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ABSTRACT
....................................................................................................................................................

Objective Hospitals are challenged to provide timely patient care while maintaining high resource utilization. This has prompted
hospital initiatives to increase patient flow and minimize nonvalue added care time. Real-time demand capacity management
(RTDC) is one such initiative whereby clinicians convene each morning to predict patients able to leave the same day and prioritize
their remaining tasks for early discharge. Our objective is to automate and improve these discharge predictions by applying super-
vised machine learning methods to readily available health information.
Materials and Methods The authors use supervised machine learning methods to predict patients’ likelihood of discharge by
2 p.m. and by midnight each day for an inpatient medical unit. Using data collected over 8000 patient stays and 20 000 patient
days, the predictive performance of the model is compared to clinicians using sensitivity, specificity, Youden’s Index (i.e., sensitivity
þ specificity – 1), and aggregate accuracy measures.
Results The model compared to clinician predictions demonstrated significantly higher sensitivity (P< .01), lower specificity (P< .01),
and a comparable Youden Index (P> .10). Early discharges were less predictable than midnight discharges. The model was more ac-
curate than clinicians in predicting the total number of daily discharges and capable of ranking patients closest to future discharge.
Conclusions There is potential to use readily available health information to predict daily patient discharges with accuracies comparable
to clinician predictions. This approach may be used to automate and support daily RTDC predictions aimed at improving patient flow.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
Hospitals and clinician objectives require balance in treating each
patient’s condition effectively while efficiently distributing healthcare re-
sources to patient populations over time.1 A key determinant of hospital
capacity and resource management is linked to patient flow, a common
indicator of patient safety, satisfaction, and access.2–5 Optimal patient
flow facilitates beneficial treatment, minimal waiting, minimal exposure
to risks associated with hospitalization, and efficient use of resources
(e.g., of beds, clinical staff, and medical equipment). Patient flow is also
a determinant of access to specialized inpatient services. These patients
request admission from external sources (e.g., other health services)
and internal sources such as the emergency department (ED), proce-
dural areas, or peri-anesthesia care units (PACUs).6,7

Evidence supporting the benefits of improved flow has been
mounting.8 For patients, prolonged hospital stays increase the risk of
adverse events, such as hospital-acquired infections, adverse drug
events, poor nutritional levels, and other complications.9–12 Extended
stays have also been associated with poor patient satisfaction.11,13–17

For hospitals, economic pressures to deliver efficient and accessible
care are at unprecedented highs. Healthcare costs as a percentage of
gross domestic product (GDP) (17.9% in 2012) have been rising faster
than anticipated,18 and approximately 30–40% of these expenditures
have been attributed to “overuse, underuse, misuse, duplication,
system failures, unnecessary repetition, poor communication, and in-
efficiency.”19 These factors impede patient flow, prolong patient stays,
and increase the cost of care per patient.14,20–22

Patient flow, and by association, bed and capacity management, is
a common focus area for operations management methods applied to
healthcare. Discrete-event simulation, optimization, and Lean Six
Sigma approaches have been applied successfully in various settings
to improve patient flow by either redesigning care delivery processes
or more efficiently matching staff and other resources (e.g., operating
rooms, medical equipment) to demand.23–35 These patient flow evalu-
ations are data-driven and inform long-term operational decision-
making. Outcomes of these studies include improved patient and staff
scheduling strategies, new bed management policies, and reduction
in care process variability.

A more recent advancement in patient flow management alterna-
tively focuses on short-term operational decisions. Real-time demand
capacity management (RTDC) is a new method developed by the
Institute for Healthcare Improvement that has shown promising but
variable results when pilot tested in hospitals. The RTDC process
involves 4 steps: 1) predicting capacity, 2) predicting demand, 3) de-
veloping a plan, and 4) evaluating the plan.36 The RTDC process cen-
ters around a morning clinician huddle to predict which and how many
patients will be discharged that same day. Given daily predictions for
demand, the group then attempts to match their supply of beds to the
demand from new patients (i.e., admissions) by prioritizing current pa-
tients able to be discharged. RTDC implementation signifies a culture
change as the hospital staff dedicates time each morning to coordi-
nate and focus on patient flow. The developers of RTDC have demon-
strated that this approach, after an initial learning period, may reduce
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key indicators of patient flow across hospitals. These indicators
include ED boarding time, patients who left without being seen, and
overnight holds in the PACU.

