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ABSTRACT
Objectives Studies on the impact and value of health
information technology (HIT) have often focused on
outcome measures that are counts of such things as
hospital admissions or the number of laboratory tests per
patient. These measures with their highly skewed
distributions (high frequency of 0s and 1s) are more
appropriately analyzed with count data models than the
much more frequently used variations of ordinary least
squares (OLS). Use of a statistical procedure that does
not properly fit the distribution of the data can result in
significant findings being overlooked. The objective of
this paper is to encourage greater use of count data
models by demonstrating their utility with an example
based on the authors’ current work.
Target audience Researchers conducting impact and
outcome studies related to HIT.
Scope We review and discuss count data models and
illustrate their value in comparison to OLS using an
example from a study of the impact of an electronic
health record (EHR) on laboratory test orders. The best
count data model reveals significant relationships that
OLS does not detect. We conclude that comprehensive
model checking is highly recommended to identify the
most appropriate analytic model when the dependent
variable being examined contains count data. This
strategy can lead to more valid and precise findings
in HIT evaluation studies.

INTRODUCTION
Count data consist of non-negative integers that
represent the number of times a discrete event is
observed.1 In many health information technology
(HIT) research contexts the dependent variable of
interest fits this definition. Typical examples of
count data are the number of office visits, hospital
admissions, adverse drug events (ADEs), laboratory
tests, and rates of cardiac arrest. This type of data
presents a number of analytic challenges including:
(a) a large and perhaps disproportionate number of
zero values; (b) a relatively high frequency of small
integer values; and (c) non-constant variance
(where the variance of the residuals differs for
different ranges of independent variables).
In recent years, statisticians, econometricians,

and social science researchers have focused
attention on modeling count data due to observed
problems with commonly used analytic methods.
Ordinary least squares (OLS) regression is often
inappropriate because count data violate the
underlying assumptions of OLS regression:
normality and constant variance. This can result in

inaccurate estimates of standard errors, and
misleading p values and consequent confidence
intervals. It can also produce estimates of depen-
dent variable values that are accurate for one
subsample but inaccurate in other subsamples from
the same population.2

One suggested approach is to apply OLS to the
logarithm of a count variable to transform it into
a more normal distribution.3 However, there are
several drawbacks of such transformations
including: (a) zero values are not taken into
account4; (b) predicted meaningless negative values
for the dependent variable are possible; (c)
normality of the estimated values may not be
achieved; (d) parameter estimates may be unin-
terpretable; and (e) retransformation may result in
less accurate point estimates.2 Thus, it is
problematic to use OLS to analyze count data.

BRIEF REVIEW OF COUNT DATA MODELS
More effective alternatives have been developed to
better account for the characteristics of count data.
Regrettably, many researchers still rely on OLS to
analyze count data and relatively few biomedical
informaticians make use of count data models to
examine the impact of HIT on such data. Our
search of the literature in three leading research
databases (PubMed, Academic Search Premier, and
Elsevier ScienceDirect) revealed that only a limited
number of reviewed papers used a count data model
in the past 5 years, with little justification
presented for their model selection decision.5e10

This is consistent with a recent review on the use
of statistical analysis in the biomedical informatics
literature. Descriptive and elementary statistics
were most frequently used in the Journal of the
American Medical Informatics Association and the
International Journal of Medical Informatics, but few
regression techniques for count data were in
evidence.11

This paper highlights the need for greater use of
count data models, including Poisson regression
(PR), negative binomial regression (NBR), hurdle
regression (HR), zero-inflated Poisson regression
(ZIPR), and zero-inflated negative binomial regres-
sion (ZINBR). The following discussion attempts
to explain these data analysis methods for
biomedical informaticians so that they may make
use of them in their research for better and more
precise statistical analyses. It attempts to avoid
using statistical and econometric theories and
terminologies wherever possible. For further details,
the reader is referred to the work of Cameron and
Trivedi, which covers both statistical and econo-
metric analysis of count data models.1 In the
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following we cite biomedical informatics literature employing
the discussed techniques when such articles exist.

