4), several packages in R-statistics (v 2.11.1),

and the libSVM tool were used for the training of binary
classifiers, as well as for the calculation of metric values in the
testing and validation sets.

Evaluation metrics and statistical analysis
For evaluating the performance of class-labeling by the classi-
fiers, we used the macro-averaging of standard recall
(R/macro-R), precision (P/macro-P), and F-measure
(F/macro-F); macro-R and macro-P are preferable here since
they are dominated by the more rare ‘pos’ category.37 We
analyzed macro-P and macro-R using Friedman’s test that avoids
the normality assumption and analyzes the ranks of classifiers
within the data sets.38 Moreover, the test is appropriate for use
with dependent observations, which is the case here, because
classifiers were tested using the same data sets. The original level
of significance of 0.05 was adjusted by Bonferroni correction to
account for multiplicity in testing (thus, the level of the test was
0.0125, adjusted further for multiple comparisons to 0.001).
We also performed an exploratory error analysis by presenting

the mean misclassification error rate (mean-MER) for each
classifier over the data set. Each classifier ’s SE is computed first
on each data set (testing or validation) using the formula:"bpijð1� bpij

�
ni

#1=2

where ni, i¼1,2 is 1508 or 1100, respectively, and bpij, j¼1,.,13 is
the error rate of the classifier on the testing and validation set.
The mean-MER is obtained by averaging the individual data set
dependent error rates and the associated SE is computed using
a formula that adjusts for the different sizes of the data sets.
Furthermore, the impact of specific features on the classifica-

tion was evaluated by computing the information gain for each
unique lemma, low- and high-level pattern; information gain is
employed as a term-goodness criterion for category prediction
and is based on the presence or absence of a term in a docu-
ment.39 The FSelector package in R-statistics (v 2.11.1) and the
training set were used for the corresponding calculations.

RESULTS
Text mining results
The application of our TM techniques and the vectorization of
the TM results are shown in figure 2; the same processes were
applied to all reports (both in the corpus and the validation set).
The bag-of-lemmas representing a case report was compared
against the dictionary and a vector of binary values was
constructed to indicate the presence or absence of dictionary
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entries in the case report; the vector (hereafter called type I
vector) was extended by one position to include the class label
of the report. The whole process is presented in the left branch
of figure 2.

The semantic tagger assigned tags to the lemmas of each case
report, while the parser interpreted the grammar to fit each
tagged lemma into a rule; the rules were executed in order. Thus,
the parsing process returned the low- and high-level patterns
(figure 2, right branch). Again, a binary vector was created to
indicate the presence or absence of the low-level patterns in each
class-labeled report; each vector (hereafter called type II vector)
had nine positions corresponding to the eight low-level patterns
plus the class label. As for the high-level patterns, no vectori-
zation was performed since the rule-based classifier processed
this output directly by classifying a case report as potentially
positive when the parser output matched any of ‘pattern1,’
‘pattern2’, ‘pattern3’, or ‘pattern4’; the report was otherwise
classified as negative. The rule-based classification was
straightforward and was applied to the case reports of all sets
without getting into any training process.

On the other hand, in order to examine ML classifiers, all
vectors (both type I and type II) of the original set were
randomly split into a training and a testing set following the
75%e25% splitting rule (Ntrain¼4526 and Ntest¼1508, respec-
tively). Both sets had the same distributional properties, that is,
4% of the case reports were potentially positive for anaphylaxis.
The performance of rule-based and ML classifiers over the

testing and validation sets is presented in tables 1e3. Supple-
mentary table 1 presents the average (over testing and validation
sets) sensitivity and specificity and their associated standard
errors, as well as the positive and negative predictive value of the
best (across metrics) performing machine learning classifiers and
rule-based classifier. Note here the equivalent performance of
these classifiers in terms of all metrics presented. Yet, the rule-
based classifier saved considerable computational time since it
did not have to be trained, a process that was followed for
w-SVM and BT, that is, the best ML classifiers. Moreover, the
w-SVM and BTclassifiers were also using features extracted from
the Brighton Collaboration case definition and that, to a large
extent, accounts for their good performance. Further analysis
was performed for macro-averages and MER (see next para-
graph).