RTDC does have limitations that we strive to address in this work.
First, RTDC requires a daily clinician huddle that demands dedicated
time that may be expedited or even eliminated through automated
prediction. Second, the prediction process is subjective and thus sus-
ceptible to high variability. In addition, the most successful implementa-
tions of RTDC have occurred in surgical units, where patient conditions
and clinical pathways are commonly well prescribed.37,38 Thus, previ-
ous results on RTDC predictive performance for surgical patients may
not be generalized to patients in medical units where clinical pathways
are less defined and length of stay (LOS) is more variable.

Our objective for this study is to support automation of the RTDC
process by producing daily predictions of patient discharge times for a
single inpatient medical unit. We hypothesize that a predictive model
using readily available health information may perform comparable or
better than predictions made by clinicians during their daily huddle. We
apply supervised machine learning methods to predict the probability of
patient discharge by 2 p.m. and by the end of each day (i.e., midnight).
By discharging a patient earlier in the day (e.g., prior to 2 p.m.), there is
an increased likelihood of admitting a new patient to the same bed,
thereby facilitating increased bed utilization and patient flow.36

Operational Forecasting Literature
Forecasting models have been leveraged to predict hospital occu-
pancy, patient arrivals and discharges, and other unit-specific opera-
tional metrics. These models have been derived from variations of
autoregressive moving average approaches,39–44 exponential smooth-
ing,39,40,42 Poisson regression,45 neural networks,42 and discrete-
event simulation methods.46–48 More recent studies have employed
logistic regression49 and survival analysis50 methods to predict patient
LOS. Through accurate prediction of patients’ LOS, clinical staff may
efficiently schedule future appointments or admissions to avoid back-
log or denials.44,51–53 Our approach builds on this research by focus-
ing on short-term predictions (i.e., daily discharges) for patients.

Supervised Machine Learning Literature
Tree-based supervised machine learning algorithms have been ap-
plied in healthcare to 1) predict a continuous-valued outcome or 2)
classify patients into one or more clinical subgroups. Example applica-
tions for the former include using linear regression or regression trees
to predict the range of motion for orthopedic patients,54 costs,55,56

and utilization.57 An example of the latter typically involves logistic re-
gression or classification trees, and has been used to differentiate be-
tween benign and malignant tumors,58 identify patients most likely to
benefit from screening procedures,59,60 identify high risk patients,61

and predict specific clinical outcomes.62–64 Recently, more advanced
machine learning techniques such as bagging, boosting, random for-
ests, and support vector machines have been applied to healthcare
problems such as classifying heart failure patients65 and predicting
healthcare costs.66 We build upon this research by adding a new ap-
plication area for these methods and leveraging the benefits of ensem-
ble learning techniques such as bagging and boosting.

MATERIALS AND METHODS
Setting and Data Sources
The study was conducted within a single, 36-bed medical unit in a
large, mid-Atlantic academic medical center serving an urban popula-
tion. The unit is staffed with hospitalist physicians with no teaching re-
sponsibilities. Patient flow data (i.e., admission and discharge times),

demographics, and basic admission diagnoses data was collected for
9636 patient visits over a 34-month study period from January 1,
2011 to November 1, 2013. After excluding incomplete and erroneous
records, we retained data for 8852 patient visits and converted these
visits to N¼ 20 243 individual patient days. These data are summa-
rized in Table 1.

These data are standardized and readily accessible in most hospi-
tal information systems, thus reproducible in other hospitals. The de-
mographic and clinical predictors are static model inputs that are
known at the time of admission and do not change during a patient’s
stay. Other predictors such as patient census, day of the week, and
elapsed length of stay are dynamic and are continuously updated dur-
ing a patient’s stay. Elapsed length of stay, age, and patient census
are numerical variables, whereas the remaining predictors are mod-
eled using binary indicator variables (i.e., 0 or 1 indicating the absence
or presence of a specific category).