Poisson regression
As the benchmark model for count data, the Poisson distribution
models the probability of a number of events occurring within
a given time, distance, or volume interval. It shares many
similarities with OLS, but the residuals (differences between
actual and predicted values) are assumed to follow the Poisson
distribution instead of the normal distribution. Unlike OLS,
which transforms the dependent variable to normalize the
residuals, the log transformation in the Poisson distribution
guarantees that the predicted values of the dependent variable
will be zero or positive. The use of PR is illustrated by a study of
the impact of point-of-care personal digital assistant (PDA) use
on resident documentation that found no significant decrease in
the number of documentation discrepancies due to PDA use.10

Negative binomial regression
When over-dispersion (the magnitude of the variance exceeds
the magnitude of the mean) occurs, an NBR model is more
appropriate. Since an NBR become a PR as over-dispersion
declines, the main difference between a PR and an NBR is their
variances. The consequence of over-dispersion in PR is underes-
timation of standard errors, which tend to be larger and more
accurate in NBR. The fact that NBR converges to PR makes it
possible to carry out a model comparison between them.12

Empirically, NBR gives more accurate estimates than PR in most
cases.13 An example of applying NBR because of over-dispersion
in the number of ADEs was a study that examined the influence
of a medication profiling program on the incidence of those
ADEs.7 The authors concluded that a medication profiling
program added to an e-prescribing system did not reduce ADEs.

Hurdle regression
Over-dispersion can occur in counts of events when the initial
event and later events are generated by different processes. For
example, an individual patient may initiate an office visit when
he/she is concerned about certain symptoms. However, once the
patient has an initial encounter, the number of subsequent visits
is often determined by the physician. The hurdle model is
designed to deal with count data generated from such system-
atically different processes. It assumes that zero and positive
count values for the dependent variable come from different
data generating mechanisms and as a result there may be more
zero count cases than could be accounted for by a single
generating mechanism. A hurdle model analysis consists of two
parts. The first part models the probability of a count of zero for
a case using a logit or probit regression. If the dependent variable
has a positive value, the ‘hurdle is crossed’ and the second part
models the positive count group using PR or NBR.14

Zero-inflated regression
Zero-inflated regression (ZIR) models also assume that a high
frequency of zero counts (excessive zeros) may be due to more
than one underlying process. Consider the case where the
dependent variable of interest is the number of medications
prescribed for patients as evidenced by insurance claims during
a specified period. Some will have no medications recorded
because they lack prescription drug insurance coverage, while
others with such coverage will have a zero medication count
because there is no medical need. Still other patients may both
have insurance coverage and prescribed medications, thus having
a medication count of one or more. Patients without insurance

are certain to have a count of zero medications. They are referred
to as a certain zero group (CZG) and the probability of being in
the CZG is modeled in the first part using a logistic regression.
Patients in the latter two scenarios are considered to come from
the not certain zero group (NCZG) and are modeled by PR (in
ZIPR) or NBR (in ZINBR) in the second part that allows for the
possibility of a predicted zero number of medications. The use of
a ZINBR model is illustrated in a recent investigation of the
impact of health information exchange (HIE) on emergency
department (ED) utilization. It found that greater HIE infor-
mation access was associated with increased ED visits and
inpatient hospitalizations among patients with diabetes and
asthma.5

Zero-inflated regression is similar to HR in many aspects.
First, it is designed to accommodate the excessive zeros problem
that can occur in count data. Second, it is a composite model
that consists of two parts. The primary difference between ZIR
and HR is that the logit part of HR models the probability that
a patient comes from the zero count group. Unlike HR, the first
part of ZIR differentiates the source of zero counts and thus
predicts the probability that a patient is from the CZG using
a logit model. Then either PR or NBR is applied in the second
part to model the patients in the NCZG. The major difference
between ZIPR and ZINBR is the same as that between PR and
NBR, which means that ZINBR can better handle over-dispersion
of count data.

AN APPLICATION OF COUNT DATA MODELS
To demonstrate the utility of count data models in comparison
to OLS regression, we analyzed a dataset from a study we
conducted examining the impact of an electronic health record
(EHR) on the number of laboratory tests ordered in an ED. The
six models used were OLS, PR, NBR, HR, ZIPR, and ZINBR.
Details of this study are described elsewhere.15 The dependent
variable was the number of laboratory tests ordered during an
asthma patient’s first encounter (index visit) at one of three EDs.
The independent variables included the patient’s demographic
data (age, gender), if the patient had prior clinical information in
the EHR at the time of the visit (Yes or No), the patient’s burden
of illness as measured by the Charlson comorbidity index, and
site of care. Figure 1 is a frequency distribution that reveals
a large number of patients with no laboratory test orders and
much smaller numbers of patients with counts greater than
zero. It is evident that the laboratory test data are not normally
distributed and are highly concentrated in a few small values,

Figure 1 Observed frequency distribution of the number of laboratory
tests ordered during index emergency department (ED) visits for asthma
patients.
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which makes intuitive sense given the characteristics of
healthcare utilization. Most asthma patients have no laboratory
tests during their index visit because many of their problems
may be diagnosed by physical examination and patient inter-
view; only a few patients may require further laboratory testing.