Quantitative and qualitative error analysis
The null hypothesis of no difference, on average, among the ML
classifiers in terms of macro-R for lemmas was rejected by
Friedman’s test (test statistic¼12.37; p value¼0.000 058, with
F12,12 distribution). Bonferroni corrected multiple comparisons
(a¼0.0125) indicated that BT and w-SVM classifiers performed
best in terms of macro-R but were statistically equivalent to NB,
RDA, or GAM. Notice that macro-R is equivalent to a function
of sensitivity. MER analysis indicated that the mean-MER
associated with BTand w-SVM classifiers was 0.08 (SE:60.0053)
and 0.1015 (SE: 60.006), respectively; this was 2.5 and 3.2 times

Figure 2 An example of text mining
processes for a case report for
anaphylaxis using either the dictionary
(left branch of the diagram) or the
lexicon and the grammar rules (right
branch of the diagram). The output of
each case report is a vector of lemmas
(type I vector), a vector of low-level
patterns (type II vector), or a set of
high-level patterns. The two types of
vectors are extended by one position to
include the class label for the report.
The rule-based classifier classifies
this report as potentially positive based
on the identification of a high-level
pattern (‘class’¼1, ie, potentially
positive). GI, gastrointestinal; MCDV,
major cardiovascular; MDERM, major
dermatologic; mDERM, minor
dermatologic; MRESP, major
respiratory; mRESP, minor respiratory.

Parsing

Normalization 

123456-1 "FACIAL SWELLING 6HRS AFTER H1N1 NASAL MIST VOMITING, TIRED, 
NOT EATING, URTICARIA IN FACE/NECK."

['123456', '1', 'facial', 'swelling', '6hrs', 'h1n1', 'nasal', 'mist', 'vomiting', 'tired', 'eating', 'urticaria', 'face', 
'neck']

Tokenization

['123456', '1', 'face', 'swell', '6hr', 
'h1n1', 'nasal', 'mist', 'vomit', 'tire', 
'eat', 'urticaria', 'face', 'neck']

Stemming

[1 0 0 0 1 0 … 1 0 1 0 0 1 0]

Vectorization 

face swell vomit

urticaria

neck

throat class

[('123456', 'UNIMPORTANT'), ('1', 'UNIMPORTANT'), 
('facial', 'face_ANATOMY'), ('swelling', 
'swell_RESPIRATORY'), ('6hrs', 'UNIMPORTANT'), 
('h1n1', 'UNIMPORTANT'), ('nasal', 'UNIMPORTANT'), 
('mist', 'UNIMPORTANT'), ('vomiting', '
minor_GASTROINTESTINAL '), ('tired', 
'UNIMPORTANT'), ('eating', 'UNIMPORTANT'), 
('urticaria', 'minor_DERMATOLOGIC'), ('face', 
'face_ANATOMY'), ('neck', 'ANATOMY')]

Tagging

pattern2

GI*MDERM*

('facial', 'face_ANATOMY') ('swelling', 'swell_RESPIRATORY') ('vomiting', ' minor_GASTROINTESTINAL ')

[0  0  0  0  1  0  1  0  1]

DIAGNOSIS

DRUG

MRESP

mRESP

MDERM

mDERM

MCDV

class

GI*Vectorization 
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higher than the smallest mean-MER among the equivalent
classifiers (table 4). Additionally, the higher variability of these
two classifiers as compared with the remaining classifiers should
be noted. Therefore, higher macro-R comes at the expense of
a higher mean-MER (and associated SE). Similarly, the null
hypothesis of no differences, on average, among the ML classi-
fiers in terms of macro-P was rejected by Friedman’s test (test
statistic¼4.2346; p value¼0.0092). Bonferroni adjusted multiple
comparisons, indicated that the worst performance, in terms of
macro-P, was achieved by BTand w-SVM classifiers, while GAM
exhibited the best performance. GAM, RF, w-KNN, ME, DT,
RPCT, and s-SVM were statistically equivalent in terms of
macro-P.