The reason for visit is determined according to the International
Classification of Diseases-9 diagnoses structure.67 A physician identi-
fies this condition (via an electronic pick list) at the time of admission
to the unit, thereby documenting the primary reason for hospitaliza-
tion. Observation status is assigned to patients who are cared for
within the unit and must be monitored and evaluated before they are
eligible for safe discharge.68 Administratively, hospitals may use this
designation to bill Medicare for the patient under the outpatient service
category. However, a large study by the Department of Health and
Human Services found that observation patients have the same health
conditions as those who are fully admitted.69

In addition to the patient data listed in Table 1, a novel aspect of
this study is our collection of clinician predictions of patients to be dis-
charged at 2 p.m. and midnight. We recorded predictions from daily
morning huddles for 8 overlapping months between March 18, 2013
and November 1, 2013. The prediction team was comprised of a
charge nurse, case manager, and physicians. Members of this team
were directly involved with the administrative or clinical aspects of a
subset of patients in the unit each day. These team members had ac-
cess to substantially more information for their predictions than what
was accessible to our prediction models. This unique data facilitated a
comparative study between the machine-learning and clinician predic-
tions. In order to compare performance directly to the RTDC process,
the machine-learning models were designed to produce predictions
based on data available at 7 a.m. each day, which is analogous to the
clinician huddle times.

Analytic Methods
We applied and evaluated several supervised machine learning algo-
rithms to predict patient discharge and compare with clinician predic-
tions. These algorithms are considered ‘supervised’ because they are fit
to labeled training data (i.e., the outcomes are known in retrospect) and
then independently evaluated on separate labeled test data to estimate
their performance in practice. For each patient day, these algorithms pro-
duced two predictions representing the probability of a patient being dis-
charged by either 2 p.m. or midnight that same day. These predictions
were generated for every patient in the unit for each day of their stay,
which simulated the clinician-based RTDC prediction process. This
model is designed to support real-time predictions of expected bed ca-
pacity and could be adapted to predict patient discharges for any time in-
terval (e.g., hourly instead of specifically 2 p.m. and the end of the day).

Systematic experiments applying common supervised machine-
learning methods to predict individual patient discharges were per-
formed. These methods included logistic regression (i.e., reference
method), classification and regression trees, and tree-based ensemble
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learning methods. Model parameters and thresholds were tuned for
optimal performance with respect to the predictive measures de-
scribed in the following section.70 We compared the results among
these predictive methods, and then selected the best method to com-
pare to the clinician predictions.

Logistic regression is a commonly used classification method for
clinical applications, and it is an effective approach for providing a
baseline for how effectively the available data can be leveraged to pre-
dict the primary outcome. However, logistic regression is sometimes
limited for predictive applications, especially with large, highly dimen-
sional data where interactions may exist.70 Despite this, logistic re-
gression is a well-established method that will serve as a baseline for
comparison with more robust supervised machine learning algorithms.

Next, we applied tree-based methods to predict patient discharge
outcomes, which iteratively partition the data into groups with similar
characteristics and outcomes.71–73 These methods are adept at recog-
nizing predictor variable interactions and identifying sub-cohorts of pa-
tients that are more likely to have a positive outcome.71 Tree-based
models have the distinct advantage of providing more practical insight
than regression-based methods. The highest levels of these trees can
be translated into effective decision rules that may be interpreted

by clinicians, and embedded within existing clinical information technol-
ogy infrastructure to facilitate implementation and uptake in practice.68

Figure 1 shows a visualization of the classification tree for end-of-
day discharge predictions, which provides an example of how our re-
sults could be shared with clinicians. In this figure, we observe that
observation status is the most critical predictor relative to predicting
the outcome. Patients who are not on observation status (i.e., an inter-
mittent care status to evaluate whether they need to be admitted) tend
to stay, regardless of any of their other conditions. Patients who are
on observation status are more likely to be discharged only when their
elapsed LOS exceeds approximately 12 h or if they reported chest pain
as their chief complaint.