Selecting the appropriate model
A less formal way to evaluate the fit of a count data model is to
plot the differences between the observed probabilities and the
predicted probabilities of each count value (number of labora-
tory tests ordered) for each model. That probability is defined as
the proportion of cases that take on a particular integer value
over the range of such values contained in the data. Figure 2 is
a series of plots of the differences between observed and
predicted probabilities across all of the models this paper
addresses. It clearly shows that both OLS (A) and PR (B) greatly
underestimate the probability of a zero count and overestimate
the probability of ordering one, two, three or four laboratory
tests, indicating their poor fit to the count data. Negative

binomial regression (C) shows a notable improvement over PR
in that it is better at predicting the probability of zero. This can
be attributed to the fact that NBR explicitly allows for the
observed over-dispersion of count data (variance¼11.5>mean¼2.1).
However, NBR still overestimates the probability of ordering
one, two or three laboratory tests and underestimates the
probabilities of ordering four or more laboratory tests,
suggesting that an improvement in prediction is still possible.
Compared with PR and NBR, both HR (D) and ZIPR (E) are
better at predicting zero counts and generate predicted proba-
bilities that are closer to those observed. However, ZIPR slightly
outperforms HR in terms of predicting zero counts since it takes
into account the source of zero counts. ZINBR (F) shows
a moderate improvement over ZIPR and HR. It is not only better
at predicting zero counts, but also does better in prediction than
other models for the rest of the counts, although it slightly
overestimates the probabilities of ordering three and four labo-
ratory tests. Overall, ZINBR appears to most accurately fit the
observed distribution of probabilities.

Figure 2 A graphical comparison of
the fit of ordinary least squares and
count data models to the number of
observed laboratory test orders.
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The more formal tests used to assess the fit of count data
models include the likelihood ratio (LR) test, Akaike’s informa-
tion criterion (AIC), and the Bayesian information criterion
(BIC).16e18 Before using PR, an over-dispersion check should
always be performed. If the distribution of the count data is
found to violate PR’s equidispersion (equality of variance and
mean) assumption (as in the example data), NBR should be
performed instead. In practice, both SAS and Stata automati-
cally compute a dispersion parameter (a) in an NBR analysis to
assess whether the mean and variance significantly differ from
each other.12 19 If a equals zero, a PR analysis is preferred. If a is
significantly greater than zero, the count data are over-dispersed
and are better estimated using an NBR. In our case, a is highly
significant (data not shown) and indicates that NBR is preferred
over PR.

The LR test can be used to compare nested models (ie, when
one model is an extension of the other). In this set, PR is nested
in NBR, PR is nested in HR, and ZIPR is nested in ZINBR. Based
on the log likelihood values in table 1, comparing PR with
NBR yields an LR test statistic of 4284 (¼�2(log likelihood
for PR�log likelihood for NBR)¼�2(�6238�(�4096))) with
a p value of <0.001. When PR is compared with HR, the LR test
statistic is 4422. Comparing ZIPR with ZINBR yields an LR test
statistic of 402 (both p>0.001). From this we can conclude that
NBR is preferred over PR, HR is preferred over PR, and ZINBR is
preferred over ZIPR.

In practice, the information criteria such as AIC and BIC are
used to help determine the appropriateness of alternative
models, especially when they are not nested. The lower the
value of the AIC or BIC, the better the model. In table 1, PR,
NBR, HR, ZIPR, and ZINBR are ranked according to their AIC
and BIC values, with ZINBR preferred due to it having the
lowest AIC and BIC. For those requiring a more comprehensive
test, the Vuong test has been adapted by Greene to compare
non-nested models such as ZIPR versus PR, and ZINBR versus
NBR.20 21

Interpreting the results
Given all of the comparisons presented, it is evident that the
ZINBR model is the preferred one for this data. It demonstrates
the best visual fit in plotting the differences between the actual
and predicted probabilities. The AIC, BIC, and LR test all indi-
cate that the ZINBR model is the best fit for the data.

Estimated coefficients from the OLS and ZINBR models are
presented in table 2 for comparison purposes. Although both the
OLS and the preferred count data model identify age, comor-
bidity ratings, and site of care as significant contributors to the
number of laboratory tests ordered, gender and EHR were
revealed to be additional significant predictors by the better
fitting ZINBR count data model.