Similar results were obtained for low-level patterns. Specifi-
cally, BT and w-SVM classifiers performed best in terms of
macro-R with NB, ME, RDA, and GAM being statistically
equivalent to BTand w-SVM. Our error analysis indicated higher
mean-MER for the latter classifiers (for BT and w-SVM these

were 0.0815 (60.0055) and 0.1015 (60.0059), respectively).
These rates were two and three times higher than the minimum
mean-MER obtained from the group of equivalent to the best
performing classifiers. In terms of macro-P, BT and w-SVM
exhibited the worst performance, while best performers were
RF and MARS. Statistically equivalent to the latter were GAM,
w-KNN, DT, ME, SB, s-SVM, and RPCT. The error analysis
attributed a mean-MER of 0.032 (SE: 60.0035) to RF and
MARS, which is the smallest among all.
For the rule-based classifiers, the mean-MER over the testing

and validation set was 0.0585 (SE: 60.00465). This error rate
was smaller than the best performing ML classifiers, while the
performance in terms of macro-recall/precision was equivalent.
Moreover, the mean macro-R was 0.8690 (SE: 60.00 674), the
mean macro-P was 0.6875 (SE: 60.00 919), and the mean
macro-F was 0.7675 (SE: 60.00 839).

In addition to the aforementioned quantitative error analysis,
we evaluated the classification performance of the ML classifiers

Table 1 Macro-averaged metrics for ML classifiers’ performance on the first feature representation
(lemmas); the ranks of classifiers are included in parentheses

Classifiers

Testing set Validation set

macro-R macro-P macro-F* macro-R macro-P macro-F*

NB 0.794 (10) 0.753 (4) 0.773 0.671 (11) 0.697 (4) 0.684

ME 0.701 (6) 0.863 (9) 0.773 0.577 (7.5) 0.775 (10.5) 0.661

DT 0.609 (2) 0.891 (12) 0.724 0.544 (1.5) 0.767 (9) 0.637

RPCT 0.642 (4) 0.872 (10) 0.740 0.544 (1.5) 0.732 (6.5) 0.624

BT 0.881 (13) 0.639 (2) 0.741 0.789 (12) 0.648 (2) 0.711

w-SVM 0.871 (12) 0.619 (1) 0.724 0.809 (13) 0.619 (1) 0.701

s-SVM 0.642 (4) 0.855 (7.5) 0.734 0.555 (4) 0.795 (12) 0.654

SB 0.708 (8) 0.836 (6) 0.767 0.574 (5) 0.677 (3) 0.622

MARS 0.707 (7) 0.809 (5) 0.755 0.576 (6) 0.733 (8) 0.645

RDA 0.831 (11) 0.649 (3) 0.729 0.640 (10) 0.702 (5) 0.669

RF 0.642 (4) 0.855 (7.5) 0.734 0.589 (9) 0.817 (13) 0.684

GAM 0.751 (9) 0.885 (11) 0.813 0.577 (7.5) 0.775 (10.5) 0.661

w-kNN 0.576 (1) 0.892 (13) 0.700 0.554 (3) 0.732 (6.5) 0.631

*Friedman’s test indicated no statistically significant differences between the classifiers.
BT, boosted trees; DT, decision trees; F, F-measure; GAM, generalized additive model; MARS, multivariate adaptive regression splines;
ME, maximum entropy; ML, machine learning; NB, naive Bayes; P, precision;
R, recall; RPCT, recursive partitioning classification trees; SB, stochastic boosting; s-SVM, SVM for sparse data; RDA, regularized
discriminant analysis; RF, random forests; w-kNN, weighted k-nearest neighbors; w-SVM, weighted support vector machines.

Table 2 Macro-averaged metrics for ML classifiers’ performance on the second feature representation
(low-level patterns); the ranks of classifiers are included in parentheses