Despite these benefits, simple tree-based learning methods have
the potential to over-fit training data – causing the in-sample perfor-
mance to exceed the out-of-sample predictive performance, which oc-
curs when the model is overly complex and mistakes noise for key
underlying relationships.72,74 Tree-based ensemble learning methods,
such as bagging and boosting, address over-fitting by training large
numbers of “weak learners” and leveraging the diversity across learn-
ers (i.e., individual trees) to produce stable out-of-sample predictions.
Diverse trees are aggregated in some form (e.g., by selecting majority
votes or averaging) to classify or estimate risk for an outcome.72,74–76

Bagging utilizes a bootstrapping process (i.e., sampling with replace-
ment) to train numerous trees to produce model-averaged predic-
tions.74 The random forest is a common bagging method that
increases diversity across each individual tree.72,75,76 The random for-
est approach also facilitates evaluation of weak learners by selecting a
random subset of predictors at each candidate split in the learning pro-
cess for predictor variable importance in classifying outcomes.
Boosting implements optimization algorithms to re-weight misclassified
observations in an attempt to improve overall prediction accuracy.72

Training and Evaluation
Our ultimate goal was to implement the most parsimonious model with
high accuracy that utilizes data that can be automatically extracted from
electronic medical record systems. Predictor variables (see Table 1) for
each patient day (collected at 7 a.m.) were linked to binary outcomes in-
dicating whether the patient was discharged by 2 p.m. or the end of
day, respectively. We trained each model on data collected over 26.6
months from the start of the study (January 1, 2011) until the date
when the clinician predictions began (18 March, 2013). Model

Table 1: Patient flow and prediction data.

Patient Flow (Outcomes)

Length of stay: mean,
median (IQR)

Mean: 52 h, median: 37 h
(42.40 h)

Discharge timing 27.4% of discharges by 2 p.m.,
88.8% by 7 p.m.

Demographic predictors

Gender 57.1% female

Ethnicity 68.9% Caucasian, 26.7%
African American, 4.4% Other

Age: mean, median (IQR) 58.4 years, 57.0 years (24 years)

Insurance 45.3% Private, 39.5% Medicare,
9.4% Uninsured, 5.9% Medicaid

Clinical predictors

Reason for visit Chest pain 39.4%, syncope
11.4%, abdominal pain 3.8%,
chronic obstructive pulmonary
disorder (COPD) 3.6%, congestive
heart failure 1.8%

Observation status 52.5% of patients

Pending discharge location Home 85%, other healthcare
facilities: 15%

Unit workload predictors

Patient census: mean,
median (IQR)

20.87, 21 (7)

Timing predictors

Day of week Monday 14.7%, Tuesday 15.4%,
Wednesday 16.0%, Thursday 16.2%,
Friday 16.8%, Saturday 11.4%,
Sunday 9.5%

Elapsed length of stay Changes dynamically

Figure 1: Classification tree for end-of-day discharge
predictions.

0

1

1

0

10

Observation Status < 0.5 Observation Status > 0.5

Elapsed LOS < 0.292 Elapsed LOS > 0.292

Chest Pain < 0.5 Chest Pain > 0.5

Elapsed LOS < 0.581 Elapsed LOS > 0.581

Elapsed LOS < 0.464 Elapsed LOS > 0.464
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predictions were generated for the following 9.4 months (19 March
2013 to 31 December, 2013) out-of-sample; purposefully overlapping
with the same period clinician predictions were collected. This facilitated
cross-validation (78% training set and 22% testing set) of the model
and direct comparison to the clinician predictions. Predictive perfor-
mance was then estimated for model-based and clinician predictions
using binary classification statistics. Measures from the confusion matrix
(i.e., true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN)) were used to calculate:

• Sensitivity¼ TP / (TPþ FN)
• Specificity¼ TN / (TNþ FP)
• Youden’s Index J¼ Sensitivityþ Specificity � 1