In order to explain the large number of zero counts, ZINBR
estimates the coefficients of the independent variables assuming

two different processes. One process determines whether or not
a patient will have any tests (count of zero) and thus addresses
membership in the CZG (first or logit part). Such a process
might well be represented by a group of asthma patients who are
making use of the ED for primary care and simply require a new
prescription for their inhaler. The second process determines the
number of laboratory tests, including zero, that were ordered for
the patient (second or negative binomial part). The underlying
assumption is that this process might result in no laboratory
tests but for a different reason than in the CZG. For example,
some patients may be adequately assessed and treated solely by
a physical examination and require no laboratory testing.
Electronic health record, age, gender, and comorbidity are all

statistically significant predictors of membership in the group
that is certain to have zero laboratory tests ordered during the
index visit. The EHR result is interpreted as follows. When
holding all other variables constant, the existence of a patient’s
clinical information in the EHR was associated with a decrease
in the odds of membership of the CZG by a factor of 0.49
(OR¼e(�0.705)¼0.49, 95% CI 0.34 to 0.72). In more qualitative
terms, patients without EHR information had a higher
expectation than similar patients with EHR information of
experiencing a care process that did not include any laboratory
test orders. Similarly, the gender result is interpreted as
compared with females, being male increases the odds of
membership in the CZG by a factor of 1.32 (OR¼e0.275¼1.32,
95% CI 1.08 to 1.61) when holding all other variables in the
model constant. In other words, male patients had a greater
expectation than females of experiencing a care process that did
not include any laboratory test orders. It is important to note
that neither was a significant predictor in the OLS analysis.
The second part (negative binomial component) models the

process of determining how many laboratory tests are ordered
for a patient if he/she has a chance to have any tests ordered
during their index visit. In table 2, the site2 coefficient is inter-
preted as follows. Holding all the other variables constant,
patients who have the opportunity to have a laboratory test
ordered at site2 during their index visit would have a 45%
(RR¼e0.373¼1.45, 95% CI 1.13 to 1.86) higher mean number of
laboratory tests than such asthma patients at site3. A similar
result was observed for site1. It should be noted that the same
independent variable may be significant in one part of the count
data model but not in the other part.
We conclude from these results of the ZINBR model that

asthma patients with information in an EHR have approxi-
mately twice the odds of having laboratory tests ordered for
them during their ED visit. However, this information is not
predictive of how many tests are ordered.

DISCUSSION
This article examined how count data models (PR, NBR, HR,
ZIP, and NBR models) can be applied to analyze problems in

Table 1 Model comparison test statistics

Test statistic

Model*

OLS Poisson Negative binomial Hurdle
Zero-inflated
Poisson

Zero-inflated
negative binomial

Log likelihood �6021 �6238 �4096 �4027 �4027 �3826

Akaike’s information
criterion

12 060 12 494 8211 8091 8091 7690

Bayesian information
criterion

12 112 12 546 8269 8194 8194 7799

*Bold indicates the preferred model.
OLS, ordinary least squares.
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HIT evaluations. The utility of these modeling strategies for
count data with large numbers of zeros and over-dispersion has
been illustrated through an example that examines factors
affecting the number of laboratory test orders in an ED
encounter. The ZINBR analysis, in contrast to the OLS analysis,
revealed that an asthma patient without an EHR record had
a greater expectation than a patient with an EHR record of
experiencing a care process that did not include any laboratory
test orders.

This is consistent with the Mekhjian et al report that the
average number of laboratory orders per patient per diagnosis
related group (DRG) increased by up to 50% in the 2 years after
the introduction of a computerized physician order entry
system.22 Our results are also consistent with Vest’s investiga-
tion of the impact of HIE on ED utilization, where ZINBR was
employed in demonstrating that greater HIE information access
was also associated with greater utilization of services as
represented by ED visits and inpatient hospitalizations among
patients with asthma and diabetes.5

It is recognized that the finding reported in the example is at
variance with much of the literature on EHR impact, which has
reported reductions in the numbers of laboratory tests.23e32 It is
unlikely that the contrary finding is due to the use of the count
data analysis. Rather it is most likely explained by the focus on
a small subset of patients with asthma. Our work with
congestive heart failure or diabetes patients in the same project
from which this example was drawn is in greater agreement
with the finding of a reduction in laboratory test orders when an
EHR is present.15 One possible explanation for our finding may
well be that the differential effect was observed because the
impact of clinical data in an EHR may vary by disease state.