Classifiers

Testing set Validation set

macro-R macro-P macro-F* macro-R macro-P macro-F*

NB 0.789 (11) 0.799 (4) 0.794 0.584 (8) 0.665 (3) 0.622

ME 0.707 (7.5) 0.809 (5.5) 0.755 0.587 (10) 0.719 (6) 0.646

DT 0.667 (3) 0.871 (7) 0.756 0.576 (3.5) 0.716 (5) 0.638

RPCT 0.651 (1) 0.877 (8) 0.747 0.555 (1) 0.795 (11) 0.654

BT 0.869 (12) 0.672 (2) 0.758 0.894 (13) 0.635 (2) 0.743

w-SVM 0.883 (13) 0.628 (1) 0.734 0.882 (12) 0.629 (1) 0.734

s-SVM 0.710 (9) 0.905 (11) 0.796 0.577 (5.5) 0.752 (8) 0.653

SB 0.693 (5.5) 0.899 (9.5) 0.783 0.576 (3.5) 0.733 (7) 0.645

MARS 0.677 (4) 0.944 (12) 0.789 0.567 (2) 0.816 (12) 0.669

RDA 0.788 (10) 0.783 (3) 0.786 0.585 (9) 0.683 (4) 0.630

RF 0.661 (2) 0.962 (13) 0.783 0.578 (7) 0.833 (13) 0.683

GAM 0.707 (7.5) 0.809 (5.5) 0.755 0.589 (11) 0.791 (10) 0.675

w-kNN 0.693 (5.5) 0.899 (9.5) 0.783 0.577 (5.5) 0.775 (9) 0.661

*Friedman’s test indicated no statistically significant differences between the classifiers.
BT, boosted trees; DT, decision trees; F, F-measure; GAM, generalized additive model; MARS, multivariate adaptive regression splines;
ME, maximum entropy; ML, machine learning; NB, naive Bayes; P, precision; R, recall; RPCT, recursive partitioning classification trees;
SB, stochastic boosting; s-SVM, SVM for sparse data; RDA, regularized discriminant analysis; RF, random forests; w-kNN, weighted
k-nearest neighbors; w-SVM, weighted support vector machines.
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using the area under the ROC curve (AUC). There are several
compelling reasons as to why the AUC is appropriate for
quantifying the predictive ability of classifiers, one reason being
the use of AUC for testing whether predictions are unrelated to
true outcomes is equivalent to using the Wilcoxon test. The best
performing classifiers when AUC was used were BTand w-SVM.
The AUC of BT when lemmas were used in the testing and
validation set was, respectively, 0.9234 (95% CI 0.9198 to
0.9270) and 0.7888 (95% CI 0.7771 to 0.8006). The corre-
sponding values of the AUC and 95% CI when low-level
patterns were used for the BT classifier and for the testing and
validation sets, respectively, were 0.8686 (95% CI 0.8636 to
0.8737) and 0.8944 (95% CI 0.8896 to 0.8992). For the w-SVM
and for lemmas in the testing and validation sets we obtained
AUC of 0.8706 (95% CI 0.8662 to 0.8750) and 0.8087 (95% CI
0.7989 to 0.8185). These values indicate equivalent performance
of BTand w-SVM classifiers in terms of their predictive ability to
identify truly positive reports.

We also performed a qualitative error analysis aimed at
understanding if any patterns are present that allow the
misclassification of reports as negative when they are truly
positive. The total number of false negative reports, in both the
testing and validation sets, returned by the three best
performing classifiers (rule-based, BT, and w-SVM) was 36 (16
and 20 in the testing and validation sets, respectively). None of
these reports contained the word ‘anaphylaxis’ and all were
missing an equivalent diagnosis. MOs examined, at a second
stage, these 36 reports and reclassified 15 of them as truly
positive (2 and 13 in the testing and validation sets, respec-
tively). Recall that the total number of truly positive reports in
both sets equals 103. Our best performing rule-based classifier
falsely misclassified only seven of these reports as negative. The

symptom text of the 15 reports and more details about their
qualitative error analysis are included in online supplementary
appendix 3.
The feature analysis identified six lemmas (‘epinephrin,’

‘swell,’ ‘tight,’ ‘throat,’ ‘anaphylaxi,’ ‘sob’) with very similar
information gain results. The diagnosis of anaphylaxis and
epinephrine were among the most predictive features too, when
they were treated as low-level patterns, along with major and
minor respiratory and major dermatologic criteria. Regarding
high-level patterns all (‘pattern1,’ ‘pattern2’, and ‘pattern4’ that
represented the diagnosis of anaphylaxis) were equivalent in
terms of information gain, excluding ‘pattern3’. The latter
should be attributed to the extremely low (1.12%) or zero
frequency of ‘pattern3’ in the potentially positive and negative
reports of the training set, respectively. In all the other cases, the
frequency of the most important predictive features was
remarkably higher in the subset of the potentially positive
reports.