These measures, along with the number of positive predictions
(i.e., discharges), captured different aspects of model performance.
Youden’s Index77 is a global accuracy measure whereas sensitivity
and specificity capture how well the predictions perform with respect
to a specific outcome (i.e., discharge or stay). Youden’s Index is a
common metric used to evaluate the performance of diagnostic
tests,78–80 and similar to these studies, we used it to optimize the cut-
off thresholds (i.e., to determine a discharge or stay prediction) for
each algorithm. We also calculated these metrics for near future out-
comes (i.e., outcomes for the next time period). For example, how
many patients predicted to be discharged by 2 p.m. were discharged
by the end of the day? Similarly, how many patients predicted to be
discharged by the end of the day were discharged by the end of the
next day? These measures include correct predictions but also incor-
rect predictions that were correct within one day, which provides
some insight as to the magnitude of predictive errors.

We conducted hypothesis testing (a¼ 0.05) to detect statistically
significant differences between the predictive capabilities for the
model and the clinicians. Each of these tests can be applied readily to
paired samples, which is required for comparing predictions for the
same patient day(s) We used McNemar’s test with Yates correction for
continuity81–82 to test the null hypothesis H0: pmodel¼ pclinicians, where
p represents the proportion of correct predictions relative to the total
number of positive (sensitivity) or negative (specificity) outcomes. For
Youden’s Index J, we apply the method devised in Chen et al.83 for
paired samples to test the null hypothesis H0: Jmodel¼ Jclinicians. For
both tests, we used two-sided alternative hypotheses.

In addition, we evaluated the results in two additional measures
that are relevant to model implementation. First, we aggregated (i.e.,
summed) the number of expected daily discharges from the model
and clinician predictions, and then compared these results to the ac-
tual number of discharged patients for each day using paired hypothe-
sis tests at the a¼ 0.05 level. This aggregate measure is useful for
proactive patient flow management by anticipating available (i.e., un-
occupied) beds in advance and facilitating accept/reject admission de-
cisions related to capacity constraints. Separately, we used model
predictions to rank the patients in order of their likelihood for dis-
charge each day. Spearman rank correlation coefficients were com-
puted to evaluate the accuracy of these rankings with observed
patients remaining length of stay.84 This latter approach provided
some indication as to whether this model could be used to accurately
prioritize patients for discharge.

RESULTS
We applied tree-based supervised machine learning methods to pre-
dict discharge by 2 p.m. and the end of the day for each patient day.

The regression random forest (RRF) method proved most accurate
from systematic experiments of several tree-based algorithms with
parameters tuned for optimal predictive performance. Figure 2, sum-
marizing variable importance from the training of the RRF models, pro-
vides evidence that elapsed LOS and observation status are
substantially more important than all of the other predictors, followed
by Sunday, chest pain, disposition, age, and syncope. Predictors such
as gender, ethnicity, weekdays (Monday through Thursday), and less
common reasons for visit (e.g., abdominal pain, COPD, congestive
heart failure) had little to no predictive power for this patient
population.

Individual Predictions
We compared the RRF model predictions to the clinician predictions in
order to evaluate the potential of this approach in practice. We have
also included comparisons to logistic regression as a reference to bet-
ter understand the efficacy of the ensemble learning approach.
Results for both 2 p.m. and end-of-day outcomes are summarized in
Table 2 for the specific days when clinician predictions were available
(19 March, 2013 to 31 December, 2013), which included 4833 patient
days.

Overall, the logistic regression and RRF model were more aggres-
sive in predicting discharge than the clinicians for both the 2 p.m. and
end-of-day outcomes. This resulted in the automated models predict-
ing discharges with higher sensitivity (P< .01) and lower specificity
(P< .01) compared to the clinicians. Thus the models predicted a
higher proportion of discharges, but at the cost of producing more
false positives. The logistic regression baseline model consistently
demonstrated more sensitive behavior than the RRF model.