Our study demonstrates, for our data, the conceptual and
statistical advantages of these fairly recent statistical estimation
methods over the traditional OLS estimation approach. The
example highlighted the value of count data models in uncov-
ering previously hidden findings and providing additional insight
into the factors that affect test volumes. Although no single
count data model works best for all situations, the family of
models provides the potential for a better statistical fit to
observed data than OLS. The illustrative example shows that
OLS analysis presents an incomplete set of findings most likely

due to violations of its underlying assumptions of normality and
constant variance. In the example, although both OLS and
ZINBR found age, comorbidity ratings, and site of care to be
significant contributors to test volumes, the ZINBR model
uniquely identified the additional significant influences of gender
and the existence of EHRs on test ordering.
As an example of how count data models might well reveal

statistically significant predictors that were otherwise unde-
tected, consider the Bates et al study of the impact of the
computerized display of charges on the test volumes.33 The
study reported that although there was a lower rate of test
ordering in the group associated with a computerized display of
charges, it was not statistically significant. It is worth noting
that their conclusions were apparently based on multiple linear
regression analyses using OLS that were adjusted for age, gender,
race, primary insurer, and DRG weight. Given that the number
of laboratory test orders here is likely to exhibit the character-
istics of count data, there is reason to believe that count data
models would be a better fit to the data and thus more
appropriate than multiple linear regression in quantifying the
impact of EHR on test ordering. If count data models had been
applied, the less accurate estimates of standard errors or
misleading p values, if any, might have been avoided and
a significant impact for the intervention might have emerged.
We are not arguing that the intervention did, in fact, have such
an effect but only that since there was a numeric difference in
favor of the intervention, a count data analysis would have
a better chance of finding a significant effect because it would
better fit the likely distribution of the underlying data.
It is critical that researchers pay sufficient attention to

analytic model comparison and selection since less appropriate
models could greatly change a statistical inference and mislead
researchers and policymakers into drawing potentially erroneous
conclusions. In our fitted models and our sample of asthma
patients, if the OLS results was used, it would be reasonable to
conclude that the clinical information in an EHR has no impact
on the number of laboratory tests ordered for the asthma
patients who visited the ED. However, a more sophisticated
and methodologically appropriate analysis demonstrates that it
was associated with a difference. Therefore, comprehensive
model checking is highly recommended to better understand the
nature of observed data and to identify the most suitable
statistical model.
Researchers are also encouraged to make comparisons across

all the models discussed above whenever possible. Generally, PR
is a starting point for count data analysis. When over-dispersion
is present, NBR is considered instead. Since NBR is unable to
account for over-dispersion that is due to excessive zeros, HR or
ZIR models become the alternative modeling strategies. In our
example, ZINBR is preferred to HR. However, different models
may naturally fit different research questions. If we are inter-
ested in the number of allergy medications taken in the last
spring semester by a random sample of college students, we
would expect to have some students report taking zero allergy
medications either because they never have allergies (in the
CZG) or because they have allergies but not in last spring (in the
NCZG). In this case, a ZIR model is more appropriate. In
contrast, if we mainly focus on students who have ever taken
allergy medications, a HR model would be preferred.
In practice, count data models are relatively easy to interpret

and implement with the aid of statistical packages like SAS or
Stata. However, we are aware that these techniques are not yet
widely used by researchers in the biomedical informatics field. It
is our hope that this discussion of count data modeling strategies

Table 2 Estimated coefficients for ordinary least squares (OLS) and
zero-inflated negative binomial regression (ZINBR) in predicting the
number of laboratory test orders

Variable

Models*

OLS

Zero-inflated

Logit
Negative
binomial

Constant �1.612 2.159 0.753

Adjustors

Age 0.052 �0.029 0.008

Gender (ref group¼female) �0.117 0.275 0.064

Comorbidity 1.106 L0.765 0.106

Site1y (ref group¼site3) 0.581 L0.041 0.354

Site2y (ref group¼site3) 0.343 0.342 0.373

Indicators of EHR

EHR (ref group¼no EHR) 0.440 L0.705 0.028

Site13EHR 0.041 0.433 0.001

Site23EHR �0.535 0.754 L0.025

*Italics indicate p#0.05 for the coefficient, bold indicates the preferred model.
ySite1 and site2 represent the dummy variables for the three sites from which data were
obtained.
EHR, electronic health record.
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will lead to more frequent and appropriate use of such models in
biomedical and health informatics research involving evalua-
tions of HIT.
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