DISCUSSION
In this study, we examined the effectiveness of combining
certain TM techniques with domain expert knowledge in the
case of VAERS for TC purposes; to our knowledge, no previous
efforts have been reported for TM and medical TC in VAERS or
any other SRS, despite the fact that various methods have been
applied before to other data sources showing the potential for
AE identification. For example, NLP methods have been applied
to discharge hospital summaries17 and other data mining
methods to structured EHR data.40e42 Our validated results
showed that TM in any level could effectively support TC in
VAERS. For example, rule-based, BT, and w-SVM classifiers
appeared to perform well in terms of macro-R, still with some
MER cost. A simple calculation over 10 000 reports for two
classifiers (eg, w-SVM and NB for low-level patterns) with MERs
of 0.10 and 0.04, respectively, would show an actual difference
of 600 misclassified (either as potentially positive or as negative)
reports between them. The actual cost in terms of extra
workload would be those misclassified as potentially positive
(based on our data that would be equal to 494 reports), but the
actual cost in terms of safety surveillance would be those
misclassified as negative (ie, 106 reports). Based on our error
analysis, <7% (7 out of 103) of the true positive cases would be
falsely classified as negative for our best performing classifier,
that is, the rule-based classifier. We believe that this level of
misclassification, in the context of the extensive known limi-
tations of SRS, is probably acceptable, although we hope to
engage in future efforts to refine our algorithm to reduce this
even more. This further illustrates that one of the important
properties of a classifier that is used to identify rare adverse
events is high sensitivity because it returns a smaller number of
falsely negative reports.
It could be argued that our approach lacks the automated

feature extraction aspect, which has been previously reported
as a strategy for TC.43 The issue of automatically extracting
features that characterize the AE accurately requires care. The
problem we are called to solve is the identification of rare or
very rare events from the data at hand. Because features need
to be related not only statistically but also causally to the
outcome, informative feature selection better serves our
purposes. The basis for our claim has been the availability of
solid standards (ie, Brighton case definitions) that are being used
by physicians in their daily practice. Accordingly, the extraction
of three feature representations supported the application of our
multi-level approach. Thus, we treated the case reports not only

Table 4 Mean misclassification error rate (mean-MER) over the testing
and validation data sets and the associated SE for the different ML
classifiers in the case of lemmas and low-level patterns

Classifiers

Lemmas Low-level patterns

Mean-MER SE Mean-MER SE

NB 0.0410 0.0039 0.0380 0.0038

ME 0.0335 0.0036 0.0365 0.0037

DT 0.0355 0.0037 0.0355 0.0037

RPCT 0.0355 0.0037 0.0345 0.0036

BT 0.0800 0.0053 0.0815 0.0055

w-SVM 0.1015 0.0060 0.1015 0.0059

s-SVM 0.0350 0.0036 0.0325 0.0035

SB 0.0370 0.0038 0.0335 0.0036

MARS 0.0360 0.0037 0.0320 0.0035

RDA 0.0590 0.0045 0.0380 0.0038

RF 0.0340 0.0036 0.0315 0.0035

GAM 0.0315 0.0035 0.0345 0.0036

w-kNN 0.0370 0.0037 0.0325 0.0035

BT, boosted trees; DT, decision trees; F, F-measure; GAM, generalized additive model;
MARS, multivariate adaptive regression splines; ME, maximum entropy; ML, machine
learning; NB, naive Bayes; P, precision; R, recall; RPCT, recursive partitioning classification
trees; SB, stochastic boosting; s-SVM, SVM for sparse data; RDA, regularized discriminant
analysis; RF, random forests; w-kNN, weighted k-nearest neighbors; w-SVM, weighted
support vector machines.

Table 3 Macro-averaged metrics for rule-based classifier’s
performance (high-level patterns); MER was also calculated

Data set macro-R macro-P macro-F MER

Testing set 0.889 0.691 0.777 0.058

Validation set 0.849 0.684 0.758 0.059

F, F-measure; MER, misclassification error rate; P, precision; R, recall.
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as bag-of-lemmas looking for lemmas7 (the bag-of-words
approach (stemmed or unstemmed) is rather limited13) but also
as sources of patterns (low- and high-level); we extracted these
patterns to examine their role in TC.