Despite differences in sensitivity and specificity, the RRF model
and clinicians predictive performance were comparable for Youden’s
Index, our global accuracy measure. There were no significant differ-
ences for same-day predictions (2 p.m. RRF model: 26.0%, clinicians
26.5%, P¼ .81; end-of-day RRF model: 34.0%, clinicians 34.0%,
P¼ .84) or the near-future end-of-day outcome (RRF model: 26.6%,
clinicians 25.2%, P¼ .62). However, the RRF model did perform sig-
nificantly better for the near-future 2 p.m. outcome (RRF model:
31.3%, clinicians 19.0%, P< .01). Predictions across models and cli-
nicians were more accurate for the end of the day than for 2 p.m.

Daily Aggregate Predictions
We also compared the aggregated RRF model and clinician predictions
for the total number of discharges each day. For the model predic-
tions, we summed the predicted probabilities across all patients to cal-
culate the expected value of discharged patients. The results for
2 p.m. and the end of day for the overlapping date range are summa-
rized in Figures 3 and 4, which show that the model outperforms clini-
cian estimates of the average number of patients to be discharged
early and by the end of the day.

In Figure 3, we plot the distribution of the actual number of dis-
charges per day against the distributions for the RRF model and clini-
cian predictions for each outcome. The actual number of discharges
per day averaged 2.36 by 2 p.m. and 8.29 patients by the end of the
day. Discharges predicted each day by the RRF model were 2.45
(P¼ .37) and 8.51 (P¼ .13), respectively, demonstrating no statisti-
cally significant difference from the actual number of discharges. In
comparison, clinician predictions were accurate for 2 p.m. discharges
(2.16, P¼ .19), but significantly deviated from the actual number of
discharges for the end of the day (6.54, P< .01). The model predicted
the total number of discharges within 2 patients 82% of days for 2
p.m. and 105 63% of days for the end of the day, whereas the
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clinicians predicted the same for 52% and 32% of days, respectively
(see Figure 4). In addition, large residuals (i.e., errors of 5 discharges
or more) were much more frequent for the clinician predictions.

Daily Rank Predictions
In practice, our prediction model could be used to rank patients
daily—based on their likelihood of being discharged—in order to pri-
oritize the remaining tasks for the most likely patients. We computed
Spearman’s rank correlation between the remaining LOS for each pa-
tient and their respective RRF model predicted probabilities for each
day (trained on the full data set). Figure 5 shows a histogram of these
correlations (in intervals of 0.05) for the 2 p.m. and end-of-day mod-
els. The mean rank correlation for 2 p.m. was 0.4816 and for the end
of the day was 0.4489. Both plots show that the correlations are al-
most exclusively positive and moderately large, which suggests that
the rank of the model predictions was moderately correlated with the
actual discharge order. For some days, the model nearly predicted the
exact order in which the patients were discharged.

DISCUSSION
Improving patient flow continues to be a top priority in the acute-care
setting, where patients with longer lengths of stay are less satisfied
and exposed to the risk of adverse events (e.g., hospital-acquired in-
fections, complications). Hospitals have aligned incentives to improve
patient flow because of the rising demand for services and the eco-
nomic pressures to reduce costs and improve resource utilization. Our

approach is designed to empower clinicians and hospital administra-
tors with analytical tools to increase their collective efficiency.

Our approach could be operationalized in three distinct ways. First,
it could be used to identify individual patients who are most likely to
be discharged on a given day. Hospital staff could prioritize these pa-
tients in order to discharge them as early as possible—without nega-
tively affecting their care—so that other patients can be admitted in
their place. Supervised machine learning methods may be used to
rank patients concurrently in a hospital (or specific unit) according to
their discharge probabilities. We have shown that our models perform
well for prediction or ranking. Alternatively, patients who are most
likely to be discharged may not be impacted significantly by an effort
to prioritize their remaining tasks. Therefore, another approach could
be to identify a second tier of patients who are only mildly to moder-
ately likely to be discharged. Prioritizing the remaining tasks for these
patients may have a more significant global impact on the number of
patients discharged over a given time period. Setting a range of pre-
dicted probabilities immediately below the classification threshold
would identify these patients. The last approach is to aggregate the
predicted discharge probabilities into daily discharge predictions. This
approach does not facilitate prioritization for patients likely to be dis-
charged, but it supports bed capacity planning for the unit. We have
shown that these types of predictions are very accurate and would
provide the staff with a good idea of how many in-use beds are likely
to be available by a specific time of day.