Informative feature selection mandated not only the use of
Brighton criteria but also MOs’ contributions since: (i) certain
criteria were not met in the case reports and should be excluded
from the feature space, for example, ‘capillary refill time,’ (ii)
non-medical words were often used by patients to describe
a symptom and should be included, for example, the word
‘funny ’ within variations of the phrase ‘my throat felt funny ’ to
describe ‘itchy throat’ or ‘throat closure,’ and (iii) other words
raised a concern for further investigation even though they were
not listed in Brighton definitions, for example, ‘epinephrine’ or
‘anaphylaxis.’

Regarding our TM methods, the construction of a controlled
dictionary and lexicon is considered laborious, demanding, and
costly because it relies on the recruitment of human experts.44

However, the informative development of a flexible and
relatively small controlled dictionary/lexicon appeared to be very
effective in our study. The same applied to the use of the
dedicated semantic tagger. A part-of-speech tagger would assign
non-informative tags to a span of text (ie, symptom text in
VAERS) that follows no common syntax; it would not support
the grammar rules either. The grammar was also built in the
same context: to better serve the extraction of the feature
representations and facilitate both the rule-based classification
and the training of ML classifiers.

Rule-based TC systems have been criticized for the lack of
generalizability of their rules, a problem defined as ‘knowledge
acquisition bottleneck.’44 However, their value in handling
specific conditions should not be ignored, such as in the Obesity
NLP Challenge, where the top 10 solutions were rule-based.27

ML methods are not as transparent as the rule-based systems
but have been used extensively for TC.44 Our results showed
that the rule-based classifier performed slightly better, probably
due to the informative feature selection. Either rule-based or ML
techniques could be applied to SRS databases and allow better
use of human resources by reducing MOs’ workload.

It could be argued that ensembles or a cascade of classifiers or
even a modified feature space would handle the classification
errors. Nevertheless, the principles of our study and the nature
of VAERS would require the consideration of certain aspects
prior to the application of such strategies. First, the construction
of the feature space was based on the domain expert contribu-
tion; short of fully automated feature extraction, any alterations
(use of new lemmas or introduction of new rules) based on this
feature analysis would benefit from consultation with clinical
experts to increase the chance that any such modifications
would lead to meaningful results. Second, a classification error
will be always introduced by the MOs who decide to acquire
more information for a ‘suspicious’ report even if it does not
meet all the criteria.

The methodology that was described in this paper and the
discussion of the related aspects raise the interesting question of
generalizability, that is, the transfer of components to the
identification of other AEFIs. The development of a broader
medical lexicon and a set of basic rules could be suggested to
support the extraction of all symptoms related to the main
AEFIs, such as GuillaineBarre syndrome and acute disseminated
encephalomyelitis. Based on these key components, other
advanced rules representing the specific criteria per AEFI (as
stated in the Brighton definitions and described by MOs) could
classify each report accordingly.

Our study lies partly in the field of text filtering since it
investigated ways to automate the classification of streams of
reports submitted in an asynchronous way.45 Generally, MOs’
intention is twofold: first, to identify the potentially positive
and block the negative reports (step 1); second, to further clas-
sify those that proved to be positive into more specific categories
(step 2), for example, anaphylaxis case reports into levels of
diagnostic certainty. This process is similar to the classification
of incoming emails as ‘spam’ or ‘non-spam’ and the subsequent
categorization of the ‘non-spam’ emails.46e48 Here, any further
categorization would require information gathering through the
review of medical records that are provided in portable
document format (pdf) only. The inherent difficulties related to
the production of these files limit their usability and the
possibility of utilizing this source remains to be investigated.

CONCLUSION
Our study demonstrated that it is possible to apply TM
strategies on VAERS for TC purposes based on informative
feature selection; rule-based and certain ML classifiers performed
well in this context. We plan to extend our current work and to
apply the same TM strategy regarding other AEs by incorpo-
rating experts’ input in a semi-automated feature extraction
framework.
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