There are three important limitations to highlight for this
study. First, the performance of the models may improve with a

Figure 2: Variable importance summary from training regression random forest models for the 2 p.m. and end-of-day dis-
charge predictions.
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larger data set, in terms of the number of patient days used to train
the models and also with respect to being collected from multiple
sites. Increasing the size of the training data set would improve our
ability to detect more complex patterns in patient length of stay.
Similarly, the patterns detected in our training data set may not be
generalizable to other hospitals or units. Our intention is for each
hospital and/or unit to replicate our prediction model and train it on
its own data. Finally, we compared the performance of continu-
ous (i.e., probability-based) predictions from our models to binary
predictions (i.e., exit or stay) from the clinicians. Ideally, the fairest
comparison would be between continuous predictions from both
methods, however these predictions would be difficult to generate
and collect in practice.

CONCLUSIONS
We applied supervised machine learning algorithms to readily avail-
able health information to predict daily discharge outcomes as part of
the RTDC process. We directly compared model predictions to clinician
predictions using several performance metrics. The model predicted
discharges with higher sensitivity and lower specificity compared to
the clinicians, and the two methods were comparable (i.e., not statisti-
cally significantly different) for our global accuracy measure (Youden’s
Index). However, the model did outperform the clinicians for some
near-future and aggregate prediction metrics. Thus there is high po-
tential for these models to automate and expedite the RTDC prediction
process, thereby eliminating the need for daily clinician huddles or
supporting more accurate clinician predictions. Furthermore, these

Table 2: Performance comparison summary between logistic regression, regression random forest, and clinician predic-
tions performance comparison.

Performance Measure 2 p.m. End of Day

Logistic
Regression

Regression
Random Forest

Clinicians Logistic
Regression

Regression
Random Forest

Clinicians

Positive Predictions (Discharge) 1749 1781 485 1870 2175 1471

Sensitivity (%) 65.9 60.0 33.6 71.5 66.1 51.3

P< .01 P< .01 P¼ .02 P< .01

Specificity (%) 52.8 66.0 92.9 54.9 68.3 82.7

P< .01 P< .01 P< .01 P< .01

Youden’s Index (%) 18.7 26.0 26.5 26.4 34.0 34.0

P< .01 P¼ .81 P< .01 P¼ .84

Near Future Sensitivity (%) 73.4 56.1 21.7 81.9 54.1 39.0

P< .01 P< .01 P< .01 P< .01

Near Future Specificity (%) 51.5 75.2 97.3 49.3 72.5 86.1

P< .01 P< .01 P< .01 P< .01

Near Future Youden Index (%) 24.9 31.3 19.0 31.2 26.6 25.2

P¼ .06 P< .01 P¼ .02 P¼ .62

The P-value listed beneath each performance measure represents the results of McNemar’s test for sensitivity and specificity or the method de-
scribed in83 for Youden’s index for the estimated difference between each model and the clinicians. In each case, the null hypothesis of equality is
tested against the two-sided alternative.

Figure 3: Comparison of actual, model prediction, and clinician prediction distributions of the average number of patients
discharged from the unit each day.

0

5

10

15

20

25

Actual Model Clinicians

D
ai

ly
 D

is
ch

ar
ge

s

2 p.m.

0

5

10

15

20

25

Actual Model Clinicians

End of Day

RESEARCH
AND

APPLICATIONS
Barnes S, et al. J Am Med Inform Assoc 2016;23:e2–e10. doi:10.1093/jamia/ocv106, Research and Applications

e7

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/23/e1/e2/2379761 by guest on 24 April 2024



models were applied to simple and readily accessible information that
can be quite powerful, and easily replicated across acute-care envi-
ronments using electronic information systems.
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Figure 5: Histogram summary of daily Spearman’s rank correlation between remaining LOS and model prediction scores
for 2 p.m. and the end of the day.
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